For Discussion 1, I’ve selected problem C33 from the SLE Chapter of “A First Course in Linear Algebra”.
The problem is as follows:
Find all solutions to the linear system:
\[x + y - z = -1\] \[x - y - z = -1\] \[z = 2\]
A <- matrix(c(1,1,-1,1,-1,-1,0,0,1), nrow = 3, ncol = 3)
A
## [,1] [,2] [,3]
## [1,] 1 1 0
## [2,] 1 -1 0
## [3,] -1 -1 1
b <- matrix(c(-1,-1,2), nrow = 3, ncol = 1)
b
## [,1]
## [1,] -1
## [2,] -1
## [3,] 2
(A.b <- cbind(A,b))
## [,1] [,2] [,3] [,4]
## [1,] 1 1 0 -1
## [2,] 1 -1 0 -1
## [3,] -1 -1 1 2
solve(A,b)
## [,1]
## [1,] -1
## [2,] 0
## [3,] 1
Therefore, our answers are: \[x = -1\] \[y = 0\] \[z = 1\]