library(mlmRev)
## Loading required package: lme4
## Loading required package: Matrix
str(Contraception)
## 'data.frame': 1934 obs. of 6 variables:
## $ woman : Factor w/ 1934 levels "1","2","3","4",..: 1 2 3 4 5 6 7 8 9 10 ...
## $ district: Factor w/ 60 levels "1","2","3","4",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ use : Factor w/ 2 levels "N","Y": 1 1 1 1 1 1 1 1 1 1 ...
## $ livch : Factor w/ 4 levels "0","1","2","3+": 4 1 3 4 1 1 4 4 2 4 ...
## $ age : num 18.44 -5.56 1.44 8.44 -13.56 ...
## $ urban : Factor w/ 2 levels "N","Y": 2 2 2 2 2 2 2 2 2 2 ...
library(lme4)
model16 <- glmer(use ~ 1+age+I(age^2)+urban+livch+(1|district), Contraception, binomial)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control
## $checkConv, : Model failed to converge with max|grad| = 0.0067612 (tol =
## 0.001, component 1)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model is nearly unidentifiable: very large eigenvalue
## - Rescale variables?
print(model16, corr=FALSE)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: use ~ 1 + age + I(age^2) + urban + livch + (1 | district)
## Data: Contraception
## AIC BIC logLik deviance df.resid
## 2388.729 2433.267 -1186.364 2372.729 1926
## Random effects:
## Groups Name Std.Dev.
## district (Intercept) 0.4752
## Number of obs: 1934, groups: district, 60
## Fixed Effects:
## (Intercept) age I(age^2) urbanY livch1
## -1.035027 0.003535 -0.004562 0.697285 0.814977
## livch2 livch3+
## 0.916459 0.915027
## convergence code 0; 2 optimizer warnings; 0 lme4 warnings
Contraception <- within(Contraception, ch <- factor(livch != 0, labels = c("N", "Y")))
model17 <- glmer(use ~ 1+age+I(age^2)+urban+livch+(1|district), Contraception, binomial)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model failed to converge with max|grad| = 0.0067612 (tol = 0.001, component 1)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model is nearly unidentifiable: very large eigenvalue
## - Rescale variables?
print(model17, corr=FALSE)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: use ~ 1 + age + I(age^2) + urban + livch + (1 | district)
## Data: Contraception
## AIC BIC logLik deviance df.resid
## 2388.729 2433.267 -1186.364 2372.729 1926
## Random effects:
## Groups Name Std.Dev.
## district (Intercept) 0.4752
## Number of obs: 1934, groups: district, 60
## Fixed Effects:
## (Intercept) age I(age^2) urbanY livch1
## -1.035027 0.003535 -0.004562 0.697285 0.814977
## livch2 livch3+
## 0.916459 0.915027
## convergence code 0; 2 optimizer warnings; 0 lme4 warnings
anova(model17,model16)
## Data: Contraception
## Models:
## model17: use ~ 1 + age + I(age^2) + urban + livch + (1 | district)
## model16: use ~ 1 + age + I(age^2) + urban + livch + (1 | district)
## Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
## model17 8 2388.7 2433.3 -1186.4 2372.7
## model16 8 2388.7 2433.3 -1186.4 2372.7 0 0 1