-Repeat the ts(), HoltWinters(), predict() and plot() functions on the Nile data as in these slides -Repeat the same functions with different values of alpha, beta, and gamma of your choosing on… AirPassengers EuStockMarkets When using the EuStockMarkets, choose one column
niledata <- data.frame(Nile)
niledata
## Nile
## 1 1120
## 2 1160
## 3 963
## 4 1210
## 5 1160
## 6 1160
## 7 813
## 8 1230
## 9 1370
## 10 1140
## 11 995
## 12 935
## 13 1110
## 14 994
## 15 1020
## 16 960
## 17 1180
## 18 799
## 19 958
## 20 1140
## 21 1100
## 22 1210
## 23 1150
## 24 1250
## 25 1260
## 26 1220
## 27 1030
## 28 1100
## 29 774
## 30 840
## 31 874
## 32 694
## 33 940
## 34 833
## 35 701
## 36 916
## 37 692
## 38 1020
## 39 1050
## 40 969
## 41 831
## 42 726
## 43 456
## 44 824
## 45 702
## 46 1120
## 47 1100
## 48 832
## 49 764
## 50 821
## 51 768
## 52 845
## 53 864
## 54 862
## 55 698
## 56 845
## 57 744
## 58 796
## 59 1040
## 60 759
## 61 781
## 62 865
## 63 845
## 64 944
## 65 984
## 66 897
## 67 822
## 68 1010
## 69 771
## 70 676
## 71 649
## 72 846
## 73 812
## 74 742
## 75 801
## 76 1040
## 77 860
## 78 874
## 79 848
## 80 890
## 81 744
## 82 749
## 83 838
## 84 1050
## 85 918
## 86 986
## 87 797
## 88 923
## 89 975
## 90 815
## 91 1020
## 92 906
## 93 901
## 94 1170
## 95 912
## 96 746
## 97 919
## 98 718
## 99 714
## 100 740
niledata.ts <- ts(niledata, start=1, frequency=10)
summary(niledata.ts)
## Nile
## Min. : 456.0
## 1st Qu.: 798.5
## Median : 893.5
## Mean : 919.4
## 3rd Qu.:1032.5
## Max. :1370.0
niledata.hw1 <- HoltWinters(niledata.ts, gamma=FALSE)
niledata.hw1
## Holt-Winters exponential smoothing with trend and without seasonal component.
##
## Call:
## HoltWinters(x = niledata.ts, gamma = FALSE)
##
## Smoothing parameters:
## alpha: 0.4190643
## beta : 0.05987705
## gamma: FALSE
##
## Coefficients:
## [,1]
## a 756.913740
## b -7.424597
niledata.pred <- predict(niledata.hw1, n.ahead = 10)
ts.plot(niledata.ts, niledata.pred)
with different values of alpha, beta, and gamma of your choosing on…
air.passengers.ts <- ts(AirPassengers, start=1, frequency=10)
summary(air.passengers.ts)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 104.0 180.0 265.5 280.3 360.5 622.0
air.passengers.hw1 <- HoltWinters(air.passengers.ts, alpha = 0.7,beta = 0.7, gamma = 0.75)
air.passenger.pred <- predict(air.passengers.hw1, n.head=10)
plot(air.passengers.ts)
plot(air.passengers.hw1)
ts.plot(air.passengers.ts, air.passenger.pred)
euro.stock <- EuStockMarkets[,2]
euro.stock.ts <- ts(euro.stock, start=1, frequency=10)
euro.stock.hw1 <- HoltWinters(euro.stock.ts, alpha = 0.5,beta = 0.3, gamma = 0.01)
summary(euro.stock.ts)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1587 2166 2796 3376 3812 8412
plot(euro.stock.ts)
plot(euro.stock.hw1)
euro.stock.p <- predict(euro.stock.hw1, n.ahead=10)
ts.plot(euro.stock.ts, euro.stock.p)