Problem Set One.
u <- c(0.5,0.5)
v <- c(3,-4)
The dot product is as follows:
(0.5 x 3) + (0.5 x -4) = -0.5
The dot() function in R can also be used
dot_prod <- dot(u,v)
dot_prod
## [1] -0.5
Length of a vector:
\(\sqrt(x^2 + y^2)\)
Length of u:
\(\sqrt(0.5^2 + 0.5^2)\) = 0.707
Length of v:
\(\sqrt(3^2 + -4^2)\) = 5
In R:
len_u <- sqrt(sum(u * u))
len_u
## [1] 0.7071068
len_v <- sqrt(sum (v * v))
len_v
## [1] 5
2u = (20.5, 20.5) = (1,1) 3v = (33,3-4) = (9,-12)
2u - 3v = (1-9,1–12) = (-8,13)
In R:
comb <- 2*u - 3*v
comb
## [1] -8 13
\(cos^-1(dotproduct/product of lengths)\)
$cos^-1((-0.5)/(0.7071068*5)) = 98.1301 degrees
In R:
anglebet <- acos((-0.5)/(0.7071068*5))
#Since answer is in radians need to convert to degrees
angledegrees <- anglebet *180/pi
angledegrees
## [1] 98.1301