DESCRIPTION: A package that provides classes and methods for spatial data. (…) Utility functions are provided, e.g. for plotting data as maps, spatial selection, as well as methods for retrieving coordinates, for subsetting, print, summary, etc
Orientat a objectes Tenim pensat parlar-ne a la propera reunió
getClass("Spatial")
## Class "Spatial" [package "sp"]
##
## Slots:
##
## Name: bbox proj4string
## Class: matrix CRS
##
## Known Subclasses:
## Class "SpatialPoints", directly
## Class "SpatialGrid", directly
## Class "SpatialLines", directly
## Class "SpatialPolygons", directly
## Class "SpatialPointsDataFrame", by class "SpatialPoints", distance 2
## Class "SpatialPixels", by class "SpatialPoints", distance 2
## Class "SpatialGridDataFrame", by class "SpatialGrid", distance 2
## Class "SpatialLinesDataFrame", by class "SpatialLines", distance 2
## Class "SpatialPixelsDataFrame", by class "SpatialPoints", distance 3
## Class "SpatialPolygonsDataFrame", by class "SpatialPolygons", distance 2
getClass("SpatialPolygons")
## Class "SpatialPolygons" [package "sp"]
##
## Slots:
##
## Name: polygons plotOrder bbox proj4string
## Class: list integer matrix CRS
##
## Extends: "Spatial"
##
## Known Subclasses: "SpatialPolygonsDataFrame"
getClass("SpatialPolygonsDataFrame")
## Class "SpatialPolygonsDataFrame" [package "sp"]
##
## Slots:
##
## Name: data polygons plotOrder bbox proj4string
## Class: data.frame list integer matrix CRS
##
## Extends:
## Class "SpatialPolygons", directly
## Class "Spatial", by class "SpatialPolygons", distance 2
library(maptools)
data(wrld_simpl)
is(wrld_simpl)
## [1] "SpatialPolygonsDataFrame" "SpatialPolygons"
## [3] "Spatial"
slotNames(wrld_simpl)
## [1] "data" "polygons" "plotOrder" "bbox" "proj4string"
str(wrld_simpl, max.level = 2)
## Formal class 'SpatialPolygonsDataFrame' [package "sp"] with 5 slots
## ..@ data :'data.frame': 246 obs. of 11 variables:
## ..@ polygons :List of 246
## .. .. [list output truncated]
## ..@ plotOrder : int [1:246] 145 175 24 209 30 21 9 71 98 8 ...
## ..@ bbox : num [1:2, 1:2] -180 -90 180 90
## .. ..- attr(*, "dimnames")=List of 2
## ..@ proj4string:Formal class 'CRS' [package "sp"] with 1 slots
head(slot(wrld_simpl, "data"))
## FIPS ISO2 ISO3 UN NAME AREA POP2005 REGION SUBREGION
## ATG AC AG ATG 28 Antigua and Barbuda 44 83039 19 29
## DZA AG DZ DZA 12 Algeria 238174 32854159 2 15
## AZE AJ AZ AZE 31 Azerbaijan 8260 8352021 142 145
## ALB AL AL ALB 8 Albania 2740 3153731 150 39
## ARM AM AM ARM 51 Armenia 2820 3017661 142 145
## AGO AO AO AGO 24 Angola 124670 16095214 2 17
## LON LAT
## ATG -61.783 17.08
## DZA 2.632 28.16
## AZE 47.395 40.43
## ALB 20.068 41.14
## ARM 44.563 40.53
## AGO 17.544 -12.30
str(polygons(wrld_simpl)[202], max.level = 3)
## Formal class 'SpatialPolygons' [package "sp"] with 4 slots
## ..@ polygons :List of 1
## .. ..$ :Formal class 'Polygons' [package "sp"] with 5 slots
## ..@ plotOrder : int 1
## ..@ bbox : num [1:2, 1:2] 25.7 35.9 44.8 42
## .. ..- attr(*, "dimnames")=List of 2
## ..@ proj4string:Formal class 'CRS' [package "sp"] with 1 slots
bbox(wrld_simpl)
## min max
## r1 -180 180
## r2 -90 90
proj4string(wrld_simpl)
## [1] " +proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs +towgs84=0,0,0"
# Exemples per mostrar que amb el plot directament ja fa el mapa i que es
# poden fer servir els parametres habituals
plot(wrld_simpl)
plot(wrld_simpl, bg = "black", border = "white")
plot(wrld_simpl, bg = "black", col = "white")
plot(wrld_simpl, bg = "steelblue1", col = "wheat", border = "sienna4", lwd = 1.6)
# Les dades les les he generat al fer el mapa de la presentació
str(deutePerPaisos)
FALSE 'data.frame': 172 obs. of 8 variables:
FALSE $ NAME : chr "Albania" "Algeria" "Angola" "Antigua and Barbuda" ...
FALSE $ 2011 : num 59.4 10.7 29.9 68.6 43.3 ...
FALSE $ 2012 : num 59.2 10.7 24.7 66.6 41.5 ...
FALSE $ 2013 : num 59.6 10.7 19.9 63.9 40.4 ...
FALSE $ 2014 : num 60.6 10.7 16.3 58.5 39.5 ...
FALSE $ 2015 : num 62 10.6 13.7 54.8 38 ...
FALSE $ 2016 : num 63.6 10.4 12.2 49.4 37.3 ...
FALSE $ colorInt2011: atomic #FC8D59 #3288BD #99D594 #FC8D59 ...
FALSE ..- attr(*, "palette")= chr "#3288BD" "#99D594" "#E6F598" "#FEE08B" ...
FALSE ..- attr(*, "table")= 'table' int [1:6(1d)] 29 28 29 28 29 29
FALSE .. ..- attr(*, "dimnames")=List of 1
FALSE .. .. ..$ : chr "[0,22.43)" "[22.43,34.15)" "[34.15,42.93)" "[42.93,55.12)" ...
summary(deutePerPaisos)
FALSE NAME 2011 2012 2013
FALSE Length:172 Min. : 0.0 Min. : 0.0 Min. : 0.0
FALSE Class :character 1st Qu.: 27.6 1st Qu.: 27.9 1st Qu.: 27.8
FALSE Mode :character Median : 42.9 Median : 43.5 Median : 43.5
FALSE Mean : 49.5 Mean : 49.7 Mean : 49.5
FALSE 3rd Qu.: 63.1 3rd Qu.: 64.0 3rd Qu.: 62.9
FALSE Max. :233.1 Max. :238.4 Max. :242.9
FALSE 2014 2015 2016 colorInt2011
FALSE Min. : 0.0 Min. : 0.0 Min. : 0.0 Length:172
FALSE 1st Qu.: 26.8 1st Qu.: 26.5 1st Qu.: 26.4 Class :character
FALSE Median : 43.3 Median : 41.8 Median : 41.2 Mode :character
FALSE Mean : 49.0 Mean : 47.8 Mean : 46.9
FALSE 3rd Qu.: 60.5 3rd Qu.: 60.6 3rd Qu.: 59.7
FALSE Max. :245.8 Max. :249.9 Max. :253.4
DESCRIPTION: A package for choosing univariate class intervals for mapping or other graphics purposes
library(classInt)
int <- classIntervals(deutePerPaisos$"2011", 6, style = "quantile")
int
## style: quantile
## [0,22.43) [22.43,34.15) [34.15,42.93) [42.93,55.12) [55.12,76.18)
## 29 28 29 28 29
## [76.18,233.1]
## 29
colorsPaleta = c("red", "blue", "yellow", "green", "brown", "orange")
plot(int, pal = colorsPaleta)
deutePerPaisos$colorInt2011 = findColours(int, colorsPaleta)
head(deutePerPaisos)
## NAME 2011 2012 2013 2014 2015 2016 colorInt2011
## 1 Albania 59.36 59.24 59.56 60.58 62.01 63.63 #A52A2A
## 2 Algeria 10.65 10.71 10.68 10.68 10.57 10.37 #FF0000
## 3 Angola 29.91 24.71 19.89 16.32 13.73 12.24 #0000FF
## 4 Antigua and Barbuda 68.63 66.58 63.90 58.54 54.80 49.36 #A52A2A
## 5 Argentina 43.35 41.47 40.38 39.49 38.02 37.31 #00FF00
## 6 Armenia 41.48 41.39 39.28 37.42 37.02 36.51 #FFFF00
# L'ordre dels registres és important, si al fer la fusió es modifica, els
# mapes sortiran malament.
# Opció joint del package plyr ( la que vaig fer serir a la presentació)
library(plyr)
names(deutePerPaisos) = c("NAME", "2011", "2012", "2013", "2014", "2015", "2016",
"colorInt2011") # Canviem el nom de country per NAME per fer la fusió de les dades amb el join
dadesFusionades = join(wrld_simpl@data, deutePerPaisos)
## Joining by: NAME
# Opció match i afegir la columna que volem indexOrdre =
# match(wrld_simpl@data$NAME, deutePerPaisos$NAME)
# wrld_simpl@data$colorInt2011 = deutePerPaisos[indexOrdre,
# 'colorInt2011']
head(dadesFusionades)
## FIPS ISO2 ISO3 UN NAME AREA POP2005 REGION SUBREGION
## 1 AC AG ATG 28 Antigua and Barbuda 44 83039 19 29
## 2 AG DZ DZA 12 Algeria 238174 32854159 2 15
## 3 AJ AZ AZE 31 Azerbaijan 8260 8352021 142 145
## 4 AL AL ALB 8 Albania 2740 3153731 150 39
## 5 AM AM ARM 51 Armenia 2820 3017661 142 145
## 6 AO AO AGO 24 Angola 124670 16095214 2 17
## LON LAT 2011 2012 2013 2014 2015 2016 colorInt2011
## 1 -61.783 17.08 68.63 66.578 63.90 58.54 54.80 49.36 #A52A2A
## 2 2.632 28.16 10.65 10.709 10.68 10.68 10.57 10.37 #FF0000
## 3 47.395 40.43 10.68 9.971 9.98 10.31 11.49 12.96 #FF0000
## 4 20.068 41.14 59.36 59.242 59.56 60.58 62.01 63.63 #A52A2A
## 5 44.563 40.53 41.48 41.390 39.28 37.42 37.02 36.51 #FFFF00
## 6 17.544 -12.30 29.91 24.715 19.89 16.32 13.73 12.24 #0000FF
wrld_simpl@data = dadesFusionades
plot(wrld_simpl, col = wrld_simpl@data$colorInt2011)
legend("bottomleft", legend = leglabs(round(int$brks, 2)), fill = colorsPaleta,
inset = c(0.03, 0.23), title = "In percentage of national GDP")
title(main = "Gross government debt 2011")
# Hi ha paisos que no tenen color perquè p.ex. Mongolia o Libia No hi eren
# a la base de dades de deute per paisos, per tant no ha creuat i se li ha
# assignat un NA
DESCRIPTION: The packages provides palettes for drawing nice maps shaded according to a variable
library(RColorBrewer)
display.brewer.pal(6, "Reds")
display.brewer.all()
# Repetim tot el procés realitzat anteriorment amb la paleta nova de
# RColorBrewer
int <- classIntervals(deutePerPaisos$"2011", 6)
colorsPaleta <- brewer.pal(6, "Spectral")
plot(int, pal = colorsPaleta)
colorsPaleta = colorsPaleta[6:1]
deutePerPaisos$colorInt2011 = findColours(int, colorsPaleta)
names(deutePerPaisos) = c("NAME", "2011", "2012", "2013", "2014", "2015", "2016",
"colorInt2011")
data(wrld_simpl) # Carreguem de nou les dades que l'anterior l'haviem modificat
dadesFusionades = join(wrld_simpl@data, deutePerPaisos)
## Joining by: NAME
wrld_simpl@data = dadesFusionades
plot(wrld_simpl, col = wrld_simpl@data$colorInt2011)
plot(wrld_simpl, col = wrld_simpl@data$colorInt2011, bg = "black")
# Solució afegir-li un color als NA
wrld_simpl@data$colorInt2011[is.na(wrld_simpl@data$colorInt2011) == TRUE] = "#808080"
plot(wrld_simpl, col = wrld_simpl@data$colorInt2011, bg = "black")
legend("bottomleft", legend = leglabs(round(int$brks, 2)), fill = colorsPaleta,
inset = c(0.03, 0.23), bg = "black", text.col = "white", box.col = "white",
title = "In percentage of national GDP")
title(main = "Gross government debt 2011")
# Canviem els noms que els camps 2011, 2012.. ens donen problemes
names(wrld_simpl) = make.names(names(wrld_simpl))
# Personalment no els he fet servir gaire però val la pena conèixer que
# existeixen
spplot(wrld_simpl, zcol = c("X2013", "X2014", "X2011", "X2012"), col.regions = colorRampPalette(c("blue",
"green", "orange", "red", "darkred"))(16))
library(maptools)
getinfo.shape("XXXX.shp")
readShapeSpatial("XXXX.shp")
readShapePoints("XXXX.shp")
readShapeLines("XXXX.shp")
readShapePoly("XXXX.shp")
# La llibreria maptools permet importar també altres tipus de fitxers
readAsciiGrid
readGPS
readSplus
Rgshhs
etc
# Dades de les estacions
getinfo.shape("~/Documents/R user Group/Intro Mapes amb R/Mapes amb R/TMB/TMB_EIX.shp")
## Shapefile type: PolyLine, (3), # of Shapes: 156
eixosTMB = readShapeLines("~/Documents/R user Group/Intro Mapes amb R/Mapes amb R/TMB/TMB_EIX.shp")
str(eixosTMB, max.level = 2)
## Formal class 'SpatialLinesDataFrame' [package "sp"] with 4 slots
## ..@ data :'data.frame': 156 obs. of 7 variables:
## .. ..- attr(*, "data_types")= chr [1:7] "N" "C" "C" "C" ...
## ..@ lines :List of 156
## .. .. [list output truncated]
## ..@ bbox : num [1:2, 1:2] 422146 4577261 436959 4590622
## .. ..- attr(*, "dimnames")=List of 2
## ..@ proj4string:Formal class 'CRS' [package "sp"] with 1 slots
head(slot(eixosTMB, "data"))
## ID NOM_CAPA MODALITAT LINIA
## 0 72 Eix METRO_LLEUGER L11
## 1 73 Eix METRO_LLEUGER L11
## 2 74 Eix METRO_LLEUGER L11
## 3 75 Eix METRO L2
## 4 76 Eix METRO L2
## 5 77 Eix METRO L2
## INICI_FINA TIPUS_VIA OBSERVACIO
## 0 Casa de l'Aigua-Torre Bar\xf3 | Vallbona \xdanica <NA>
## 1 Torre Bar\xf3 | Vallbona-Ciutat Meridiana \xdanica <NA>
## 2 Ciutat Meridiana-Can Cui\xe0s \xdanica <NA>
## 3 Paral.lel-Sant Antoni Doble <NA>
## 4 Sant Antoni-Universitat Doble <NA>
## 5 Passeig de Gr\xe0cia-Tetuan Doble <NA>
plot(eixosTMB)
plot(eixosTMB, col = eixosTMB@data$LINIA)
# Dades de les estacions
getinfo.shape("~/Documents/R user Group/Intro Mapes amb R/Mapes amb R/TMB/TMB_EST.shp")
## Shapefile type: MultiPoint, (8), # of Shapes: 684
estacionsTMB = readShapePoints("~/Documents/R user Group/Intro Mapes amb R/Mapes amb R/TMB/TMB_EST.shp")
str(estacionsTMB, max.level = 2)
## Formal class 'SpatialPointsDataFrame' [package "sp"] with 5 slots
## ..@ data :'data.frame': 684 obs. of 11 variables:
## .. ..- attr(*, "data_types")= chr [1:11] "N" "C" "C" "C" ...
## ..@ coords.nrs : num(0)
## ..@ coords : num [1:684, 1:2] 429879 422302 423048 423056 423478 ...
## .. ..- attr(*, "dimnames")=List of 2
## ..@ bbox : num [1:2, 1:2] 422302 4577356 437051 4590673
## .. ..- attr(*, "dimnames")=List of 2
## ..@ proj4string:Formal class 'CRS' [package "sp"] with 1 slots
head(slot(estacionsTMB, "data"))
## ID NOM_CAPA MODALITAT LINIA NOM_ESTACI ESTAT_PMR ZONIFICACI
## 0 248 Accessos METRO L3 Diagonal <NA> <NA>
## 1 249 Accessos METRO L5 Cornell\xe0 Centre <NA> <NA>
## 2 250 Accessos METRO L5 Gavarra <NA> <NA>
## 3 251 Accessos METRO L5 Gavarra <NA> <NA>
## 4 252 Accessos METRO L5 Sant Ildefons <NA> <NA>
## 5 253 Accessos METRO L5 Sant Ildefons <NA> <NA>
## CORRESPOND SERVEIS OBSERVACIO GMRotation
## 0 <NA> <NA> <NA> 0
## 1 <NA> <NA> <NA> 0
## 2 <NA> <NA> <NA> 0
## 3 <NA> <NA> <NA> 0
## 4 <NA> <NA> <NA> 0
## 5 <NA> <NA> <NA> 0
# ESTAT_PMR: Defineix si l'accés a les estacions està adaptat per a
# persones de mobilitat reduïda o si està en estudi, projecte o obres
# d'adaptació.
plot(estacionsTMB, col = estacionsTMB@data$ESTAT_PMR, pch = 19)
# Es poden combinar diferentes dades espaials
plot(eixosTMB, col = eixosTMB@data$LINIA)
plot(estacionsTMB, col = estacionsTMB@data$ESTAT_PMR, pch = 19, add = TRUE,
cex = 0.5)
DESCRIPTION: Provides bindings to Frank Warmerdam’s Geospatial Data Abstraction Library (GDAL) (>= 1.6.0) and access to projection/transformation operations from the PROJ.4 library
proj4string(estacionsTMB) = CRS("+proj=utm +zone=31")
head(coordinates(estacionsTMB))
## coords.x1 coords.x2
## 0 429879 4583289
## 1 422302 4579056
## 2 423048 4579106
## 3 423056 4579089
## 4 423478 4579708
## 5 423491 4579676
# Fer canvi de sistema de coordenades de UTM a longlat
require(rgdal)
## Loading required package: rgdal
## Geospatial Data Abstraction Library extensions to R successfully loaded
## Loaded GDAL runtime: GDAL 1.9.0, released 2011/12/29 Path to GDAL shared
## files:
## /Library/Frameworks/R.framework/Versions/2.15/Resources/library/rgdal/gdal
## Loaded PROJ.4 runtime: Rel. 4.8.0, 6 March 2012, [PJ_VERSION: 480] Path to
## PROJ.4 shared files:
## /Library/Frameworks/R.framework/Versions/2.15/Resources/library/rgdal/proj
estacionsTMB = spTransform(estacionsTMB, CRS("+proj=longlat"))
lon = coordinates(estacionsTMB)[, 1]
lat = coordinates(estacionsTMB)[, 2]
estacionsLonLat = cbind(estacionsTMB@data, lon, lat)
head(estacionsLonLat)
## ID NOM_CAPA MODALITAT LINIA NOM_ESTACI ESTAT_PMR ZONIFICACI
## 0 248 Accessos METRO L3 Diagonal <NA> <NA>
## 1 249 Accessos METRO L5 Cornell\xe0 Centre <NA> <NA>
## 2 250 Accessos METRO L5 Gavarra <NA> <NA>
## 3 251 Accessos METRO L5 Gavarra <NA> <NA>
## 4 252 Accessos METRO L5 Sant Ildefons <NA> <NA>
## 5 253 Accessos METRO L5 Sant Ildefons <NA> <NA>
## CORRESPOND SERVEIS OBSERVACIO GMRotation lon lat
## 0 <NA> <NA> <NA> 0 2.161 41.40
## 1 <NA> <NA> <NA> 0 2.071 41.36
## 2 <NA> <NA> <NA> 0 2.080 41.36
## 3 <NA> <NA> <NA> 0 2.080 41.36
## 4 <NA> <NA> <NA> 0 2.085 41.37
## 5 <NA> <NA> <NA> 0 2.085 41.36
DESCRIPTION: This package serves two purposes: (i) Provide a comfortable R interface to query the Google server for static maps, and (ii) Use the map as a background image to overlay plots within R. This requires proper coordinate scaling.
library(RgoogleMaps)
head(estacionsLonLat)
## ID NOM_CAPA MODALITAT LINIA NOM_ESTACI ESTAT_PMR ZONIFICACI
## 108 354 Estacions METRO L2 Sagrada Fam\xedlia Adaptada Zona 1
## 109 355 Estacions METRO L2 Encants Adaptada Zona 1
## 110 356 Estacions METRO L2 Clot Adaptada Zona 1
## 111 357 Estacions METRO L2 Bac de Roda Adaptada Zona 1
## 112 358 Estacions METRO L2 Sant Mart\xed Adaptada Zona 1
## 113 359 Estacions METRO L2 La Pau Adaptada Zona 1
## CORRESPOND SERVEIS OBSERVACIO GMRotation lon lat numEnll
## 108 L5 <NA> <NA> 0 2.176 41.41 1
## 109 <NA> <NA> <NA> 0 2.184 41.41 0
## 110 L1-R.1-R2-R.2N-R11 <NA> <NA> 0 2.188 41.41 5
## 111 <NA> <NA> <NA> 0 2.197 41.42 0
## 112 <NA> <NA> <NA> 0 2.202 41.42 0
## 113 L4 <NA> <NA> 0 2.207 41.43 1
mapaEstacions = GetMap.bbox(estacionsLonLat$lon, estacionsLonLat$lat)
## [1] "http://maps.google.com/maps/api/staticmap?center=41.4080142045794,2.16901629518613&zoom=12&size=640x640&maptype=terrain&format=png32&sensor=true"
PlotOnStaticMap(mapaEstacions, estacionsLonLat$lat, estacionsLonLat$lon, pch = 19)
library(scales) # Llibreria de suport a ggplot2 per millorar escales i 'breaks'
PlotOnStaticMap(mapaEstacions, estacionsLonLat$lat, estacionsLonLat$lon, pch = 19,
cex = rescale(estacionsLonLat$numEnll, to = c(0.5, 2.5)))
# Funcions útils si fas servir la funció GetMap, on has de definir el
# centre i el zoom del mapa que vols descarregar-te de google maps
estacionsBbox = qbbox(estacionsLonLat$lat, estacionsLonLat$lon)
estacionsBbox
## $latR
## [1] 41.35 41.46
##
## $lonR
## [1] 2.071 2.246
##
MaxZoom(range(estacionsBbox$latR), range(estacionsBbox$lonR))
## MaxZoom.lat MaxZoom.lon
## 12 12
library(ggmap)
geocode("Central UB, Barcelona")
## lon lat
## 1 2.164 41.39
revgeocode(c(2.164033, 41.38655), output = "address")
## [1] "Gran Via de les Corts Catalanes, 585, University of Barcelona, 08007 Barcelona, Catalonia, Spain"
mapdist("Tarragona", "Barcelona")
## from to m km miles seconds minutes hours
## 1 Tarragona Barcelona 96998 97 60.27 4184 69.73 1.162
route("Central UB, Barcelona", "Plaça Catalunya, Barcelona")
## m km miles seconds minutes hours startLon startLat endLon
## 1 269 0.269 0.16716 39 0.6500 0.010833 2.164 41.39 2.162
## 2 285 0.285 0.17710 159 2.6500 0.044167 2.162 41.38 2.164
## 3 45 0.045 0.02796 17 0.2833 0.004722 2.164 41.39 2.165
## 4 462 0.462 0.28709 69 1.1500 0.019167 2.165 41.39 2.170
## 5 91 0.091 0.05655 20 0.3333 0.005556 2.170 41.39 2.170
## endLat leg
## 1 41.38 1
## 2 41.39 2
## 3 41.39 3
## 4 41.39 4
## 5 41.39 5
BarcelonaMap <- qmap("barcelona", zoom = 14)
BarcelonaMap
BarcelonaMap <- qmap("barcelona", zoom = 14, source = "osm")
BarcelonaMap
BarcelonaMap <- qmap("barcelona", zoom = 12, source = "stamen", maptype = "toner")
BarcelonaMap
BarcelonaMap <- qmap("barcelona", zoom = 12, source = "stamen", maptype = "watercolor")
BarcelonaMap
BarcelonaMap <- qmap("barcelona", zoom = 13)
BarcelonaMap + geom_point(aes(x = lon, y = lat, colour = numEnll, size = numEnll),
data = estacionsLonLat)
## Warning: Removed 53 rows containing missing values (geom_point).
BarcelonaMap + stat_density2d(aes(x = lon, y = lat, fill = ..level..), data = estacionsLonLat,
geom = c("point", "polygon"))
## Warning: Removed 53 rows containing non-finite values (stat_density2d).
library(googleVis)
GdeutePaisos = gvisGeoChart(wrld_simpl@data, locationvar = "NAME", colorvar = "X2011",
options = list(width = 800, height = 500))
print(GdeutePaisos)
–
El text i el codi d’aquesta presentació és reproduible. La he fet amb markdown i el package knitr, que a l’RStudio versió 0.96 està tot integrat en la extensió Rmd. Directament he generat un fitxer en markdown md.
Per passar del codi html a presentació html he utilitzat pandoc.Slidy és una de les opcions per generar presentacions en html que pandoc
Codi Pandoc generar presentació pandoc -s -S -t slidy –mathjax mapesAmbR.md -o presentacioMapes.html
Amb la següent sessió
sessionInfo()
## R version 2.15.1 (2012-06-22)
## Platform: x86_64-apple-darwin9.8.0/x86_64 (64-bit)
##
## locale:
## [1] C/en_US.UTF-8/C/C/C/C
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] googleVis_0.2.17 RJSONIO_1.0-0 mapproj_1.1-8.3
## [4] maps_2.2-6 scales_0.2.2 stringr_0.6
## [7] rgdal_0.7-19 plyr_1.7.1 RColorBrewer_1.0-5
## [10] classInt_0.1-18 e1071_1.6 class_7.3-4
## [13] XML_3.95-0.1 ggmap_2.2 ggplot2_0.9.2.1
## [16] RgoogleMaps_1.2.0 png_0.1-4 maptools_0.8-16
## [19] lattice_0.20-6 sp_1.0-0 foreign_0.8-50
## [22] knitr_0.8.5
##
## loaded via a namespace (and not attached):
## [1] MASS_7.3-19 colorspace_1.1-1 dichromat_1.2-4 digest_0.5.2
## [5] evaluate_0.4.2 formatR_0.6 grid_2.15.1 gtable_0.1.1
## [9] labeling_0.1 memoise_0.1 munsell_0.3 proto_0.3-9.2
## [13] reshape2_1.2.1 rjson_0.2.10 tools_2.15.1