Each of the archetypes below is a system of equations with a square coefficient matrix, or is a square matrix itself. Compute the determinant of each matrix, noting how Theorem SMZD indicates when the matrix is singular or nonsingular.
Archetype A, Archetype B, Archetype F, Archetype K, Archetype L
\[ \begin{bmatrix} 1 & -1 & 2 \\ 2 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix} \]
Calculate determinant by expanding on the third row.
\[ \begin{split} det\ A & = 1 \begin{bmatrix} -1 & 2 \\ 1 & 1 \\ \end{bmatrix} -1 \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ \end{bmatrix} +0 \begin{bmatrix} 1 & -1 \\ 2 & 1 \\ \end{bmatrix} \\ &= 1 (-1-2) - 1 (1-4) + 0 \\ &= -3 + 3 + 0 \\ &= 0 \end{split} \]
A <- matrix(c(1,2,1,-1,1,1,2,1,0), nrow=3)
A
## [,1] [,2] [,3]
## [1,] 1 -1 2
## [2,] 2 1 1
## [3,] 1 1 0
det(A)
## [1] 0
Since \(det\ A = 0\), per Theorem SMZD \(A\) is singular.
Calculate all other determinants using R.
B <- matrix(c(-7,5,1,-6,5,0,-12,7,4), nrow=3)
F <- matrix(c(33,99,78,-9,-16,-47,-36,2,10,27,17,3,-2,-7,-6,4), nrow=4)
K <- matrix(c(10,12,-30,27,18,18,-2,-21,30,24,24,-6,-23,36,30,24,0,-30,37,30,-12,-18,39,-30,-20), nrow=5)
L <- matrix(c(-2,-6,10,-7,-4,-1,-5,7,-5,-3,-2,-4,7,-6,-4,-4,-4,10,-9,-6,4,6,-13,10,6), nrow=5)
B
## [,1] [,2] [,3]
## [1,] -7 -6 -12
## [2,] 5 5 7
## [3,] 1 0 4
det(B)
## [1] -2
Since \(det\ B \ne 0\), per Theorem SMZD \(B\) is nonsingular.
F
## [,1] [,2] [,3] [,4]
## [1,] 33 -16 10 -2
## [2,] 99 -47 27 -7
## [3,] 78 -36 17 -6
## [4,] -9 2 3 4
det(F)
## [1] -18
Since \(det\ F \ne 0\), per Theorem SMZD \(F\) is nonsingular.
K
## [,1] [,2] [,3] [,4] [,5]
## [1,] 10 18 24 24 -12
## [2,] 12 -2 -6 0 -18
## [3,] -30 -21 -23 -30 39
## [4,] 27 30 36 37 -30
## [5,] 18 24 30 30 -20
det(K)
## [1] 16
Since \(det\ K \ne 0\), per Theorem SMZD \(K\) is nonsingular.
L
## [,1] [,2] [,3] [,4] [,5]
## [1,] -2 -1 -2 -4 4
## [2,] -6 -5 -4 -4 6
## [3,] 10 7 7 10 -13
## [4,] -7 -5 -6 -9 10
## [5,] -4 -3 -4 -6 6
det(L)
## [1] -4.437343e-30
R calculates \(det\ L\) as very close to zero, but not exactly zero. I have a suspicion that this is just a rounding error. Check if inverse matrix exists.
library(matlib)
inv(L)
## Error in Inverse(X, tol = sqrt(.Machine$double.eps), ...): X is numerically singular
\(L\) is not inversible. Therefore, it is singular. Therefore, \(det\ L = 0\).