1 Data preprocessing

Preliminaries.

## [1] "dplyr"   "langcog" "tidyr"   "ggplot2" "lme4"
## 
## Attaching package: 'langcog'
## The following object is masked from 'package:base':
## 
##     scale
## Loading tidyverse: ggplot2
## Loading tidyverse: tibble
## Loading tidyverse: tidyr
## Loading tidyverse: readr
## Loading tidyverse: purrr
## Loading tidyverse: dplyr
## Conflicts with tidy packages ----------------------------------------------
## %+%():    ggplot2, psych
## alpha():  ggplot2, psych
## filter(): dplyr, stats
## lag():    dplyr, stats
## 
## Attaching package: 'ggthemes'
## The following objects are masked from 'package:langcog':
## 
##     scale_color_solarized, scale_colour_solarized,
##     scale_fill_solarized
## Loading required package: Matrix
## 
## Attaching package: 'Matrix'
## The following object is masked from 'package:tidyr':
## 
##     expand
## 
## Attaching package: 'lmerTest'
## The following object is masked from 'package:lme4':
## 
##     lmer
## The following object is masked from 'package:stats':
## 
##     step
## This is lavaan 0.5-23.1097
## lavaan is BETA software! Please report any bugs.
## 
## Attaching package: 'lavaan'
## The following object is masked from 'package:langcog':
## 
##     sem
## sROC 0.1-2 loaded
## 
## Attaching package: 'MVN'
## The following object is masked from 'package:psych':
## 
##     mardia

Read in participant data.

data <- read.csv("../cdm_paq.csv", header =TRUE)
dem <- read.csv("../cdm_paq_dem.csv", header =TRUE)
labels <- read.csv("sent_forms.csv")
labels$sent <- as.character(labels$sent)

questions <- data %>%
  filter(Status == "Response Type")%>%
  select(Q1:Q28)%>%
  gather("item", "sent", Q1:Q28)

d <- data %>%
  filter(Finished == 1)%>%
  mutate(sid = ResponseId)%>%
  select(-Status, -StartDate, - EndDate, - IPAddress, -Progress, -Duration..in.seconds., -Finished, - ResponseId, - RecordedDate, -RecipientLastName, -RecipientFirstName, - RecipientEmail, -ExternalReference, -LocationLatitude, -LocationLongitude, - DistributionChannel)%>%
  select(sid, Q1:Q28)%>%
  gather("item", "rating", Q1:Q28)%>%
  left_join(questions)

subinfo <- dem %>%
  filter(Finished == "True")%>%
  transmute(sid = ResponseId, ethnicity = Q25.1, parent_ed = Q26.1, parent_age = Q27.1, parent_gender = Q28.1, num_kids = Q29, oldest_kid = Q30, youngest_kid = Q32, only_kid = Q33)

Make data frames.

d$sent <- stringr::str_replace_all(d$sent, "’", "")

dq <- d %>%
  left_join(labels)

#rescore reverse coded items
dq$rating <- as.numeric(dq$rating)
dq$rating[dq$reverse_code == 1] <- 8 - dq$rating[dq$reverse_code == 1]

2 PAQ

Test for normality.

dq_wide <- dq %>%
  select(sid, short_sent, rating)%>%
  spread(short_sent, rating)

x_vars <- dq_wide %>%
  select(-sid)

uniPlot(x_vars[1:10], type = "histogram")
uniPlot(x_vars[11:20], type = "histogram")

uniPlot(x_vars[21:24], type = "histogram")

#histograms for CDM
 
 #get subset for plotting
 hist_items <- c("Q8", "Q22", "Q12", "Q16") 

 hist <- d %>%
   select(sid, item, rating)%>%
   filter(item %in% hist_items)%>%
   spread(item, rating)
 
 ggplot(hist, aes(Q8, fill = Q8)) +
  geom_histogram(stat = "count") 

 ggplot(hist, aes(Q22, fill = Q22)) +
  geom_histogram(stat = "count") 

  ggplot(hist, aes(Q12, fill = Q12)) +
  geom_histogram(stat = "count") 

   ggplot(hist, aes(Q16, fill = Q16)) +
  geom_histogram(stat = "count") 

#get highest and lowest rated items   
d$sent <- stringr::str_replace_all(d$sent, "’", "")

dqg <- d %>%
  left_join(labels)

dqg$rating <- as.numeric(dqg$rating)   

ms <- dqg %>%
  group_by(category, short_sent, reverse_code) %>%
  multi_boot_standard(col = "rating", na.rm = TRUE) 

Get mean ratings for sentences.

dq$rating <- dq$rating - 1

ms <- dq %>%
  group_by(category, short_sent, reverse_code) %>%
  multi_boot_standard(col = "rating", na.rm = TRUE) %>%
  arrange(category, desc(mean)) 

ms$short_sent_ord <- factor(ms$short_sent, 
                             levels = ms$short_sent)

short_sent_ord <- ms$short_sent_ord

Plot responses to individual questionnaire items.

qplot(short_sent_ord, mean, col = category,
      ymin = ci_lower, ymax = ci_upper, pch = factor(reverse_code),
      geom = "pointrange",
      data = ms) +
  theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust = .5)) +
  xlab("") + 
  ylab("Mean Rating") + 
  ylim(c(0,6)) + 
  scale_colour_solarized()

Compare to Mturk samples. We are comparing the data collected from CDM parents to experiment 9 (parents and non-parents) of the questionnaire norming study and the data from the parenting behaviors study (self-reported parents).

cdm <- ms %>%
  ungroup()%>%
  select(category, short_sent, mean, ci_upper, ci_lower)%>%
  mutate(sample = "cdm")

load("e9.RData")
load("beh.RData")
load("e9_full.RData")
load("beh_dq.RData")

beh_d <- beh %>%
  ungroup()%>%
  mutate(category = category_paq)%>%
  select(category, short_sent, mean, ci_upper, ci_lower)%>%
  mutate(sample = "mturk1")
  
atts <- c("AA", "EL","RR")

e9_d <- e9 %>%
  filter(category %in% atts)%>%
  ungroup()%>%
  select(category, short_sent, mean, ci_upper, ci_lower)%>%
  mutate(sample = "mturk2")

ss_cdm <- dq %>%
  dplyr::group_by(sid, category) %>%
  dplyr::summarise(rating = mean(rating))%>%
  mutate(sample = "cdm")

ss_e9 <- d_full_e9 %>%
  filter(category %in% atts)%>%
  mutate(sid = workerid)%>%
  select(-workerid)%>%
  dplyr::group_by(sid, category) %>%
  dplyr::summarise(rating = mean(rating)) %>%
  mutate(sample = "mturk1")

ss_beh <- beh_dq %>%
  dplyr::group_by(sid, category_paq) %>%
  dplyr::summarise(rating = mean(rating)) %>%
  mutate(category = category_paq)%>%
  select(-category_paq)%>%
  mutate(sample = "mturk2")

ss_cdm$rating <- as.numeric(ss_cdm$rating)
ss_beh$rating <- as.numeric(ss_beh$rating)
ss_e9$rating <- as.numeric(ss_e9$rating)

ss_cdm$category <- as.factor(as.character(ss_cdm$category))
ss_beh$category <- as.factor(as.character(ss_beh$category))
ss_e9$category <- as.factor(as.character(ss_e9$category))

ss_compare<- bind_rows(ss_cdm, ss_beh)%>%
  bind_rows(ss_e9)

samp_compare <- e9_d %>%
  bind_rows(cdm)%>%
  bind_rows(beh_d)

samp_compare$short_sent <- factor(samp_compare$short_sent, levels = short_sent_ord)

samp_compare$sample <- factor(samp_compare$sample, levels = c("cdm","mturk1","mturk2"))

ss_compare$sample <- factor(ss_compare$sample, levels = c("cdm","mturk1","mturk2"))
ss_compare$category <- factor(ss_compare$category, levels = c("AA","EL","RR"))

qplot(short_sent, mean, col = sample,
      ymin = ci_lower, ymax = ci_upper,
      geom = "pointrange",
      data = samp_compare) +
  theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust = .5)) +
  xlab("") + 
  ylab("Mean Rating") + 
  ylim(c(0,6)) + 
  scale_colour_solarized()

#plot subset of questions for delivery to CDM parents.

cdm_items <- c("learn before speaking", "read to kids", "learn by playing", "explore and experiment")

ggplot(filter(samp_compare, short_sent %in% cdm_items), aes(short_sent, mean, fill=sample)) +
  geom_bar(stat="identity", position = "dodge")

CDM parents agree more with EL items related to exploration and play but less on teaching math before school compared to Mturk. They also rate RR items quite a bit lower than Mturk samples.

In general there is a bit more variability in agreement with items within subscales compared to Mturk samples.

Plot mean subscale scores.

atts_m <- dq %>%
  group_by(category) %>%
  multi_boot_standard(col = "rating", na.rm = TRUE) %>%
  arrange(category, desc(mean)) 

ggplot(atts_m, aes(x = category, y = mean)) + 
  geom_bar(stat="identity") + 
  geom_linerange(aes(ymin = ci_lower, ymax = ci_upper), 
             position = position_dodge(width = .9))+ 
  ylim(c(0,6)) 

3 Scale reliability

3.1 Whole Scale

wide.paq <- dq %>% 
  select(sid, short_sent, rating) %>% 
  spread(short_sent, rating)
alpha.rr <- as.matrix(select(wide.paq, -sid))
psych::alpha(x = alpha.rr)
## Some items ( calm children when upset explore and experiment learn by playing too much attention does not spoil ) were negatively correlated with the total scale and 
## probably should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## 
## Reliability analysis   
## Call: psych::alpha(x = alpha.rr)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean   sd
##       0.68      0.68    0.72      0.08 2.1 0.017    5 0.41
## 
##  lower alpha upper     95% confidence boundaries
## 0.64 0.68 0.71 
## 
##  Reliability if an item is dropped:
##                                       raw_alpha std.alpha G6(smc)
## calm children when upset                   0.68      0.68    0.72
## close bonds for relationships              0.67      0.66    0.70
## comfort children                           0.67      0.67    0.71
## consequences break rules                   0.66      0.67    0.71
## do as told                                 0.65      0.66    0.70
## explain rules                              0.68      0.67    0.72
## explore and experiment                     0.68      0.68    0.72
## grateful to parents                        0.66      0.67    0.71
## help deal with emotions                    0.66      0.66    0.70
## learn about math before school             0.65      0.66    0.70
## learn before speaking                      0.67      0.67    0.71
## learn by playing                           0.68      0.68    0.72
## need to feel emotionally close             0.67      0.66    0.71
## not ok to boss around caregivers           0.66      0.66    0.71
## not ok to see adults as equals             0.65      0.66    0.70
## pay attention to likes                     0.66      0.66    0.70
## read to kids                               0.67      0.67    0.71
## respect adults                             0.64      0.65    0.69
## should not make decisions                  0.68      0.68    0.72
## talk to babies                             0.67      0.66    0.70
## teach kids to prepare for school           0.65      0.66    0.70
## too much affection does not make weak      0.67      0.67    0.71
## too much attention does not spoil          0.69      0.68    0.71
## worry about misbehavior                    0.66      0.66    0.71
##                                       average_r S/N alpha se
## calm children when upset                  0.084 2.1    0.017
## close bonds for relationships             0.078 2.0    0.018
## comfort children                          0.080 2.0    0.018
## consequences break rules                  0.080 2.0    0.018
## do as told                                0.079 2.0    0.019
## explain rules                             0.082 2.1    0.017
## explore and experiment                    0.083 2.1    0.017
## grateful to parents                       0.080 2.0    0.018
## help deal with emotions                   0.078 1.9    0.018
## learn about math before school            0.078 1.9    0.019
## learn before speaking                     0.082 2.1    0.018
## learn by playing                          0.083 2.1    0.017
## need to feel emotionally close            0.079 2.0    0.018
## not ok to boss around caregivers          0.079 2.0    0.018
## not ok to see adults as equals            0.077 1.9    0.019
## pay attention to likes                    0.078 1.9    0.018
## read to kids                              0.082 2.1    0.017
## respect adults                            0.074 1.8    0.020
## should not make decisions                 0.084 2.1    0.018
## talk to babies                            0.078 1.9    0.018
## teach kids to prepare for school          0.078 1.9    0.019
## too much affection does not make weak     0.080 2.0    0.018
## too much attention does not spoil         0.083 2.1    0.017
## worry about misbehavior                   0.079 2.0    0.018
## 
##  Item statistics 
##                                         n raw.r std.r r.cor r.drop mean
## calm children when upset              680  0.20  0.22  0.13  0.061  4.3
## close bonds for relationships         680  0.33  0.39  0.35  0.229  5.4
## comfort children                      680  0.29  0.33  0.27  0.180  5.3
## consequences break rules              680  0.42  0.34  0.29  0.282  3.9
## do as told                            680  0.48  0.38  0.35  0.353  3.5
## explain rules                         680  0.22  0.26  0.18  0.116  5.4
## explore and experiment                680  0.15  0.25  0.16  0.089  5.8
## grateful to parents                   680  0.44  0.35  0.30  0.291  3.5
## help deal with emotions               680  0.36  0.42  0.37  0.272  5.6
## learn about math before school        680  0.48  0.42  0.39  0.349  5.0
## learn before speaking                 680  0.18  0.28  0.19  0.125  5.9
## learn by playing                      680  0.17  0.25  0.16  0.090  5.8
## need to feel emotionally close        680  0.29  0.36  0.31  0.205  5.6
## not ok to boss around caregivers      680  0.39  0.36  0.31  0.285  5.2
## not ok to see adults as equals        680  0.51  0.43  0.42  0.377  4.0
## pay attention to likes                680  0.37  0.40  0.36  0.263  5.2
## read to kids                          680  0.21  0.28  0.20  0.128  5.8
## respect adults                        680  0.59  0.52  0.52  0.489  4.7
## should not make decisions             680  0.28  0.22  0.14  0.152  2.9
## talk to babies                        680  0.32  0.41  0.36  0.268  5.9
## teach kids to prepare for school      680  0.49  0.42  0.40  0.352  4.7
## too much affection does not make weak 680  0.26  0.35  0.29  0.192  5.8
## too much attention does not spoil     680  0.19  0.25  0.18  0.049  4.8
## worry about misbehavior               680  0.41  0.37  0.32  0.304  4.9
##                                         sd
## calm children when upset              1.32
## close bonds for relationships         1.09
## comfort children                      1.16
## consequences break rules              1.50
## do as told                            1.41
## explain rules                         1.01
## explore and experiment                0.65
## grateful to parents                   1.64
## help deal with emotions               0.97
## learn about math before school        1.45
## learn before speaking                 0.54
## learn by playing                      0.78
## need to feel emotionally close        0.86
## not ok to boss around caregivers      1.08
## not ok to see adults as equals        1.60
## pay attention to likes                1.15
## read to kids                          0.79
## respect adults                        1.39
## should not make decisions             1.30
## talk to babies                        0.52
## teach kids to prepare for school      1.64
## too much affection does not make weak 0.67
## too much attention does not spoil     1.42
## worry about misbehavior               1.15
## 
## Non missing response frequency for each item
##                                          0    1    2    3    4    5    6
## calm children when upset              0.01 0.02 0.05 0.20 0.26 0.25 0.21
## close bonds for relationships         0.01 0.01 0.00 0.06 0.08 0.16 0.69
## comfort children                      0.01 0.01 0.01 0.07 0.08 0.24 0.59
## consequences break rules              0.02 0.05 0.09 0.28 0.18 0.21 0.18
## do as told                            0.02 0.06 0.12 0.36 0.18 0.16 0.10
## explain rules                         0.00 0.01 0.01 0.04 0.08 0.22 0.64
## explore and experiment                0.00 0.00 0.00 0.01 0.02 0.14 0.82
## grateful to parents                   0.04 0.07 0.11 0.34 0.14 0.13 0.17
## help deal with emotions               0.01 0.01 0.00 0.02 0.05 0.16 0.75
## learn about math before school        0.02 0.02 0.02 0.11 0.13 0.15 0.55
## learn before speaking                 0.00 0.00 0.00 0.01 0.00 0.05 0.93
## learn by playing                      0.01 0.00 0.00 0.01 0.02 0.08 0.88
## need to feel emotionally close        0.01 0.00 0.00 0.02 0.04 0.17 0.75
## not ok to boss around caregivers      0.00 0.01 0.01 0.06 0.13 0.25 0.54
## not ok to see adults as equals        0.03 0.06 0.06 0.21 0.23 0.21 0.20
## pay attention to likes                0.01 0.01 0.00 0.08 0.10 0.24 0.56
## read to kids                          0.01 0.00 0.00 0.00 0.01 0.05 0.93
## respect adults                        0.01 0.02 0.04 0.14 0.16 0.21 0.42
## should not make decisions             0.05 0.09 0.13 0.47 0.15 0.08 0.03
## talk to babies                        0.00 0.00 0.00 0.00 0.01 0.03 0.95
## teach kids to prepare for school      0.02 0.04 0.04 0.18 0.09 0.11 0.52
## too much affection does not make weak 0.01 0.00 0.00 0.01 0.03 0.09 0.86
## too much attention does not spoil     0.01 0.02 0.05 0.13 0.12 0.23 0.43
## worry about misbehavior               0.00 0.01 0.01 0.10 0.21 0.29 0.37
##                                       miss
## calm children when upset                 0
## close bonds for relationships            0
## comfort children                         0
## consequences break rules                 0
## do as told                               0
## explain rules                            0
## explore and experiment                   0
## grateful to parents                      0
## help deal with emotions                  0
## learn about math before school           0
## learn before speaking                    0
## learn by playing                         0
## need to feel emotionally close           0
## not ok to boss around caregivers         0
## not ok to see adults as equals           0
## pay attention to likes                   0
## read to kids                             0
## respect adults                           0
## should not make decisions                0
## talk to babies                           0
## teach kids to prepare for school         0
## too much affection does not make weak    0
## too much attention does not spoil        0
## worry about misbehavior                  0

3.2 Rules and Respect Subscale

wide.paq <- dq %>% 
  filter(category == "RR") %>%
  select(sid, short_sent, rating) %>% 
  spread(short_sent, rating)
alpha.rr <- as.matrix(select(wide.paq, -sid))
psych::alpha(x = alpha.rr)
## 
## Reliability analysis   
## Call: psych::alpha(x = alpha.rr)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean   sd
##       0.73      0.73    0.72      0.25 2.7 0.015  4.1 0.82
## 
##  lower alpha upper     95% confidence boundaries
## 0.7 0.73 0.76 
## 
##  Reliability if an item is dropped:
##                                  raw_alpha std.alpha G6(smc) average_r S/N
## consequences break rules              0.71      0.70    0.69      0.25 2.4
## do as told                            0.68      0.68    0.66      0.23 2.1
## grateful to parents                   0.71      0.71    0.69      0.26 2.4
## not ok to boss around caregivers      0.71      0.71    0.69      0.26 2.4
## not ok to see adults as equals        0.67      0.67    0.65      0.23 2.1
## respect adults                        0.68      0.68    0.66      0.23 2.1
## should not make decisions             0.73      0.73    0.71      0.27 2.6
## worry about misbehavior               0.71      0.71    0.70      0.26 2.5
##                                  alpha se
## consequences break rules            0.017
## do as told                          0.018
## grateful to parents                 0.017
## not ok to boss around caregivers    0.017
## not ok to see adults as equals      0.019
## respect adults                      0.019
## should not make decisions           0.016
## worry about misbehavior             0.016
## 
##  Item statistics 
##                                    n raw.r std.r r.cor r.drop mean  sd
## consequences break rules         680  0.58  0.57  0.46   0.39  3.9 1.5
## do as told                       680  0.67  0.67  0.61   0.53  3.5 1.4
## grateful to parents              680  0.59  0.55  0.45   0.38  3.5 1.6
## not ok to boss around caregivers 680  0.50  0.55  0.44   0.36  5.2 1.1
## not ok to see adults as equals   680  0.70  0.69  0.64   0.54  4.0 1.6
## respect adults                   680  0.68  0.67  0.62   0.53  4.7 1.4
## should not make decisions        680  0.46  0.47  0.34   0.29  2.9 1.3
## worry about misbehavior          680  0.49  0.53  0.41   0.34  4.9 1.1
## 
## Non missing response frequency for each item
##                                     0    1    2    3    4    5    6 miss
## consequences break rules         0.02 0.05 0.09 0.28 0.18 0.21 0.18    0
## do as told                       0.02 0.06 0.12 0.36 0.18 0.16 0.10    0
## grateful to parents              0.04 0.07 0.11 0.34 0.14 0.13 0.17    0
## not ok to boss around caregivers 0.00 0.01 0.01 0.06 0.13 0.25 0.54    0
## not ok to see adults as equals   0.03 0.06 0.06 0.21 0.23 0.21 0.20    0
## respect adults                   0.01 0.02 0.04 0.14 0.16 0.21 0.42    0
## should not make decisions        0.05 0.09 0.13 0.47 0.15 0.08 0.03    0
## worry about misbehavior          0.00 0.01 0.01 0.10 0.21 0.29 0.37    0

3.3 Affection and Attachment Subscale

wide.paq <- dq %>% 
  filter(category == "AA") %>%
  select(sid, short_sent, rating) %>% 
  spread(short_sent, rating)
alpha.aa <- as.matrix(select(wide.paq, -sid))
psych::alpha(x = alpha.aa)
## 
## Reliability analysis   
## Call: psych::alpha(x = alpha.aa)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean   sd
##       0.58       0.6    0.58      0.16 1.5 0.024  5.2 0.56
## 
##  lower alpha upper     95% confidence boundaries
## 0.53 0.58 0.63 
## 
##  Reliability if an item is dropped:
##                                       raw_alpha std.alpha G6(smc)
## calm children when upset                   0.58      0.60    0.57
## close bonds for relationships              0.53      0.54    0.52
## comfort children                           0.53      0.55    0.53
## help deal with emotions                    0.56      0.58    0.55
## need to feel emotionally close             0.55      0.57    0.55
## pay attention to likes                     0.55      0.57    0.55
## too much affection does not make weak      0.55      0.56    0.53
## too much attention does not spoil          0.54      0.55    0.52
##                                       average_r S/N alpha se
## calm children when upset                   0.17 1.5    0.024
## close bonds for relationships              0.14 1.2    0.027
## comfort children                           0.15 1.2    0.027
## help deal with emotions                    0.16 1.4    0.025
## need to feel emotionally close             0.16 1.3    0.026
## pay attention to likes                     0.16 1.3    0.026
## too much affection does not make weak      0.15 1.3    0.026
## too much attention does not spoil          0.15 1.2    0.027
## 
##  Item statistics 
##                                         n raw.r std.r r.cor r.drop mean
## calm children when upset              680  0.48  0.42  0.25   0.20  4.3
## close bonds for relationships         680  0.56  0.57  0.49   0.36  5.4
## comfort children                      680  0.56  0.54  0.43   0.34  5.3
## help deal with emotions               680  0.45  0.48  0.34   0.25  5.6
## need to feel emotionally close        680  0.45  0.50  0.37   0.28  5.6
## pay attention to likes                680  0.51  0.50  0.37   0.28  5.2
## too much affection does not make weak 680  0.45  0.53  0.42   0.32  5.8
## too much attention does not spoil     680  0.60  0.55  0.45   0.33  4.8
##                                         sd
## calm children when upset              1.32
## close bonds for relationships         1.09
## comfort children                      1.16
## help deal with emotions               0.97
## need to feel emotionally close        0.86
## pay attention to likes                1.15
## too much affection does not make weak 0.67
## too much attention does not spoil     1.42
## 
## Non missing response frequency for each item
##                                          0    1    2    3    4    5    6
## calm children when upset              0.01 0.02 0.05 0.20 0.26 0.25 0.21
## close bonds for relationships         0.01 0.01 0.00 0.06 0.08 0.16 0.69
## comfort children                      0.01 0.01 0.01 0.07 0.08 0.24 0.59
## help deal with emotions               0.01 0.01 0.00 0.02 0.05 0.16 0.75
## need to feel emotionally close        0.01 0.00 0.00 0.02 0.04 0.17 0.75
## pay attention to likes                0.01 0.01 0.00 0.08 0.10 0.24 0.56
## too much affection does not make weak 0.01 0.00 0.00 0.01 0.03 0.09 0.86
## too much attention does not spoil     0.01 0.02 0.05 0.13 0.12 0.23 0.43
##                                       miss
## calm children when upset                 0
## close bonds for relationships            0
## comfort children                         0
## help deal with emotions                  0
## need to feel emotionally close           0
## pay attention to likes                   0
## too much affection does not make weak    0
## too much attention does not spoil        0

3.4 Early Learning Subscale

wide.paq <- dq %>% 
  filter(category == "EL") %>%
  select(sid, short_sent, rating) %>% 
  spread(short_sent, rating)
alpha.el <- as.matrix(select(wide.paq, -sid))
psych::alpha(x = alpha.el)
## 
## Reliability analysis   
## Call: psych::alpha(x = alpha.el)
## 
##   raw_alpha std.alpha G6(smc) average_r  S/N   ase mean   sd
##       0.41      0.41    0.43     0.081 0.71 0.031  5.5 0.44
## 
##  lower alpha upper     95% confidence boundaries
## 0.35 0.41 0.47 
## 
##  Reliability if an item is dropped:
##                                  raw_alpha std.alpha G6(smc) average_r
## explain rules                         0.42      0.41    0.42     0.089
## explore and experiment                0.40      0.40    0.42     0.087
## learn about math before school        0.24      0.35    0.33     0.071
## learn before speaking                 0.41      0.40    0.41     0.086
## learn by playing                      0.41      0.40    0.41     0.086
## read to kids                          0.41      0.39    0.41     0.084
## talk to babies                        0.38      0.35    0.37     0.070
## teach kids to prepare for school      0.30      0.37    0.34     0.077
##                                   S/N alpha se
## explain rules                    0.69    0.029
## explore and experiment           0.67    0.031
## learn about math before school   0.54    0.043
## learn before speaking            0.65    0.031
## learn by playing                 0.66    0.030
## read to kids                     0.64    0.030
## talk to babies                   0.53    0.033
## teach kids to prepare for school 0.58    0.040
## 
##  Item statistics 
##                                    n raw.r std.r r.cor r.drop mean   sd
## explain rules                    680  0.37  0.40  0.19  0.087  5.4 1.01
## explore and experiment           680  0.29  0.41  0.20  0.109  5.8 0.65
## learn about math before school   680  0.70  0.50  0.46  0.381  5.0 1.45
## learn before speaking            680  0.26  0.42  0.22  0.109  5.9 0.54
## learn by playing                 680  0.31  0.41  0.22  0.091  5.8 0.78
## read to kids                     680  0.32  0.43  0.25  0.103  5.8 0.79
## talk to babies                   680  0.38  0.51  0.38  0.240  5.9 0.52
## teach kids to prepare for school 680  0.69  0.47  0.41  0.306  4.7 1.64
## 
## Non missing response frequency for each item
##                                     0    1    2    3    4    5    6 miss
## explain rules                    0.00 0.01 0.01 0.04 0.08 0.22 0.64    0
## explore and experiment           0.00 0.00 0.00 0.01 0.02 0.14 0.82    0
## learn about math before school   0.02 0.02 0.02 0.11 0.13 0.15 0.55    0
## learn before speaking            0.00 0.00 0.00 0.01 0.00 0.05 0.93    0
## learn by playing                 0.01 0.00 0.00 0.01 0.02 0.08 0.88    0
## read to kids                     0.01 0.00 0.00 0.00 0.01 0.05 0.93    0
## talk to babies                   0.00 0.00 0.00 0.00 0.01 0.03 0.95    0
## teach kids to prepare for school 0.02 0.04 0.04 0.18 0.09 0.11 0.52    0

4 Demographics

Create a data frame that has subscale scores.

ss <- dq %>%
  dplyr::group_by(sid, category) %>%
  dplyr::summarise(rating = mean(rating))

ss <- left_join(ss, subinfo)

4.1 By Gender

Estimate Std. Error df t value Pr(>|t|)
(Intercept) 5.5227273 0.0625985 1953.093 88.224637 0.0000000
categoryAA -0.5946970 0.0827199 1344.001 -7.189288 0.0000000
categoryRR -1.5631313 0.0827199 1344.001 -18.896686 0.0000000
parent_genderFemale 0.0085771 0.0677735 1953.093 0.126555 0.8993056
categoryAA:parent_genderFemale 0.3601318 0.0895583 1344.001 4.021199 0.0000611
categoryRR:parent_genderFemale 0.1279139 0.0895583 1344.001 1.428276 0.1534449

Women agree with AA items more than men.

4.2 By Parent Age

Estimate Std. Error df t value Pr(>|t|)
(Intercept) 5.4379790 0.1537098 1908.464 35.3782235 0.0000000
categoryAA 0.1489978 0.2041008 1308.000 0.7300207 0.4655083
categoryRR -1.5921409 0.2041008 1308.000 -7.8007573 0.0000000
parent_age_con 0.0024748 0.0040775 1908.464 0.6069451 0.5439595
categoryAA:parent_age_con -0.0116295 0.0054143 1308.000 -2.1479255 0.0319029
categoryRR:parent_age_con 0.0037600 0.0054143 1308.000 0.6944592 0.4875176

There is a small effect of age such that older parents agree less with AA items.

4.3 By Education

Unfortunately there is not much variability in Parent Education- most respondants have at least a college education.

Estimate Std. Error df t value Pr(>|t|)
(Intercept) 5.5336181 0.0238715 1962.014 231.8083231 0.0000000
categoryAA -0.2891902 0.0317771 1342.000 -9.1005740 0.0000000
categoryRR -1.4578380 0.0317771 1342.000 -45.8769460 0.0000000
scale(parent_ed_con) 0.0295716 0.0238774 1962.014 1.2384750 0.2156881
categoryAA:scale(parent_ed_con) -0.0224081 0.0317850 1342.000 -0.7049885 0.4809397
categoryRR:scale(parent_ed_con) -0.0697710 0.0317850 1342.000 -2.1950927 0.0283277

There is a small effect of parent education such that parents with higher levels of education agree more with EL items.

4.4 By Number of Kids

Estimate Std. Error df t value Pr(>|t|)
(Intercept) 5.6180129 0.0622564 1929.9 90.2398592 0.0000000
categoryAA -0.2995080 0.0814558 1340.0 -3.6769403 0.0002454
categoryRR -1.7459085 0.0814558 1340.0 -21.4338219 0.0000000
num_kids -0.0485468 0.0321300 1929.9 -1.5109493 0.1309651
categoryAA:num_kids 0.0065732 0.0420386 1340.0 0.1563606 0.8757723
categoryRR:num_kids 0.1639263 0.0420386 1340.0 3.8994272 0.0001012

With more kids, parents agree more with RR itmes and less with AA and EL items.

4.5 By Ethnicity

Estimate Std. Error df t value Pr(>|t|)
(Intercept) 5.5780347 0.0330930 1700.939 168.5565220 0.0000000
categoryAA -0.2742052 0.0441219 1162.001 -6.2147204 0.0000000
categoryRR -1.5516618 0.0441219 1162.001 -35.1676209 0.0000000
ethnicityAsian -0.1276670 0.0543378 1700.939 -2.3495076 0.0189121
ethnicityHispanic or Latino -0.0522994 0.1106338 1700.939 -0.4727251 0.6364700
categoryAA:ethnicityAsian -0.0726085 0.0724470 1162.001 -1.0022297 0.3164413
categoryRR:ethnicityAsian 0.2109756 0.0724470 1162.001 2.9121372 0.0036582
categoryAA:ethnicityHispanic or Latino 0.2190581 0.1475049 1162.001 1.4850907 0.1377910
categoryRR:ethnicityHispanic or Latino 0.3494560 0.1475049 1162.001 2.3691144 0.0179935

4.6 By Sample

Estimate Std. Error df t value Pr(>|t|)
(Intercept) 5.2406250 0.0301878 2677.965 173.600863 0.0000000
categoryEL 0.2895221 0.0331790 2364.681 8.726062 0.0000000
categoryRR -1.1610294 0.0331790 2364.681 -34.992896 0.0000000
samplemturk1 -0.4699247 0.0580625 2795.563 -8.093436 0.0000000
samplemturk2 -0.5129448 0.0578955 2794.330 -8.859840 0.0000000
categoryEL:samplemturk1 0.1184921 0.0641817 2364.681 1.846196 0.0649887
categoryRR:samplemturk1 0.7890536 0.0641817 2364.681 12.294051 0.0000000
categoryEL:samplemturk2 0.0759779 0.0639933 2364.681 1.187279 0.2352369
categoryRR:samplemturk2 0.8100294 0.0639933 2364.681 12.658026 0.0000000
## 
##  Welch Two Sample t-test
## 
## data:  ss_compare$rating[ss_compare$sample == "cdm" & ss_compare$category ==  and ss_compare$rating[ss_compare$sample == "mturk1" & ss_compare$category ==     "AA"] and     "AA"]
## t = 7.6792, df = 315.7, p-value = 2.025e-13
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  0.3544233 0.5986009
## sample estimates:
## mean of x mean of y 
##  5.240625  4.764113
## 
##  Welch Two Sample t-test
## 
## data:  ss_compare$rating[ss_compare$sample == "cdm" & ss_compare$category ==  and ss_compare$rating[ss_compare$sample == "mturk2" & ss_compare$category ==     "AA"] and     "AA"]
## t = 7.6647, df = 305.97, p-value = 2.391e-13
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  0.3847366 0.6505134
## sample estimates:
## mean of x mean of y 
##  5.240625  4.723000
## 
##  Welch Two Sample t-test
## 
## data:  ss_compare$rating[ss_compare$sample == "mturk1" & ss_compare$category ==  and ss_compare$rating[ss_compare$sample == "mturk2" & ss_compare$category ==     "AA"] and     "AA"]
## t = 0.47474, df = 491.96, p-value = 0.6352
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.1290411  0.2112669
## sample estimates:
## mean of x mean of y 
##  4.764113  4.723000
## 
##  Welch Two Sample t-test
## 
## data:  ss_compare$rating[ss_compare$sample == "cdm" & ss_compare$category ==  and ss_compare$rating[ss_compare$sample == "mturk1" & ss_compare$category ==     "EL"] and     "EL"]
## t = 6.1837, df = 294.74, p-value = 2.085e-09
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  0.2440749 0.4719652
## sample estimates:
## mean of x mean of y 
##  5.530147  5.172127
## 
##  Welch Two Sample t-test
## 
## data:  ss_compare$rating[ss_compare$sample == "cdm" & ss_compare$category ==  and ss_compare$rating[ss_compare$sample == "mturk2" & ss_compare$category ==     "EL"] and     "EL"]
## t = 6.449, df = 282.26, p-value = 4.87e-10
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  0.3068447 0.5764495
## sample estimates:
## mean of x mean of y 
##  5.530147  5.088500
## 
##  Welch Two Sample t-test
## 
## data:  ss_compare$rating[ss_compare$sample == "mturk1" & ss_compare$category ==  and ss_compare$rating[ss_compare$sample == "mturk2" & ss_compare$category ==     "EL"] and     "EL"]
## t = 0.96789, df = 481.23, p-value = 0.3336
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.08614422  0.25339826
## sample estimates:
## mean of x mean of y 
##  5.172127  5.088500
## 
##  Welch Two Sample t-test
## 
## data:  ss_compare$rating[ss_compare$sample == "cdm" & ss_compare$category ==  and ss_compare$rating[ss_compare$sample == "mturk1" & ss_compare$category ==     "RR"] and     "RR"]
## t = -4.6215, df = 391.22, p-value = 5.181e-06
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.4455013 -0.1795817
## sample estimates:
## mean of x mean of y 
##  4.079596  4.392137
## 
##  Welch Two Sample t-test
## 
## data:  ss_compare$rating[ss_compare$sample == "cdm" & ss_compare$category ==  and ss_compare$rating[ss_compare$sample == "mturk2" & ss_compare$category ==     "RR"] and     "RR"]
## t = -4.1598, df = 380.44, p-value = 3.94e-05
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.4306145 -0.1541943
## sample estimates:
## mean of x mean of y 
##  4.079596  4.372000
## 
##  Welch Two Sample t-test
## 
## data:  ss_compare$rating[ss_compare$sample == "mturk1" & ss_compare$category ==  and ss_compare$rating[ss_compare$sample == "mturk2" & ss_compare$category ==     "RR"] and     "RR"]
## t = 0.23195, df = 495.01, p-value = 0.8167
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.1504370  0.1907111
## sample estimates:
## mean of x mean of y 
##  4.392137  4.372000