#============================================================
#
# install   choroplethr
#===========================================================

#install_github("choroplethr", "trulia")
#install.packages(c("choroplethrAdmin1","choroplethrMaps","choroplethrZip"))
library(devtools)
library(choroplethr)
library(choroplethrMaps)
library(choroplethrAdmin1)
#==================================================================
#  Set up parallel processing
# leave two cores for operating system
#==================================================================

cluster <- makeCluster(detectCores() - 2) 
registerDoParallel(cluster)

Install the api key

#api.key.install('your api key here');

To obtain data on Japanese,Chinese or African populations in the US

# choroplethr package contains most map functions, ggmap,maps,mapproj,Rgooglemaps etc
#install.packages(list, dependencies = TRUE)
# install.packages("choroplethrMaps" )


#acs.lookup(endyear, span = 5, dataset = "acs", keyword,
#table.name, table.number, case.sensitive = T)

Japanese=acs.lookup(keyword = "Japanese", endyear = 2013)

Chinese=acs.lookup(keyword = "Chinese", endyear = 2013)


African=acs.lookup(keyword = "African", endyear = 2013)

#head(African)
#head(Chinese)
#head(Japanese)
head(African)
## An object of class "acs.lookup"
## endyear= 2013  ; span= 5 
## 
## results:
##   variable.code table.number table.name                   variable.name
## 1    B02001_003       B02001       Race Black or African American alone
#l = acs.fetch("B02006", "county", column_idx=9)
kansas09[1:5,1:3]
## ACS DATA: 
##  2005 -- 2009 ;
##   Estimates w/90% confidence intervals;
##   for different intervals, see confint()
##                         Universe...TOTAL.POPULATION..Total
## Allen County, Kansas    13403 +/- 0                       
## Anderson County, Kansas 7900 +/- 0                        
## Atchison County, Kansas 16469 +/- 0                       
## Barber County, Kansas   4714 +/- 0                        
## Barton County, Kansas   27654 +/- 0                       
##                         Universe...TOTAL.POPULATION..Male
## Allen County, Kansas    6580 +/- 115                     
## Anderson County, Kansas 3911 +/- 48                      
## Atchison County, Kansas 7925 +/- 114                     
## Barber County, Kansas   2332 +/- 43                      
## Barton County, Kansas   13313 +/- 113                    
##                         Universe...TOTAL.POPULATION..Male..Under.5.years
## Allen County, Kansas    399 +/- 21                                      
## Anderson County, Kansas 273 +/- 11                                      
## Atchison County, Kansas 502 +/- 29                                      
## Barber County, Kansas   124 +/- 6                                       
## Barton County, Kansas   885 +/- 2

install api key from census bureau

data(kansas09)
str(kansas09)
## Formal class 'acs' [package ".GlobalEnv"] with 9 slots
##   ..@ endyear       : int 2009
##   ..@ span          : int 5
##   ..@ geography     :'data.frame':   105 obs. of  4 variables:
##   .. ..$ Geography               : chr [1:105] "Allen County, Kansas" "Anderson County, Kansas" "Atchison County, Kansas" "Barber County, Kansas" ...
##   .. ..$ Geographic.Summary.Level: int [1:105] 50 50 50 50 50 50 50 50 50 50 ...
##   .. ..$ Geography.Identifier.1  : int [1:105] 20001 20003 20005 20007 20009 20011 20013 20015 20017 20019 ...
##   .. ..$ Geography.Identifier    : chr [1:105] "05000US20001" "05000US20003" "05000US20005" "05000US20007" ...
##   ..@ acs.colnames  : chr [1:55] "Universe...TOTAL.POPULATION..Total" "Universe...TOTAL.POPULATION..Male" "Universe...TOTAL.POPULATION..Male..Under.5.years" "Universe...TOTAL.POPULATION..Male..5.to.9.years" ...
##   ..@ modified      : logi TRUE
##   ..@ acs.units     : Factor w/ 5 levels "count","dollars",..: 1 1 1 1 1 1 1 1 1 1 ...
##   ..@ currency.year : int 2009
##   ..@ estimate      : num [1:105, 1:55] 13403 7900 16469 4714 27654 ...
##   .. ..- attr(*, "dimnames")=List of 2
##   .. .. ..$ : chr [1:105] "Allen County, Kansas" "Anderson County, Kansas" "Atchison County, Kansas" "Barber County, Kansas" ...
##   .. .. ..$ : chr [1:55] "Universe...TOTAL.POPULATION..Total" "Universe...TOTAL.POPULATION..Male" "Universe...TOTAL.POPULATION..Male..Under.5.years" "Universe...TOTAL.POPULATION..Male..5.to.9.years" ...
##   ..@ standard.error: num [1:105, 1:55] 0 0 0 0 0 0 0 0 0 0 ...
##   .. ..- attr(*, "dimnames")=List of 2
##   .. .. ..$ : chr [1:105] "Allen County, Kansas" "Anderson County, Kansas" "Atchison County, Kansas" "Barber County, Kansas" ...
##   .. .. ..$ : chr [1:55] "Universe...TOTAL.POPULATION..Total" "Universe...TOTAL.POPULATION..Male" "Universe...TOTAL.POPULATION..Male..Under.5.years" "Universe...TOTAL.POPULATION..Male..5.to.9.years" ...
# subset
#kansas09[1:4,6:9]

#(head(kansas09))

# subset
#kansas09[1:4,6:9]

#kansas09[1:4,]
# more complicated subsets
#kansas09[c("Linn County, Kansas", "Wilson County, Kansas") ,
#grep(pattern="21.years", x=acs.colnames(kansas09))]

# addition on estimates and errors
kansas09[1:4,25]+kansas09[1:4,49]
## ACS DATA: 
##  2005 -- 2009 ;
##   Estimates w/90% confidence intervals;
##   for different intervals, see confint()
##                         ( Universe...TOTAL.POPULATION..Male..85.years.and.over + Universe...TOTAL.POPULATION..Female..85.years.and.over )
## Allen County, Kansas    310 +/- 80.4300938703916                                                                                         
## Anderson County, Kansas 246 +/- 99.9249718538864                                                                                         
## Atchison County, Kansas 425 +/- 112.16059914248                                                                                          
## Barber County, Kansas   168 +/- 81.1233628494283
# can even multiply and divide
# males per female, by county
kansas09[1:4,2]/kansas09[1:4,26]
## ACS DATA: 
##  2005 -- 2009 ;
##   Estimates w/90% confidence intervals;
##   for different intervals, see confint()
##                         ( Universe...TOTAL.POPULATION..Male : Universe...TOTAL.POPULATION..Female )
## Allen County, Kansas    0.964385167814744 +/- 0.0234156104043347                                   
## Anderson County, Kansas 0.980446227124593 +/- 0.016851805022657                                    
## Atchison County, Kansas 0.927551498127341 +/- 0.0181987328141948                                   
## Barber County, Kansas   0.979009235936188 +/- 0.0252629434427822
# (males<5 plus females<5) * 12
(kansas09[7,3]+kansas09[7,27]) * 12
## ACS DATA: 
##  2005 -- 2009 ;
##   Estimates w/90% confidence intervals;
##   for different intervals, see confint()
##                      ( ( Universe...TOTAL.POPULATION..Male..Under.5.years + Universe...TOTAL.POPULATION..Female..Under.5.years ) * 12 )
## Brown County, Kansas 8088 +/- 461.024945095165
# some replacement: males<5 as a percentage of all males
kansas09[,3]=kansas09[,3]/kansas09[,2]
# acs.fetch(endyear, span = 5, geography, table.name,
# table.number, variable, keyword, dataset = "acs",
# key, col.names = "auto", ...)
#lots.o.data=acs.fetch(geo=geo.make(state="WA",county=c(33,35,53,61), tract="*"), table.number="B01001",endyear=2014)
# geo.make(us, region, division, state, county, county.subdivision,
# place, tract, block.group, msa, csa, necta, urban.area,
# congressional.district, state.legislative.district.upper,
# state.legislative.district.lower, puma, zip.code,
# american.indian.area, school.district.elementary,
# school.district.secondary, school.district.unified,
# combine = F, combine.term = "aggregate", check = FALSE, key = "auto")
# 

# a density plot for a single variable
plot(kansas07[7,10])

# a density plot for a single variable
(kansas07[7,10])
## ACS DATA: 
##  2007 ;
##   Estimates w/90% confidence intervals;
##   for different intervals, see confint()
##                          Universe...TOTAL.POPULATION..Male..22.to.24.years
## Wyandotte County, Kansas 3486 +/- 691
# load ACS data
data(kansas07)
# plot a single value
plot(kansas07[4,4])

# plot by geography
plot(kansas07[,10])

# plot by columns
plot(kansas07[4,3:10])

# a density plot for a single variable
plot(kansas07[7,10])

# same, using some graphical parameters
plot(kansas07[7,10], col="blue", err.col="purple", err.lty=3)

plot(kansas07[7,49], col="lightblue", type="h", x.res=3000,
err.col="purple", err.lty=3, err.lwd=4, conf.level=.99,
main=(paste("Distribution of Females>85 Years in ",
geography(kansas07)[7,1], sep="")),
sub="(99-percent margin of error shown in purple)")

acs.lookup

acs.lookup(endyear=2014, span=5, table.number="B01001")
## An object of class "acs.lookup"
## endyear= 2014  ; span= 5 
## 
## results:
##    variable.code table.number table.name             variable.name
## 1     B01001_001       B01001 Sex by Age                    Total:
## 2     B01001_002       B01001 Sex by Age                     Male:
## 3     B01001_003       B01001 Sex by Age       Male: Under 5 years
## 4     B01001_004       B01001 Sex by Age        Male: 5 to 9 years
## 5     B01001_005       B01001 Sex by Age      Male: 10 to 14 years
## 6     B01001_006       B01001 Sex by Age      Male: 15 to 17 years
## 7     B01001_007       B01001 Sex by Age     Male: 18 and 19 years
## 8     B01001_008       B01001 Sex by Age            Male: 20 years
## 9     B01001_009       B01001 Sex by Age            Male: 21 years
## 10    B01001_010       B01001 Sex by Age      Male: 22 to 24 years
## 11    B01001_011       B01001 Sex by Age      Male: 25 to 29 years
## 12    B01001_012       B01001 Sex by Age      Male: 30 to 34 years
## 13    B01001_013       B01001 Sex by Age      Male: 35 to 39 years
## 14    B01001_014       B01001 Sex by Age      Male: 40 to 44 years
## 15    B01001_015       B01001 Sex by Age      Male: 45 to 49 years
## 16    B01001_016       B01001 Sex by Age      Male: 50 to 54 years
## 17    B01001_017       B01001 Sex by Age      Male: 55 to 59 years
## 18    B01001_018       B01001 Sex by Age     Male: 60 and 61 years
## 19    B01001_019       B01001 Sex by Age      Male: 62 to 64 years
## 20    B01001_020       B01001 Sex by Age     Male: 65 and 66 years
## 21    B01001_021       B01001 Sex by Age      Male: 67 to 69 years
## 22    B01001_022       B01001 Sex by Age      Male: 70 to 74 years
## 23    B01001_023       B01001 Sex by Age      Male: 75 to 79 years
## 24    B01001_024       B01001 Sex by Age      Male: 80 to 84 years
## 25    B01001_025       B01001 Sex by Age   Male: 85 years and over
## 26    B01001_026       B01001 Sex by Age                   Female:
## 27    B01001_027       B01001 Sex by Age     Female: Under 5 years
## 28    B01001_028       B01001 Sex by Age      Female: 5 to 9 years
## 29    B01001_029       B01001 Sex by Age    Female: 10 to 14 years
## 30    B01001_030       B01001 Sex by Age    Female: 15 to 17 years
## 31    B01001_031       B01001 Sex by Age   Female: 18 and 19 years
## 32    B01001_032       B01001 Sex by Age          Female: 20 years
## 33    B01001_033       B01001 Sex by Age          Female: 21 years
## 34    B01001_034       B01001 Sex by Age    Female: 22 to 24 years
## 35    B01001_035       B01001 Sex by Age    Female: 25 to 29 years
## 36    B01001_036       B01001 Sex by Age    Female: 30 to 34 years
## 37    B01001_037       B01001 Sex by Age    Female: 35 to 39 years
## 38    B01001_038       B01001 Sex by Age    Female: 40 to 44 years
## 39    B01001_039       B01001 Sex by Age    Female: 45 to 49 years
## 40    B01001_040       B01001 Sex by Age    Female: 50 to 54 years
## 41    B01001_041       B01001 Sex by Age    Female: 55 to 59 years
## 42    B01001_042       B01001 Sex by Age   Female: 60 and 61 years
## 43    B01001_043       B01001 Sex by Age    Female: 62 to 64 years
## 44    B01001_044       B01001 Sex by Age   Female: 65 and 66 years
## 45    B01001_045       B01001 Sex by Age    Female: 67 to 69 years
## 46    B01001_046       B01001 Sex by Age    Female: 70 to 74 years
## 47    B01001_047       B01001 Sex by Age    Female: 75 to 79 years
## 48    B01001_048       B01001 Sex by Age    Female: 80 to 84 years
## 49    B01001_049       B01001 Sex by Age Female: 85 years and over
acs.lookup(endyear=2012, span=1, table.number="B01001", keyword="Female")
## An object of class "acs.lookup"
## endyear= 2012  ; span= 1 
## 
## results:
##    variable.code table.number table.name             variable.name
## 1     B01001_026       B01001 Sex by Age                   Female:
## 2     B01001_027       B01001 Sex by Age     Female: Under 5 years
## 3     B01001_028       B01001 Sex by Age      Female: 5 to 9 years
## 4     B01001_029       B01001 Sex by Age    Female: 10 to 14 years
## 5     B01001_030       B01001 Sex by Age    Female: 15 to 17 years
## 6     B01001_031       B01001 Sex by Age   Female: 18 and 19 years
## 7     B01001_032       B01001 Sex by Age          Female: 20 years
## 8     B01001_033       B01001 Sex by Age          Female: 21 years
## 9     B01001_034       B01001 Sex by Age    Female: 22 to 24 years
## 10    B01001_035       B01001 Sex by Age    Female: 25 to 29 years
## 11    B01001_036       B01001 Sex by Age    Female: 30 to 34 years
## 12    B01001_037       B01001 Sex by Age    Female: 35 to 39 years
## 13    B01001_038       B01001 Sex by Age    Female: 40 to 44 years
## 14    B01001_039       B01001 Sex by Age    Female: 45 to 49 years
## 15    B01001_040       B01001 Sex by Age    Female: 50 to 54 years
## 16    B01001_041       B01001 Sex by Age    Female: 55 to 59 years
## 17    B01001_042       B01001 Sex by Age   Female: 60 and 61 years
## 18    B01001_043       B01001 Sex by Age    Female: 62 to 64 years
## 19    B01001_044       B01001 Sex by Age   Female: 65 and 66 years
## 20    B01001_045       B01001 Sex by Age    Female: 67 to 69 years
## 21    B01001_046       B01001 Sex by Age    Female: 70 to 74 years
## 22    B01001_047       B01001 Sex by Age    Female: 75 to 79 years
## 23    B01001_048       B01001 Sex by Age    Female: 80 to 84 years
## 24    B01001_049       B01001 Sex by Age Female: 85 years and over
acs.lookup(endyear=2012, span=1, keyword=c("Female", "GED"))
## An object of class "acs.lookup"
## endyear= 2012  ; span= 1 
## 
## results:
##    variable.code table.number
## 1     B15001_047       B15001
## 2     B15001_055       B15001
## 3     B15001_063       B15001
## 4     B15001_071       B15001
## 5     B15001_079       B15001
## 6     B15002_028       B15002
## 7    B15002A_015      B15002A
## 8    B15002B_015      B15002B
## 9    B15002C_015      B15002C
## 10   B15002D_015      B15002D
## 11   B15002E_015      B15002E
## 12   B15002F_015      B15002F
## 13   B15002G_015      B15002G
## 14   B15002H_015      B15002H
## 15   B15002I_015      B15002I
## 16    C15001_031       C15001
## 17    C15001_036       C15001
## 18    C15001_041       C15001
## 19    C15001_046       C15001
## 20    C15001_051       C15001
## 21    C15002_013       C15002
## 22   C15002A_009      C15002A
## 23   C15002B_009      C15002B
## 24   C15002C_009      C15002C
## 25   C15002D_009      C15002D
## 26   C15002E_009      C15002E
## 27   C15002F_009      C15002F
## 28   C15002G_009      C15002G
## 29   C15002H_009      C15002H
## 30   C15002I_009      C15002I
##                                                                                                               table.name
## 1                                              SEX BY AGE BY EDUCATIONAL ATTAINMENT FOR THE POPULATION 18 YEARS AND OVER
## 2                                              SEX BY AGE BY EDUCATIONAL ATTAINMENT FOR THE POPULATION 18 YEARS AND OVER
## 3                                              SEX BY AGE BY EDUCATIONAL ATTAINMENT FOR THE POPULATION 18 YEARS AND OVER
## 4                                              SEX BY AGE BY EDUCATIONAL ATTAINMENT FOR THE POPULATION 18 YEARS AND OVER
## 5                                              SEX BY AGE BY EDUCATIONAL ATTAINMENT FOR THE POPULATION 18 YEARS AND OVER
## 6                                                     Sex by Educational Attainment for the Population 25 Years and over
## 7                                       SEX BY EDUCATIONAL ATTAINMENT FOR THE POPULATION 25 YEARS AND OVER (WHITE ALONE)
## 8                   SEX BY EDUCATIONAL ATTAINMENT FOR THE POPULATION 25 YEARS AND OVER (BLACK OR AFRICAN AMERICAN ALONE)
## 9           SEX BY EDUCATIONAL ATTAINMENT FOR THE POPULATION 25 YEARS AND OVER (AMERICAN INDIAN AND ALASKA NATIVE ALONE)
## 10                                      SEX BY EDUCATIONAL ATTAINMENT FOR THE POPULATION 25 YEARS AND OVER (ASIAN ALONE)
## 11 SEX BY EDUCATIONAL ATTAINMENT FOR THE POPULATION 25 YEARS AND OVER (NATIVE HAWAIIAN AND OTHER PACIFIC ISLANDER ALONE)
## 12                            SEX BY EDUCATIONAL ATTAINMENT FOR THE POPULATION 25 YEARS AND OVER (SOME OTHER RACE ALONE)
## 13                                SEX BY EDUCATIONAL ATTAINMENT FOR THE POPULATION 25 YEARS AND OVER (TWO OR MORE RACES)
## 14              SEX BY EDUCATIONAL ATTAINMENT FOR THE POPULATION 25 YEARS AND OVER (WHITE ALONE, NOT HISPANIC OR LATINO)
## 15                               SEX BY EDUCATIONAL ATTAINMENT FOR THE POPULATION 25 YEARS AND OVER (HISPANIC OR LATINO)
## 16                                             SEX BY AGE BY EDUCATIONAL ATTAINMENT FOR THE POPULATION 18 YEARS AND OVER
## 17                                             SEX BY AGE BY EDUCATIONAL ATTAINMENT FOR THE POPULATION 18 YEARS AND OVER
## 18                                             SEX BY AGE BY EDUCATIONAL ATTAINMENT FOR THE POPULATION 18 YEARS AND OVER
## 19                                             SEX BY AGE BY EDUCATIONAL ATTAINMENT FOR THE POPULATION 18 YEARS AND OVER
## 20                                             SEX BY AGE BY EDUCATIONAL ATTAINMENT FOR THE POPULATION 18 YEARS AND OVER
## 21                                                    Sex by Educational Attainment for the Population 25 Years and Over
## 22                                      Sex by Educational Attainment for the Population 25 Years and Over (White Alone)
## 23                  Sex by Educational Attainment for the Population 25 Years and Over (Black or African American Alone)
## 24          Sex by Educational Attainment for the Population 25 Years and Over (American Indian and Alaska Native Alone)
## 25                                      Sex by Educational Attainment for the Population 25 Years and Over (Asian Alone)
## 26 Sex by Educational Attainment for the Population 25 Years and Over (Native Hawaiian and Other Pacific Islander Alone)
## 27                            Sex by Educational Attainment for the Population 25 Years and Over (Some Other Race Alone)
## 28                                Sex by Educational Attainment for the Population 25 Years and Over (Two or More Races)
## 29              Sex by Educational Attainment for the Population 25 Years and Over (White Alone, Not Hispanic or Latino)
## 30                               Sex by Educational Attainment for the Population 25 Years and Over (Hispanic or Latino)
##                                                           variable.name
## 1     Female: 18 to 24 years: High school graduate, GED, or alternative
## 2     Female: 25 to 34 years: High school graduate, GED, or alternative
## 3     Female: 35 to 44 years: High school graduate, GED, or alternative
## 4     Female: 45 to 64 years: High school graduate, GED, or alternative
## 5  Female: 65 years and over: High school graduate, GED, or alternative
## 6                     Female: High school graduate, GED, or alternative
## 7                                 Female: GED or alternative credential
## 8                                 Female: GED or alternative credential
## 9                                 Female: GED or alternative credential
## 10                                Female: GED or alternative credential
## 11                                Female: GED or alternative credential
## 12                                Female: GED or alternative credential
## 13                                Female: GED or alternative credential
## 14                                Female: GED or alternative credential
## 15                                Female: GED or alternative credential
## 16    Female: 18 to 24 years: High school graduate, GED, or alternative
## 17    Female: 25 to 34 years: High school graduate, GED, or alternative
## 18    Female: 35 to 44 years: High school graduate, GED, or alternative
## 19    Female: 45 to 64 years: High school graduate, GED, or alternative
## 20 Female: 65 years and over: High school graduate, GED, or alternative
## 21                    Female: High school graduate, GED, or alternative
## 22                    Female: High school graduate, GED, or alternative
## 23                    Female: High school graduate, GED, or alternative
## 24                    Female: High school graduate, GED, or alternative
## 25                    Female: High school graduate, GED, or alternative
## 26                    Female: High school graduate, GED, or alternative
## 27                    Female: High school graduate, GED, or alternative
## 28                    Female: High school graduate, GED, or alternative
## 29                    Female: High school graduate, GED, or alternative
## 30                    Female: High school graduate, GED, or alternative
acs.lookup(endyear=2000, dataset="sf3", table.number="P56")
## An object of class "acs.lookup"
## endyear= 2000  ; span= 0 
## 
## results:
##   variable.code table.number
## 1       P056001          P56
## 2       P056002          P56
## 3       P056003          P56
## 4       P056004          P56
## 5       P056005          P56
## 6       P056006          P56
## 7       P056007          P56
## 8       P056008          P56
##                                                             table.name
## 1 P56. Median Household Income in 1999 (Dollars) by Age of Householder
## 2 P56. Median Household Income in 1999 (Dollars) by Age of Householder
## 3 P56. Median Household Income in 1999 (Dollars) by Age of Householder
## 4 P56. Median Household Income in 1999 (Dollars) by Age of Householder
## 5 P56. Median Household Income in 1999 (Dollars) by Age of Householder
## 6 P56. Median Household Income in 1999 (Dollars) by Age of Householder
## 7 P56. Median Household Income in 1999 (Dollars) by Age of Householder
## 8 P56. Median Household Income in 1999 (Dollars) by Age of Householder
##                                                       variable.name
## 1              Median household income in 1999 --  Total Households
## 2    Median household income in 1999 --  Householder under 25 years
## 3    Median household income in 1999 --  Householder 25 to 34 years
## 4    Median household income in 1999 --  Householder 35 to 44 years
## 5    Median household income in 1999 --  Householder 45 to 54 years
## 6    Median household income in 1999 --  Householder 55 to 64 years
## 7    Median household income in 1999 --  Householder 65 to 74 years
## 8 Median household income in 1999 --  Householder 75 years and over
acs.lookup(endyear=1990, dataset="sf3", table.number="H058")
## An object of class "acs.lookup"
## endyear= 1990  ; span= 0 
## 
## results:
##    variable.code table.number       table.name
## 1       H0580001         H058 Housing Subjects
## 2       H0580002         H058 Housing Subjects
## 3       H0580003         H058 Housing Subjects
## 4       H0580004         H058 Housing Subjects
## 5       H0580005         H058 Housing Subjects
## 6       H0580006         H058 Housing Subjects
## 7       H0580007         H058 Housing Subjects
## 8       H0580008         H058 Housing Subjects
## 9       H0580009         H058 Housing Subjects
## 10      H0580010         H058 Housing Subjects
## 11      H0580011         H058 Housing Subjects
## 12      H0580012         H058 Housing Subjects
## 13      H058A001        H058A Housing Subjects
## 14      H058A002        H058A Housing Subjects
##                            variable.name
## 1  With a mortgage: Less than 20 percent
## 2      With a mortgage: 20 to 24 percent
## 3      With a mortgage: 25 to 29 percent
## 4      With a mortgage: 30 to 34 percent
## 5    With a mortgage: 35 percent or more
## 6          With a mortgage: Not computed
## 7    Not mortgaged: Less than 20 percent
## 8        Not mortgaged: 20 to 24 percent
## 9        Not mortgaged: 25 to 29 percent
## 10       Not mortgaged: 30 to 34 percent
## 11     Not mortgaged: 35 percent or more
## 12           Not mortgaged: Not computed
## 13                       With a mortgage
## 14                         Not mortgaged
age.by.sex=acs.lookup(endyear=2014, span=5, table.name="Age by Sex")
# load ACS data

# load ACS data
data(kansas09)
# confidence intervals for select columns
confint(kansas09[20:25,], parm=c(4,5,10))
## $Universe...TOTAL.POPULATION..Male..5.to.9.years
##                                2.5 %     97.5 %
## Decatur County, Kansas     -2.744024   68.74402
## Dickinson County, Kansas  493.598306  772.40169
## Doniphan County, Kansas   119.915704  208.08430
## Douglas County, Kansas   2431.047808 3002.95219
## Edwards County, Kansas     60.213313  119.78669
## Elk County, Kansas         91.830378  156.16962
## 
## $Universe...TOTAL.POPULATION..Male..10.to.14.years
##                               2.5 %     97.5 %
## Decatur County, Kansas     92.25598  163.74402
## Dickinson County, Kansas  516.06657  813.93343
## Doniphan County, Kansas   270.95837  371.04163
## Douglas County, Kansas   2615.04781 3186.95219
## Edwards County, Kansas    114.06451  187.93549
## Elk County, Kansas         17.40478   74.59522
## 
## $Universe...TOTAL.POPULATION..Male..22.to.24.years
##                                 2.5 %     97.5 %
## Decatur County, Kansas     12.2559760   83.74402
## Dickinson County, Kansas  214.1300460  473.86995
## Doniphan County, Kansas   132.7877157  185.21228
## Douglas County, Kansas   5475.9498977 6970.05010
## Edwards County, Kansas     -0.3184264   78.31843
## Elk County, Kansas          8.4474434   77.55256
# another way to accomplish this
confint(kansas09[20:25,c(4,5,10)])
## $Universe...TOTAL.POPULATION..Male..5.to.9.years
##                                2.5 %     97.5 %
## Decatur County, Kansas     -2.744024   68.74402
## Dickinson County, Kansas  493.598306  772.40169
## Doniphan County, Kansas   119.915704  208.08430
## Douglas County, Kansas   2431.047808 3002.95219
## Edwards County, Kansas     60.213313  119.78669
## Elk County, Kansas         91.830378  156.16962
## 
## $Universe...TOTAL.POPULATION..Male..10.to.14.years
##                               2.5 %     97.5 %
## Decatur County, Kansas     92.25598  163.74402
## Dickinson County, Kansas  516.06657  813.93343
## Doniphan County, Kansas   270.95837  371.04163
## Douglas County, Kansas   2615.04781 3186.95219
## Edwards County, Kansas    114.06451  187.93549
## Elk County, Kansas         17.40478   74.59522
## 
## $Universe...TOTAL.POPULATION..Male..22.to.24.years
##                                 2.5 %     97.5 %
## Decatur County, Kansas     12.2559760   83.74402
## Dickinson County, Kansas  214.1300460  473.86995
## Doniphan County, Kansas   132.7877157  185.21228
## Douglas County, Kansas   5475.9498977 6970.05010
## Edwards County, Kansas     -0.3184264   78.31843
## Elk County, Kansas          8.4474434   77.55256
# store data and extract at will
my.conf <- confint(kansas09)
str(my.conf)
## List of 55
##  $ Universe...TOTAL.POPULATION..Total                                                                      :'data.frame':    105 obs. of  2 variables:
##   ..$ 2.5 % : num [1:105] 13403 7900 16469 4714 27654 ...
##   ..$ 97.5 %: num [1:105] 13403 7900 16469 4714 27654 ...
##  $ Universe...TOTAL.POPULATION..Male                                                                       :'data.frame':    105 obs. of  2 variables:
##   ..$ 2.5 % : num [1:105] 6443 3854 7789 2281 13178 ...
##   ..$ 97.5 %: num [1:105] 6717 3968 8061 2383 13448 ...
##  $ Universe...TOTAL.POPULATION..Male..Under.5.years                                                        :'data.frame':    105 obs. of  2 variables:
##   ..$ 2.5 % : num [1:105] 374 260 467 117 883 ...
##   ..$ 97.5 %: num [1:105] 424 286 537 131 887 ...
##  $ Universe...TOTAL.POPULATION..Male..5.to.9.years                                                         :'data.frame':    105 obs. of  2 variables:
##   ..$ 2.5 % : num [1:105] 211.1 218.4 517.6 99.7 688.5 ...
##   ..$ 97.5 %: num [1:105] 397 326 796 178 994 ...
##  $ Universe...TOTAL.POPULATION..Male..10.to.14.years                                                       :'data.frame':    105 obs. of  2 variables:
##   ..$ 2.5 % : num [1:105] 486.3 262 387.5 90.9 839.5 ...
##   ..$ 97.5 %: num [1:105] 670 374 642 167 1145 ...
##  $ Universe...TOTAL.POPULATION..Male..15.to.17.years                                                       :'data.frame':    105 obs. of  2 variables:
##   ..$ 2.5 % : num [1:105] 269.9 180.4 369.1 -26.9 485.2 ...
##   ..$ 97.5 %: num [1:105] 296 188 455 233 595 ...
##  $ Universe...TOTAL.POPULATION..Male..18.and.19.years                                                      :'data.frame':    105 obs. of  2 variables:
##   ..$ 2.5 % : num [1:105] 109.73 61.43 72.37 -6.11 369.49 ...
##   ..$ 97.5 %: num [1:105] 424.3 180.6 677.6 20.1 450.5 ...
##  $ Universe...TOTAL.POPULATION..Male..20.years                                                             :'data.frame':    105 obs. of  2 variables:
##   ..$ 2.5 % : num [1:105] 9.11 16.62 21.15 -5.72 25.66 ...
##   ..$ 97.5 %: num [1:105] 206.9 133.4 342.8 15.7 154.3 ...
##  $ Universe...TOTAL.POPULATION..Male..21.years                                                             :'data.frame':    105 obs. of  2 variables:
##   ..$ 2.5 % : num [1:105] -7.51 -4.34 53.62 22.62 35.7 ...
##   ..$ 97.5 %: num [1:105] 73.5 12.3 282.4 139.4 288.3 ...
##  $ Universe...TOTAL.POPULATION..Male..22.to.24.years                                                       :'data.frame':    105 obs. of  2 variables:
##   ..$ 2.5 % : num [1:105] 229 40.5 106.2 44.2 597 ...
##   ..$ 97.5 %: num [1:105] 403 183 490 166 883 ...
##  $ Universe...TOTAL.POPULATION..Male..25.to.29.years                                                       :'data.frame':    105 obs. of  2 variables:
##   ..$ 2.5 % : num [1:105] 465.1 163.3 434.8 60.6 750.5 ...
##   ..$ 97.5 %: num [1:105] 538.9 184.7 487.2 65.4 769.5 ...
##  $ Universe...TOTAL.POPULATION..Male..30.to.34.years                                                       :'data.frame':    105 obs. of  2 variables:
##   ..$ 2.5 % : num [1:105] 323.8 39.1 376.4 73.9 526.3 ...
##   ..$ 97.5 %: num [1:105] 388.2 298.9 483.6 88.1 733.7 ...
##  $ Universe...TOTAL.POPULATION..Male..35.to.39.years                                                       :'data.frame':    105 obs. of  2 variables:
##   ..$ 2.5 % : num [1:105] 185.1 186 391.4 87.1 617.4 ...
##   ..$ 97.5 %: num [1:105] 333 348 611 185 911 ...
##  $ Universe...TOTAL.POPULATION..Male..40.to.44.years                                                       :'data.frame':    105 obs. of  2 variables:
##   ..$ 2.5 % : num [1:105] 389.1 171 280.4 70.7 592 ...
##   ..$ 97.5 %: num [1:105] 537 345 500 161 866 ...
##  $ Universe...TOTAL.POPULATION..Male..45.to.49.years                                                       :'data.frame':    105 obs. of  2 variables:
##   ..$ 2.5 % : num [1:105] 466 173 536 192 1006 ...
##   ..$ 97.5 %: num [1:105] 536 433 714 244 1194 ...
##  $ Universe...TOTAL.POPULATION..Male..50.to.54.years                                                       :'data.frame':    105 obs. of  2 variables:
##   ..$ 2.5 % : num [1:105] 430 143 520 189 1033 ...
##   ..$ 97.5 %: num [1:105] 468 403 612 239 1223 ...
##  $ Universe...TOTAL.POPULATION..Male..55.to.59.years                                                       :'data.frame':    105 obs. of  2 variables:
##   ..$ 2.5 % : num [1:105] 448 277 388 117 794 ...
##   ..$ 97.5 %: num [1:105] 590 389 626 219 1056 ...
##  $ Universe...TOTAL.POPULATION..Male..60.and.61.years                                                      :'data.frame':    105 obs. of  2 variables:
##   ..$ 2.5 % : num [1:105] 56 11.4 92.4 60.1 132.9 ...
##   ..$ 97.5 %: num [1:105] 168 80.6 261.6 157.9 333.1 ...
##  $ Universe...TOTAL.POPULATION..Male..62.to.64.years                                                       :'data.frame':    105 obs. of  2 variables:
##   ..$ 2.5 % : num [1:105] 81.7 32 115.3 49.7 299.7 ...
##   ..$ 97.5 %: num [1:105] 222 132 311 128 540 ...
##  $ Universe...TOTAL.POPULATION..Male..65.and.66.years                                                      :'data.frame':    105 obs. of  2 variables:
##   ..$ 2.5 % : num [1:105] 36.5 61.2 56.7 23.4 181 ...
##   ..$ 97.5 %: num [1:105] 129 171 185 131 343 ...
##  $ Universe...TOTAL.POPULATION..Male..67.to.69.years                                                       :'data.frame':    105 obs. of  2 variables:
##   ..$ 2.5 % : num [1:105] 115.8 66.1 77.7 31.3 157.3 ...
##   ..$ 97.5 %: num [1:105] 230 164 230 103 403 ...
##  $ Universe...TOTAL.POPULATION..Male..70.to.74.years                                                       :'data.frame':    105 obs. of  2 variables:
##   ..$ 2.5 % : num [1:105] 170.7 66.1 142.6 83 376.1 ...
##   ..$ 97.5 %: num [1:105] 299 164 297 145 562 ...
##  $ Universe...TOTAL.POPULATION..Male..75.to.79.years                                                       :'data.frame':    105 obs. of  2 variables:
##   ..$ 2.5 % : num [1:105] 155.7 52.1 157.7 59.6 305.4 ...
##   ..$ 97.5 %: num [1:105] 284 150 286 114 487 ...
##  $ Universe...TOTAL.POPULATION..Male..80.to.84.years                                                       :'data.frame':    105 obs. of  2 variables:
##   ..$ 2.5 % : num [1:105] 87.6 53.4 49 12.3 248.7 ...
##   ..$ 97.5 %: num [1:105] 192.4 160.6 149 83.7 439.3 ...
##  $ Universe...TOTAL.POPULATION..Male..85.years.and.over                                                    :'data.frame':    105 obs. of  2 variables:
##   ..$ 2.5 % : num [1:105] 68.43 46.53 79.96 3.15 117.68 ...
##   ..$ 97.5 %: num [1:105] 188 139 180 101 308 ...
##  $ Universe...TOTAL.POPULATION..Female                                                                     :'data.frame':    105 obs. of  2 variables:
##   ..$ 2.5 % : num [1:105] 6686 3932 8408 2331 14206 ...
##   ..$ 97.5 %: num [1:105] 6960 4046 8680 2433 14476 ...
##  $ Universe...TOTAL.POPULATION..Female..Under.5.years                                                      :'data.frame':    105 obs. of  2 variables:
##   ..$ 2.5 % : num [1:105] 372 233 437 108 887 ...
##   ..$ 97.5 %: num [1:105] 432 291 545 112 999 ...
##  $ Universe...TOTAL.POPULATION..Female..5.to.9.years                                                       :'data.frame':    105 obs. of  2 variables:
##   ..$ 2.5 % : num [1:105] 242.9 109.6 452 70.7 706.5 ...
##   ..$ 97.5 %: num [1:105] 393 338 726 161 1012 ...
##  $ Universe...TOTAL.POPULATION..Female..10.to.14.years                                                     :'data.frame':    105 obs. of  2 variables:
##   ..$ 2.5 % : num [1:105] 396 206 374 107 826 ...
##   ..$ 97.5 %: num [1:105] 560 430 622 197 1148 ...
##  $ Universe...TOTAL.POPULATION..Female..15.to.17.years                                                     :'data.frame':    105 obs. of  2 variables:
##   ..$ 2.5 % : num [1:105] 233 169 345 106 570 ...
##   ..$ 97.5 %: num [1:105] 261 179 435 110 670 ...
##  $ Universe...TOTAL.POPULATION..Female..18.and.19.years                                                    :'data.frame':    105 obs. of  2 variables:
##   ..$ 2.5 % : num [1:105] -14 -16.7 301.1 -66.9 360.7 ...
##   ..$ 97.5 %: num [1:105] 484 167 723 193 439 ...
##  $ Universe...TOTAL.POPULATION..Female..20.years                                                           :'data.frame':    105 obs. of  2 variables:
##   ..$ 2.5 % : num [1:105] 38.24 -5.72 64.9 -3.32 133.05 ...
##   ..$ 97.5 %: num [1:105] 159.8 15.7 315.1 75.3 481 ...
##  $ Universe...TOTAL.POPULATION..Female..21.years                                                           :'data.frame':    105 obs. of  2 variables:
##   ..$ 2.5 % : num [1:105] 6.576 -129.87 28.98 0.788 19.491 ...
##   ..$ 97.5 %: num [1:105] 223.4 129.9 191 53.2 212.5 ...
##  $ Universe...TOTAL.POPULATION..Female..22.to.24.years                                                     :'data.frame':    105 obs. of  2 variables:
##   ..$ 2.5 % : num [1:105] 77.2 91.9 188.9 20.6 423.9 ...
##   ..$ 97.5 %: num [1:105] 248.8 280.1 377.1 87.4 674.1 ...
##  $ Universe...TOTAL.POPULATION..Female..25.to.29.years                                                     :'data.frame':    105 obs. of  2 variables:
##   ..$ 2.5 % : num [1:105] 403.7 152.4 410.5 44.6 701.6 ...
##   ..$ 97.5 %: num [1:105] 444.3 209.6 441.5 87.4 856.4 ...
##  $ Universe...TOTAL.POPULATION..Female..30.to.34.years                                                     :'data.frame':    105 obs. of  2 variables:
##   ..$ 2.5 % : num [1:105] 301.3 181.6 353.6 76.9 512.8 ...
##   ..$ 97.5 %: num [1:105] 323 224 508 115 677 ...
##  $ Universe...TOTAL.POPULATION..Female..35.to.39.years                                                     :'data.frame':    105 obs. of  2 variables:
##   ..$ 2.5 % : num [1:105] 289.4 135 449.5 98.8 537.8 ...
##   ..$ 97.5 %: num [1:105] 471 297 704 163 826 ...
##  $ Universe...TOTAL.POPULATION..Female..40.to.44.years                                                     :'data.frame':    105 obs. of  2 variables:
##   ..$ 2.5 % : num [1:105] 304 223 285 112 695 ...
##   ..$ 97.5 %: num [1:105] 490 365 557 176 1011 ...
##  $ Universe...TOTAL.POPULATION..Female..45.to.49.years                                                     :'data.frame':    105 obs. of  2 variables:
##   ..$ 2.5 % : num [1:105] 495 271 538 188 1066 ...
##   ..$ 97.5 %: num [1:105] 533 301 666 258 1270 ...
##  $ Universe...TOTAL.POPULATION..Female..50.to.54.years                                                     :'data.frame':    105 obs. of  2 variables:
##   ..$ 2.5 % : num [1:105] 476.3 126.1 526.5 68.1 1048.7 ...
##   ..$ 97.5 %: num [1:105] 510 386 619 328 1189 ...
##  $ Universe...TOTAL.POPULATION..Female..55.to.59.years                                                     :'data.frame':    105 obs. of  2 variables:
##   ..$ 2.5 % : num [1:105] 443 169 320 178 645 ...
##   ..$ 97.5 %: num [1:105] 601 327 604 264 889 ...
##  $ Universe...TOTAL.POPULATION..Female..60.and.61.years                                                    :'data.frame':    105 obs. of  2 variables:
##   ..$ 2.5 % : num [1:105] 79.96 19.26 66 3.75 207.53 ...
##   ..$ 97.5 %: num [1:105] 180 90.7 178 44.3 412.5 ...
##  $ Universe...TOTAL.POPULATION..Female..62.to.64.years                                                     :'data.frame':    105 obs. of  2 variables:
##   ..$ 2.5 % : num [1:105] 118.1 76.9 209.9 39.3 326.5 ...
##   ..$ 97.5 %: num [1:105] 254 215 410 123 581 ...
##  $ Universe...TOTAL.POPULATION..Female..65.and.66.years                                                    :'data.frame':    105 obs. of  2 variables:
##   ..$ 2.5 % : num [1:105] 111 60.6 39.7 10.1 203.1 ...
##   ..$ 97.5 %: num [1:105] 235 177.4 168.3 33.9 400.9 ...
##  $ Universe...TOTAL.POPULATION..Female..67.to.69.years                                                     :'data.frame':    105 obs. of  2 variables:
##   ..$ 2.5 % : num [1:105] 117.2 63.3 145.4 51.8 250.5 ...
##   ..$ 97.5 %: num [1:105] 239 159 377 104 455 ...
##  $ Universe...TOTAL.POPULATION..Female..70.to.74.years                                                     :'data.frame':    105 obs. of  2 variables:
##   ..$ 2.5 % : num [1:105] 173.5 92.6 273.5 112.6 406.8 ...
##   ..$ 97.5 %: num [1:105] 305 209 416 167 621 ...
##  $ Universe...TOTAL.POPULATION..Female..75.to.79.years                                                     :'data.frame':    105 obs. of  2 variables:
##   ..$ 2.5 % : num [1:105] 260.8 36 193 46.2 645.8 ...
##   ..$ 97.5 %: num [1:105] 425 136 417 106 934 ...
##  $ Universe...TOTAL.POPULATION..Female..80.to.84.years                                                     :'data.frame':    105 obs. of  2 variables:
##   ..$ 2.5 % : num [1:105] 191.7 144.7 156.4 26.1 313.4 ...
##   ..$ 97.5 %: num [1:105] 394 335 338 174 483 ...
##  $ Universe...TOTAL.POPULATION..Female..85.years.and.over                                                  :'data.frame':    105 obs. of  2 variables:
##   ..$ 2.5 % : num [1:105] 106.9 43.4 171.1 32.6 327.1 ...
##   ..$ 97.5 %: num [1:105] 257 263 419 199 625 ...
##  $ Universe...TOTAL.POPULATION.IN.THE.UNITED.STATES..Total                                                 :'data.frame':    105 obs. of  2 variables:
##   ..$ 2.5 % : num [1:105] 13403 7900 16469 4714 27654 ...
##   ..$ 97.5 %: num [1:105] 13403 7900 16469 4714 27654 ...
##  $ Universe...TOTAL.POPULATION.IN.THE.UNITED.STATES..U.S..citizen..born.in.the.United.States               :'data.frame':    105 obs. of  2 variables:
##   ..$ 2.5 % : num [1:105] 13183 7815 16196 4635 25613 ...
##   ..$ 97.5 %: num [1:105] 13369 7893 16390 4701 26259 ...
##  $ Universe...TOTAL.POPULATION.IN.THE.UNITED.STATES..U.S..citizen..born.in.Puerto.Rico.or.U.S..Island.Areas:'data.frame':    105 obs. of  2 variables:
##   ..$ 2.5 % : num [1:105] -10.25 -129.87 -29.42 -129.87 -2.96 ...
##   ..$ 97.5 %: num [1:105] 30.25 129.87 75.42 129.87 8.96 ...
##  $ Universe...TOTAL.POPULATION.IN.THE.UNITED.STATES..U.S..citizen..born.abroad.of.American.parent.s.       :'data.frame':    105 obs. of  2 variables:
##   ..$ 2.5 % : num [1:105] 2.04 -1.57 10.49 3.28 42.6 ...
##   ..$ 97.5 %: num [1:105] 125.96 5.57 91.51 24.72 209.4 ...
##  $ Universe...TOTAL.POPULATION.IN.THE.UNITED.STATES..U.S..citizen.by.naturalization                        :'data.frame':    105 obs. of  2 variables:
##   ..$ 2.5 % : num [1:105] -13.084 -2.063 1.384 -0.681 165.598 ...
##   ..$ 97.5 %: num [1:105] 75.1 36.1 108.6 32.7 444.4 ...
##  $ Universe...TOTAL.POPULATION.IN.THE.UNITED.STATES..Not.a.U.S..citizen                                    :'data.frame':    105 obs. of  2 variables:
##   ..$ 2.5 % : num [1:105] -18.51 -8.74 2.92 -10.21 945.62 ...
##   ..$ 97.5 %: num [1:105] 62.5 62.7 91.1 42.2 1622.4 ...
my.conf[32]
## $Universe...TOTAL.POPULATION..Female..20.years
##                                   2.5 %      97.5 %
## Allen County, Kansas          38.235159  159.764841
## Anderson County, Kansas       -5.723207   15.723207
## Atchison County, Kansas       64.895916  315.104084
## Barber County, Kansas         -3.318426   75.318426
## Barton County, Kansas        133.045750  480.954250
## Bourbon County, Kansas        13.575431  118.424569
## Brown County, Kansas           8.021846   69.978154
## Butler County, Kansas        251.343359  570.656641
## Chase County, Kansas        -129.869954  129.869954
## Chautauqua County, Kansas     -7.872012   27.872012
## Cherokee County, Kansas       66.533798  271.466202
## Cheyenne County, Kansas       -3.148805   11.148805
## Clark County, Kansas          -2.574402    4.574402
## Clay County, Kansas          -10.318426   68.318426
## Cloud County, Kansas         -15.744024   55.744024
## Coffey County, Kansas         -8.914675   14.914675
## Comanche County, Kansas      -23.892829   61.892829
## Cowley County, Kansas        133.916733  334.083267
## Crawford County, Kansas      181.258034  476.741966
## Decatur County, Kansas        -2.574402    4.574402
## Dickinson County, Kansas      17.043692  140.956308
## Doniphan County, Kansas        6.596248   61.403752
## Douglas County, Kansas      1878.306871 2857.693129
## Edwards County, Kansas       -18.212284   34.212284
## Elk County, Kansas             2.745053   43.254947
## Ellis County, Kansas         329.111287  862.888713
## Ellsworth County, Kansas      -2.680545   30.680545
## Finney County, Kansas        181.343359  500.656641
## Ford County, Kansas          169.194555  502.805445
## Franklin County, Kansas       54.917762  367.082238
## Geary County, Kansas          46.023904  331.976096
## Gove County, Kansas           -7.723207   13.723207
## Graham County, Kansas         -3.872012   31.872012
## Grant County, Kansas          -5.148805    9.148805
## Gray County, Kansas           -1.063479   37.063479
## Greeley County, Kansas        -5.148805    9.148805
## Greenwood County, Kansas      16.064508   89.935492
## Hamilton County, Kansas       -2.574402    4.574402
## Harper County, Kansas         -7.872012   27.872012
## Harvey County, Kansas        120.236188  353.763812
## Haskell County, Kansas         3.170651   50.829349
## Hodgeman County, Kansas       -2.765870    6.765870
## Jackson County, Kansas         7.830378   72.169622
## Jefferson County, Kansas      12.192496  121.807504
## Jewell County, Kansas         -6.340272   10.340272
## Johnson County, Kansas      2584.242362 3489.757638
## Kearny County, Kansas         -3.297610   25.297610
## Kingman County, Kansas        -8.914675   14.914675
## Kiowa County, Kansas         -67.699303  239.699303
## Labette County, Kansas        21.086354  156.913646
## Lane County, Kansas         -129.869954  129.869954
## Leavenworth County, Kansas   222.300697  529.699303
## Lincoln County, Kansas        -1.914675   21.914675
## Linn County, Kansas            6.021846   67.978154
## Logan County, Kansas         -12.020817   38.020817
## Lyon County, Kansas          317.195584  762.804416
## McPherson County, Kansas     150.789774  427.210226
## Marion County, Kansas        -20.785658  150.785658
## Marshall County, Kansas       -1.978154   59.978154
## Meade County, Kansas          -2.531740   16.531740
## Miami County, Kansas          16.809562  131.190438
## Mitchell County, Kansas      -11.764841  109.764841
## Montgomery County, Kansas     83.108200  280.891800
## Morris County, Kansas       -129.869954  129.869954
## Morton County, Kansas         -5.148805    9.148805
## Nemaha County, Kansas         -2.574402    4.574402
## Neosho County, Kansas        -31.485990  335.485990
## Ness County, Kansas           -8.297610   20.297610
## Norton County, Kansas         -2.574402    4.574402
## Osage County, Kansas          15.255976   86.744024
## Osborne County, Kansas        -4.361089   62.361089
## Ottawa County, Kansas         -5.297610   23.297610
## Pawnee County, Kansas       -129.869954  129.869954
## Phillips County, Kansas      -16.212284   36.212284
## Pottawatomie County, Kansas   -4.530711  126.530711
## Pratt County, Kansas          -0.741966  294.741966
## Rawlins County, Kansas        -1.531740   17.531740
## Reno County, Kansas          212.683632  515.316368
## Republic County, Kansas      -33.467231   59.467231
## Rice County, Kansas          -13.786687   45.786687
## Riley County, Kansas        1805.542030 2906.457970
## Rooks County, Kansas          -1.872012   33.872012
## Rush County, Kansas           -2.574402    4.574402
## Russell County, Kansas         5.809562  120.190438
## Saline County, Kansas        106.108200  303.891800
## Scott County, Kansas         -17.935492   55.935492
## Sedgwick County, Kansas     2530.837581 3379.162419
## Seward County, Kansas         36.171680  195.828320
## Shawnee County, Kansas       508.684661  923.315339
## Sheridan County, Kansas       -9.680545   23.680545
## Sherman County, Kansas       -17.467231   75.467231
## Smith County, Kansas          -2.574402    4.574402
## Stafford County, Kansas       14.553586   57.446414
## Stanton County, Kansas        -5.106142   21.106142
## Stevens County, Kansas        -2.574402    4.574402
## Sumner County, Kansas         14.873041   91.126959
## Thomas County, Kansas        -60.359031  230.359031
## Trego County, Kansas        -129.869954  129.869954
## Wabaunsee County, Kansas      11.873041   88.126959
## Wallace County, Kansas      -129.869954  129.869954
## Washington County, Kansas      5.681574   84.318426
## Wichita County, Kansas       -10.872012   24.872012
## Wilson County, Kansas         19.724236  110.275764
## Woodson County, Kansas      -129.869954  129.869954
## Wyandotte County, Kansas     558.599335  949.400665
my.conf$Universe...TOTAL.POPULATION.IN.THE.UNITED.STATES..U.S..citizen.by.naturalization
##                                     2.5 %       97.5 %
## Allen County, Kansas          -13.0842963    75.084296
## Anderson County, Kansas        -2.0634795    36.063479
## Atchison County, Kansas         1.3839639   108.616036
## Barber County, Kansas          -0.6805445    32.680545
## Barton County, Kansas         165.5983063   444.401694
## Bourbon County, Kansas        -17.6795155   127.679516
## Brown County, Kansas           14.4047808    71.595219
## Butler County, Kansas         271.8959159   522.104084
## Chase County, Kansas           -9.4464144    33.446414
## Chautauqua County, Kansas      -3.5525566    65.552557
## Cherokee County, Kansas        -6.6378819    38.637882
## Cheyenne County, Kansas       -11.1696216    53.169622
## Clark County, Kansas           -3.7232072    17.723207
## Clay County, Kansas             1.7242362    92.275764
## Cloud County, Kansas            0.7242362    91.275764
## Coffey County, Kansas          12.1071712    97.892829
## Comanche County, Kansas        -4.5317397    14.531740
## Cowley County, Kansas         287.7262942   602.273706
## Crawford County, Kansas       250.4286846   593.571315
## Decatur County, Kansas         -3.4464144    39.446414
## Dickinson County, Kansas       65.3839639   172.616036
## Doniphan County, Kansas        21.9157037   110.084296
## Douglas County, Kansas       1751.5816055  2528.418395
## Edwards County, Kansas         69.1071712   154.892829
## Elk County, Kansas             -1.5744024     5.574402
## Ellis County, Kansas           14.6180941   131.381906
## Ellsworth County, Kansas       -7.9146747    15.914675
## Finney County, Kansas        1759.7563722  3032.243628
## Ford County, Kansas          1230.2423622  2135.757638
## Franklin County, Kansas         2.8314074   179.168593
## Geary County, Kansas          997.3225425  1366.677458
## Gove County, Kansas            -3.3402723    13.340272
## Graham County, Kansas          -2.9573373     8.957337
## Grant County, Kansas          120.4713473   475.528653
## Gray County, Kansas            50.1498338   147.850166
## Greeley County, Kansas        -15.0634795    23.063479
## Greenwood County, Kansas       -5.0842963    83.084296
## Hamilton County, Kansas        -5.3184264    73.318426
## Harper County, Kansas          -1.7440240    69.744024
## Harvey County, Kansas         213.7262942   528.273706
## Haskell County, Kansas         57.3631471   214.636853
## Hodgeman County, Kansas        -0.2976096    28.297610
## Jackson County, Kansas         -1.7232072    19.723207
## Jefferson County, Kansas       -2.0416336    98.041634
## Jewell County, Kansas           2.4682603    21.531740
## Johnson County, Kansas      14301.4035152 16536.596485
## Kearny County, Kansas          19.2351591   140.764841
## Kingman County, Kansas         -0.7866867    58.786687
## Kiowa County, Kansas           -1.4464144    41.446414
## Labette County, Kansas          6.4901061    87.509894
## Lane County, Kansas            -1.7232072    19.723207
## Leavenworth County, Kansas    680.1310750  1051.868925
## Lincoln County, Kansas          2.8938579    29.106142
## Linn County, Kansas            -2.3402723    14.340272
## Logan County, Kansas         -129.8699540   129.869954
## Lyon County, Kansas           646.2413332  1439.758667
## McPherson County, Kansas      115.9385785   378.061421
## Marion County, Kansas          23.1071712   108.892829
## Marshall County, Kansas         4.1498338   101.850166
## Meade County, Kansas           27.8303784    92.169622
## Miami County, Kansas           58.6607567   187.339243
## Mitchell County, Kansas         0.2133133    59.786687
## Montgomery County, Kansas      73.7044484   326.295552
## Morris County, Kansas           7.2986386    90.701361
## Morton County, Kansas          -2.1061421    24.106142
## Nemaha County, Kansas           0.3621181    45.637882
## Neosho County, Kansas           4.7242362    95.275764
## Ness County, Kansas             5.8303784    70.169622
## Norton County, Kansas          -8.6378819    36.637882
## Osage County, Kansas           13.7877157    66.212284
## Osborne County, Kansas         -2.8720120    32.872012
## Ottawa County, Kansas          -7.2122843    45.212284
## Pawnee County, Kansas          -9.6378819    35.637882
## Phillips County, Kansas        -2.2976096    26.297610
## Pottawatomie County, Kansas   138.7887447   303.211255
## Pratt County, Kansas          -25.8283203   133.828320
## Rawlins County, Kansas          1.0426627    12.957337
## Reno County, Kansas           499.4536175  1240.546382
## Republic County, Kansas         3.9791832    54.020817
## Rice County, Kansas            34.1924965   143.807504
## Riley County, Kansas         1020.7501981  1621.249802
## Rooks County, Kansas           -1.4890771    29.489077
## Rush County, Kansas            -1.0208168    49.020817
## Russell County, Kansas       -129.8699540   129.869954
## Saline County, Kansas         494.8990029  1081.100997
## Scott County, Kansas           -9.0634795    29.063479
## Sedgwick County, Kansas     12841.3348906 14554.665109
## Seward County, Kansas        1224.8781861  1861.121814
## Shawnee County, Kansas       2053.1996996  2946.800300
## Sheridan County, Kansas       -11.8293494    35.829349
## Sherman County, Kansas         -5.8917998   191.891800
## Smith County, Kansas           -8.8293494    38.829349
## Stafford County, Kansas        13.7450530    54.254947
## Stanton County, Kansas         63.7034194   204.296581
## Stevens County, Kansas         66.0655375   251.934462
## Sumner County, Kansas          27.7887447   192.211255
## Thomas County, Kansas          -8.0842963    80.084296
## Trego County, Kansas           -3.6378819    41.637882
## Wabaunsee County, Kansas        6.0218458    67.978154
## Wallace County, Kansas         -5.2976096    23.297610
## Washington County, Kansas       6.7450530    47.254947
## Wichita County, Kansas         -3.1061421    23.106142
## Wilson County, Kansas          -4.4890771    26.489077
## Woodson County, Kansas         -9.4464144    33.446414
## Wyandotte County, Kansas     2874.9457816  3921.054218
# try a different value for level
confint(kansas09[1:10,6], level=.75)
## $Universe...TOTAL.POPULATION..Male..15.to.17.years
##                               12.5 %    87.5 %
## Allen County, Kansas       275.30769  290.6923
## Anderson County, Kansas    181.90210  186.0979
## Atchison County, Kansas    386.82518  437.1748
## Barber County, Kansas       26.77624  179.2238
## Barton County, Kansas      507.83218  572.1678
## Bourbon County, Kansas     342.02798  397.9720
## Brown County, Kansas       214.62238  259.3776
## Butler County, Kansas     1572.24477 1661.7552
## Chase County, Kansas        68.11889  105.8811
## Chautauqua County, Kansas   74.31469  103.6853
# ... or a one-sided confidence interval
confint(kansas09[1:10,6], level=.75, alternative="greater")
## $Universe...TOTAL.POPULATION..Male..15.to.17.years
##                                 25 % 100 %
## Allen County, Kansas       278.48973   Inf
## Anderson County, Kansas    182.76993   Inf
## Atchison County, Kansas    397.23913   Inf
## Barber County, Kansas       58.30737   Inf
## Barton County, Kansas      521.13889   Inf
## Bourbon County, Kansas     353.59903   Inf
## Brown County, Kansas       223.87923   Inf
## Butler County, Kansas     1590.75845   Inf
## Chase County, Kansas        75.92935   Inf
## Chautauqua County, Kansas   80.38949   Inf
confint(kansas09[1:10,29], level=.75, alternative="less")
## $Universe...TOTAL.POPULATION..Female..10.to.14.years
##                            0 %       75 %
## Allen County, Kansas      -Inf  506.29167
## Anderson County, Kansas   -Inf  356.54227
## Atchison County, Kansas   -Inf  540.64251
## Barber County, Kansas     -Inf  167.58092
## Barton County, Kansas     -Inf 1042.35326
## Bourbon County, Kansas    -Inf  585.75181
## Brown County, Kansas      -Inf  437.06159
## Butler County, Kansas     -Inf 2452.48551
## Chase County, Kansas      -Inf  100.89070
## Chautauqua County, Kansas -Inf   95.48068
data(kansas09)[[1]]
## [1] "kansas09"
# state_choropleth_acs("B01003", endyear=2012, span=5)


geo.lookup(state="WA", county="Ska", county.subdivision="oo")
##   state state.name county     county.name county.subdivision
## 1    53 Washington     NA            <NA>                 NA
## 2    53 Washington     57   Skagit County                 NA
## 3    53 Washington     59 Skamania County                 NA
## 4    53 Washington     57   Skagit County              92944
## 5    53 Washington     59 Skamania County              90424
##   county.subdivision.name
## 1                    <NA>
## 2                    <NA>
## 3                    <NA>
## 4       Sedro-Woolley CCD
## 5    Carson-Underwood CCD
geo.lookup(state="WA", county="Kit", place="Ra")
##   state state.name county     county.name place      place.name
## 1    53 Washington     NA            <NA>    NA            <NA>
## 2    53 Washington     35   Kitsap County    NA            <NA>
## 3    53 Washington     37 Kittitas County    NA            <NA>
## 4    53 Washington     NA   Pierce County 57140 Raft Island CDP
## 5    53 Washington     NA Thurston County 57220    Rainier city
## 6    53 Washington     NA     King County 57395  Ravensdale CDP
## 7    53 Washington     NA  Pacific County 57430    Raymond city
# find all counties in WA or OR with capital M or B in name
geo.lookup(state=c("WA", "OR"), county=c("M","B"))
##    state state.name county      county.name
## 1     53 Washington     NA             <NA>
## 2     53 Washington      5    Benton County
## 3     53 Washington     45     Mason County
## 4     41     Oregon     NA             <NA>
## 5     41     Oregon      1     Baker County
## 6     41     Oregon      3    Benton County
## 7     41     Oregon     45   Malheur County
## 8     41     Oregon     47    Marion County
## 9     41     Oregon     49    Morrow County
## 10    41     Oregon     51 Multnomah County
# find all unified school districts in Kansas with "Ma" in name
geo.lookup(state="KS", school.district.unified="Ma")
##   state state.name school.district.unified
## 1    20     Kansas                      NA
## 2    20     Kansas                      16
## 3    20     Kansas                    9060
## 4    20     Kansas                    9090
## 5    20     Kansas                    9140
## 6    20     Kansas                    9180
## 7    20     Kansas                    9240
## 8    20     Kansas                    9480
## 9    20     Kansas                    9660
##                           school.district.unified.name
## 1                                                 <NA>
## 2               Marysville Unified School District 364
## 3               Macksville Unified School District 351
## 4           Madison-Virgil Unified School District 386
## 5                    Maize Unified School District 266
## 6                Manhattan Unified School District 383
## 7          Marion-Florence Unified School District 408
## 8 Marais des Cygnes Valley Unified School District 456
## 9          Marmaton Valley Unified School District 256
##   school.district.unified.type
## 1                         <NA>
## 2                      Unified
## 3                      Unified
## 4                      Unified
## 5                      Unified
## 6                      Unified
## 7                      Unified
## 8                      Unified
## 9                      Unified
# find all american indian areas with "Hop" in name
geo.lookup(american.indian.area="Hop")
##   american.indian.area                        american.indian.area.name
## 1                 1505  Hopi Reservation and Off-Reservation Trust Land
## 2                 1515 Hopland Rancheria and Off-Reservation Trust Land
## 3                 7250                                 Point Hope ANVSA

To obtain specific information about these populations

Table B19301 contains per capita income in the past 12 months.1 By state

suppressPackageStartupMessages(suppressWarnings(choroplethr_acs(tableId="B19301",map = "state")))

county_choropleth_acs(tableId="B19301", endyear = 2013, span = 5, num_colors = 7,
  state_zoom = NULL, county_zoom = NULL)

county_choropleth_acs(tableId="B19301", endyear = 2013, span = 5, num_colors = 0,
  state_zoom = NULL, county_zoom = NULL)

by county

data(county.regions)
head(county.regions)
##    region county.fips.character county.name state.name
## 1    1001                 01001     autauga    alabama
## 36   1003                 01003     baldwin    alabama
## 55   1005                 01005     barbour    alabama
## 15   1007                 01007        bibb    alabama
## 2    1009                 01009      blount    alabama
## 16   1011                 01011     bullock    alabama
##    state.fips.character state.abb
## 1                    01        AL
## 36                   01        AL
## 55                   01        AL
## 15                   01        AL
## 2                    01        AL
## 16                   01        AL
suppressPackageStartupMessages(suppressWarnings(choroplethr_acs(tableId="B19301",map = "county")))

county.regions$value = county.regions$percent_black
county_choropleth_acs(tableId="B19301", endyear = 2013, span = 5, num_colors = 7,
  state_zoom = NULL, county_zoom = NULL)

# 
# data(df_county_demographics)
# head(df_county_demographics)
# df_county_demographics$value = df_county_demographics$county.name
#  county_choropleth(df_county_demographics, 
#                    state_zoom = "texas",
#                    title      = "Texas County Percent percent_black2012 Estimates",
#                    num_colors = 9,reference_map = TRUE) + coord_map()
# 
# 
#  
#choroplethr_acs(tableId="B19301",map = "zip")


data(df_pop_state)

#suppressPackageStartupMessages(suppressWarnings(choroplethr_acs("B19301", "county", buckets=1, zoom=c("new york", "new jersey", "connecticut"))))

state_choropleth(df=df_pop_state, title = "", legend = "", num_colors = 7,
  zoom = c("new york", "new jersey", "connecticut"), reference_map = TRUE)

state_choropleth(df_pop_state, 
                 title      = "US 2012 State Population Estimates", 
                 legend     = "Population", 
                 num_colors = 1,
                 zoom       = c("california", "oregon", "washington","nevada","idaho"))

Population by state

state_choropleth(df=df_pop_state, title = "", legend = "", num_colors = 7)

head(economics)
## # A tibble: 6 x 6
##         date   pce    pop psavert uempmed unemploy
##       <date> <dbl>  <int>   <dbl>   <dbl>    <int>
## 1 1967-07-01 507.4 198712    12.5     4.5     2944
## 2 1967-08-01 510.5 198911    12.5     4.7     2945
## 3 1967-09-01 516.3 199113    11.7     4.6     2958
## 4 1967-10-01 512.9 199311    12.5     4.9     3143
## 5 1967-11-01 518.1 199498    12.5     4.7     3066
## 6 1967-12-01 525.8 199657    12.1     4.8     3018
data(df_state_age_2015)
df=data(df_state_age_2015)
cali_stats = get_tract_demographics("california")
head(cali_stats)
##       region total_population percent_white percent_black percent_asian
## 1 6001400100             3353            64             5            20
## 2 6001400200             1944            70             2            10
## 3 6001400300             5376            65            14            11
## 4 6001400400             4152            60            14             8
## 5 6001400500             3618            47            28             5
## 6 6001400600             1691            32            40             6
##   percent_hispanic per_capita_income median_rent median_age
## 1                8             86836        2001       47.4
## 2               11             86761        1437       45.5
## 3                7             53030        1038       39.7
## 4               11             51200        1461       37.0
## 5               15             37778        1145       34.4
## 6               13             32651         966       34.3
#suppressPackageStartupMessages(suppressWarnings(choroplethr_acs("B19301", "county", num_colors=1, zoom=c( "california"))))
#state_choropleth(df , num_colors = 7,
#  state_zoom = "california", reference_map = TRUE)

B04004 People Reporting Single Ancestry: Subsaharan African: Ghanaian

#choroplethr_acs(tableId="B19301",map = "state")
#choroplethr_acs(tableId="B04004", map="state", endyear = 2015, span = 5, buckets = 7,zoom = NULL)
#selection :76
# pdf("/Users/nanaakwasiabayieboateng/Documents/memphisclassesbooks/DataMiningscience/Maps/Ghana1.pdf")
# choroplethr_acs(tableId="B04004", map="state", endyear = 2015, span = 5, buckets = 7,
#   zoom = NULL)
# 
# dev.off();
#selection:76
# pdf("/Users/nanaakwasiabayieboateng/Documents/memphisclassesbooks/DataMiningscience/Maps/Ghana2.pdf")
# choroplethr_acs(tableId="B04004", map="county", endyear = 2015, span = 5, buckets = 7,
#   zoom = NULL)
# dev.off();
suppressPackageStartupMessages(suppressWarnings(choroplethr_acs("B19301", "county", num_colors=0, zoom=c( "new york"))))
df = data.frame(region=state.abb, value=sample(100, 50))

#state_choropleth(df, buckets = 7, zoom = NULL)

data(df_pop_state)
DT::datatable(head(df_pop_state))
state_choropleth(df_pop_state,
                 title="US 2012 State Population Estimates",
                 legend="Population",
                 num_colors=7,
                 zoom=c("california", "oregon", "washington","nevada"),
                 reference_map=TRUE)

suppressPackageStartupMessages(suppressWarnings(state_choropleth(df_pop_state,
                 title="US 2012 State Population Estimates",
                 legend="Population",
                 num_colors=7,
                 zoom=c("california", "oregon", "washington","nevada"))))

suppressPackageStartupMessages(suppressWarnings(choroplethr_acs("B19301", "county", buckets=1, zoom=c( "new york"))
))
suppressPackageStartupMessages(suppressWarnings(choroplethr_acs(tableId="B19301", map="zip",buckets=7,endyear = 2015)
))

Per capita income of Tennessee in 2015.

#choroplethr_acs(tableId="B19301", map="zip",buckets=7,endyear = 2015,zoom = "tennessee")

suppressPackageStartupMessages(suppressWarnings(choroplethr_acs(tableId="B19301", map="zip",buckets=7,endyear = 2015,zoom = "tennessee")
))
# library(choroplethrZip)
# data(df_pop_zip)
# zip_choropleth(df_pop_zip, state_zoom = "new york", title="Population of New York State by county") + coord_map()
# 


#suppressPackageStartupMessages(suppressWarnings())+ coord_map()
#data(county.fips, package="maps")
 
#df = data.frame(region=county.fips$fips, value=sample(100, nrow(county.fips), replace=TRUE))

#head(df) 
#choroplethr(df, lod="county", num_buckets=2)


#state_choropleth(df,values=df$values, buckets = 7, zoom = NULL)
library(choroplethr)
library(mapproj)

data(df_county_demographics)
head(df_county_demographics)
##   region total_population percent_white percent_black percent_asian
## 1   1001            54907            76            18             1
## 2   1003           187114            83             9             1
## 3   1005            27321            46            46             0
## 4   1007            22754            75            22             0
## 5   1009            57623            88             1             0
## 6   1011            10746            22            71             0
##   percent_hispanic per_capita_income median_rent median_age
## 1                2             24571         668       37.5
## 2                4             26766         693       41.5
## 3                5             16829         382       38.3
## 4                2             17427         351       39.4
## 5                8             20730         403       39.6
## 6                6             18628         276       39.6
df_county_demographics$value = df_county_demographics$percent_black
 county_choropleth(df_county_demographics, 
                   state_zoom = "texas",
                   title      = "Texas County Percent percent_black2012 Estimates",
                   num_colors = 9,reference_map = TRUE) + coord_map()

#==================================================================
#  Stop Cluster
#
#==================================================================

stopCluster(cluster)