Title: MSH surveys over posterior; Phylo lm - phylogenetic binomial logistic regression
Name: Tammy L. Elliott
Date: August 29, 2017
R version 3.1
#see model description here:http://127.0.0.1:11389/library/phylolm/html/phyloglm.html
#note fitting of a logistic regression because our response is binary
#Iterate over 100 trees
model.gains<-NULL
for(a in 1:length(model.trees)){
model.gains[[a]]<-
phyloglm(gains~natives, data=addition.data, phy=model.trees[[a]], method=("logistic_MPLE"), boot=0)
}
summary(model.gains[[1]])
##
## Call:
## phyloglm(formula = gains ~ natives, data = addition.data, phy = model.trees[[a]],
## method = ("logistic_MPLE"), boot = 0)
## AIC logLik Pen.logLik
## 776.0 -385.0 -381.1
##
## Method: logistic_MPLE
## Mean tip height: 413.3026
## Parameter estimate(s):
## alpha: 0.1184042
##
## Coefficients:
## Estimate StdErr z.value p.value
## (Intercept) 0.28975 0.16456 1.7608 0.07828 .
## natives -1.73879 0.20243 -8.5897 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Note: Wald-type p-values for coefficients, conditional on alpha=0.1184042
Phylogenetic binomial regression results for gains due to natives
(model.gains.natives.estimate.mean<-mean(model.gains.natives.estimate))
## [1] -1.788931
#Get CI's
model.gains.natives.estimate.error <- qnorm(0.975)*sd(model.gains.natives.estimate)/sqrt(length(model.gains.natives.estimate))
(model.gains.natives.estimate.left<-model.gains.natives.estimate.mean-model.gains.natives.estimate.error)
## [1] -1.808908
(model.gains.natives.estimate.right<-model.gains.natives.estimate.mean+model.gains.natives.estimate.error)
## [1] -1.768955
#natives standard error
(model.gains.natives.stderr.mean<-mean(model.gains.natives.stderr))
## [1] 0.2036202
#Get CI's
model.gains.natives.stderr.error <- qnorm(0.975)*sd(model.gains.natives.stderr)/sqrt(length(model.gains.natives.stderr))
(model.gains.natives.stderr.left<-model.gains.natives.stderr.mean-model.gains.natives.stderr.error)
## [1] 0.2031398
(model.gains.natives.stderr.right<-model.gains.natives.stderr.mean+model.gains.natives.stderr.error)
## [1] 0.2041006
#natives z values
(model.gains.natives.z.mean<-mean(model.gains.natives.z))
## [1] -8.781413
#Get CI's
model.gains.natives.z.error <- qnorm(0.975)*sd(model.gains.natives.z)/sqrt(length(model.gains.natives.z))
(model.gains.natives.z.left<-model.gains.natives.z.mean-model.gains.natives.z.error)
## [1] -8.858446
(model.gains.natives.z.right<-model.gains.natives.z.mean+model.gains.natives.z.error)
## [1] -8.704381
#get mean of p.value for natives
(model.gains.p.mean<-mean(model.gains.p.value))
## [1] 1.444937e-17
#Get CI's
model.gains.p.value.error <- qnorm(0.975)*sd(model.gains.p.value)/sqrt(length(model.gains.p.value))
(model.gains.p.value.left<-model.gains.p.mean-model.gains.p.value.error)
## [1] 7.625819e-18
(model.gains.p.value.right<-model.gains.p.mean+model.gains.p.value.error)
## [1] 2.127293e-17
Phylogenetic binomial regression results for losses with special conservation staus
#note fitting of a logistic regression because our response is binary
#Iterate over 100 trees
model.losses<-NULL
for(f in 1:length(losses.trees)){
model.losses[[f]]<-
phyloglm(losses~conservation, data=not.found.data, phy=losses.trees[[f]],method=("logistic_MPLE"), boot=0)
}
summary(model.losses[[1]])
##
## Call:
## phyloglm(formula = losses ~ conservation, data = not.found.data,
## phy = losses.trees[[f]], method = ("logistic_MPLE"), boot = 0)
## AIC logLik Pen.logLik
## 471.4 -232.7 -229.9
##
## Method: logistic_MPLE
## Mean tip height: 413.3026
## Parameter estimate(s):
## alpha: 0.05590981
##
## Coefficients:
## Estimate StdErr z.value p.value
## (Intercept) -2.26480 0.16808 -13.4747 < 2.2e-16 ***
## conservation 1.75761 0.38673 4.5448 5.499e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Note: Wald-type p-values for coefficients, conditional on alpha=0.05590981
#conservation estimate
(model.losses.conservation.estimate.mean<-mean(model.losses.conservation.estimate))
## [1] 1.845282
#Get CI's
model.losses.conservation.estimate.error <- qnorm(0.975)*sd(model.losses.conservation.estimate)/sqrt(length(model.losses.conservation.estimate))
(model.losses.conservation.estimate.left<-model.losses.conservation.estimate.mean-model.losses.conservation.estimate.error)
## [1] 1.818594
(model.losses.conservation.estimate.right<-model.losses.conservation.estimate.mean+model.losses.conservation.estimate.error)
## [1] 1.87197
#conservation standard error
(model.losses.conservation.stderr.mean<-mean(model.losses.conservation.stderr))
## [1] 0.3855088
#Get CI's
model.losses.conservation.stderr.error <- qnorm(0.975)*sd(model.losses.conservation.stderr)/sqrt(length(model.losses.conservation.stderr))
(model.losses.conservation.stderr.left<-model.losses.conservation.stderr.mean-model.losses.conservation.stderr.error)
## [1] 0.3850706
(model.losses.conservation.stderr.right<-model.losses.conservation.stderr.mean+model.losses.conservation.stderr.error)
## [1] 0.385947
#conservation z values
(model.losses.conservation.z.mean<-mean(model.losses.conservation.z))
## [1] 4.787925
#Get CI's
model.losses.conservation.z.error <- qnorm(0.975)*sd(model.losses.conservation.z)/sqrt(length(model.losses.conservation.z))
(model.losses.conservation.z.left<-model.losses.conservation.z.mean-model.losses.conservation.z.error)
## [1] 4.715818
(model.losses.conservation.z.right<-model.losses.conservation.z.mean+model.losses.conservation.z.error)
## [1] 4.860031
#get mean of p.value of conservation
(model.losses.p.mean<-mean(model.losses.p.value))
## [1] 8.181746e-06
#Get CI's
model.losses.p.value.error <- qnorm(0.975)*sd(model.losses.p.value)/sqrt(length(model.losses.p.value))
(model.losses.p.value.left<-model.losses.p.mean-model.losses.p.value.error)
## [1] 3.780588e-06
(model.losses.p.value.right<-model.losses.p.mean+model.losses.p.value.error)
## [1] 1.258291e-05