C25 Doing the computations by hand, find the determinant of the matrix below.
\[\begin{bmatrix}
3 & −1 & 4 \\
2 & 5 & 1 \\
2 & 0 & 6
\end{bmatrix}\]
\[\begin{equation}
\begin{array}{|ccc|}
3 & −1 & 4 \\
2 & 5 & 1 \\
2 & 0 & 6
\end{array}
= 3
\begin{array}{|cc|}
5 & 1 \\
0 & 6
\end{array}
- -1
\begin{array}{|cc|}
2 & 1 \\
2 & 6
\end{array}
+ 4
\begin{array}{|cc|}
2 & 5 \\
2 & 0
\end{array}
\end{equation}\]
\[\begin{equation}= (3)(30) + (1)(10) + (4)(-10)\end{equation}\]
\[\begin{equation}= 60\end{equation}\]
In R
A <- matrix(c(3 , −1 , 4, 2 , 5 , 1, 2 , 0 , 6), 3,3,byrow = T)
det(A)
## [1] 60