\[\newcommand{\mx}[1]{\mathbf{#1}}\]
Doing the computations by hand, find the determinant of the matrix below.
Exercise DM.C23
\[ \left(\begin{array}{ccc} 1 & 3 & 2\\ 4 & 1 & 3\\ 1 & 0 & 1 \end{array}\right) = 1 \left(\begin{array}{cc} 1 & 3\\ 0 & 1 \end{array}\right) + 3 \left(\begin{array}{cc} 4 & 3\\ 1 & 1 \end{array}\right) +2 \left(\begin{array}{cc} 4 & 1\\ 1 & 0 \end{array}\right) = \] \[ (1)(1) + (3)(1) + (2)(1) = 2 \]