For an M/M/1 queue with mean interarrival time 1.25 minutes and mean service time 1 minute, find all five of \(W_q\), \(W\), \(L_q\), \(L\) and \(\rho\).

Known values:

# mean interarrival time (minutes)
mit <- 1.25

# mean service time (minute)
mst <- 1 

# number of servers 
c <- 1

# arrival rate 
lambda <- 1/mit

# service rate
mu <- 1/mst

# utilization of servers
rho <- lambda/(c * mu)

# avg no. of entities in queue
L_q <- (rho)**2/(1-rho)

# avg no. of entities in system
L <- (rho)/(1-rho)

# avg time in queue
W_q <- rho/(mu * (1-rho))

# avg time in system
W <- 1/(mu * (1-rho))
M/M/1 Value
\(\lambda\) \(\frac{1}{E(interarrival-time)}\) 0.8
\(\mu\) \(\frac{1}{E(service-time)}\) 1
\(\rho\) \(\frac{\lambda}{c\cdot\mu}\) 0.8
\(W_q\) \(\frac{\rho}{\mu\cdot(1-\rho)}\) 4 minutes
\(W\) \(\frac{1}{\mu\cdot(1-\rho)}\) 5 minutes
\(L_q\) \(\frac{\rho^2}{1-\rho}\) 3.2 entities
\(L\) \(\frac{\rho}{1-\rho}\) 4 entities



For each, interpret in words

This queue system has single server with exponential interarrival and service times.



Simulate in Simio

Simulation Setup




Results