library(netmeta)
## Loading required package: meta
## Loading 'meta' package (version 4.8-4).
## Type 'help(meta)' for a brief overview.
## Loading 'netmeta' package (version 0.9-6).
## Type 'help(netmeta-package)' for a brief overview.
data(Senn2013)
data15 <- Senn2013
data15
##       TE   seTE treat1 treat2            studlab
## 1  -1.90 0.1414   metf   plac       DeFronzo1995
## 2  -0.82 0.0992   metf   plac          Lewin2007
## 3  -0.20 0.3579   metf   acar         Willms1999
## 4  -1.34 0.1435   rosi   plac       Davidson2007
## 5  -1.10 0.1141   rosi   plac  Wolffenbuttel1999
## 6  -1.30 0.1268   piog   plac         Kipnes2001
## 7  -0.77 0.1078   rosi   plac        Kerenyi2004
## 8   0.16 0.0849   piog   metf       Hanefeld2004
## 9   0.10 0.1831   piog   rosi         Derosa2004
## 10 -1.30 0.1014   rosi   plac          Baksi2004
## 11 -1.09 0.2263   rosi   plac     Rosenstock2008
## 12 -1.50 0.1624   rosi   plac            Zhu2003
## 13 -0.14 0.2239   rosi   metf           Yang2003
## 14 -1.20 0.1436   rosi   sulf Vongthavaravat2002
## 15 -0.40 0.1549   acar   sulf          Oyama2008
## 16 -0.80 0.1432   acar   plac          Costa1997
## 17 -0.57 0.1291   sita   plac      Hermansen2007
## 18 -0.70 0.1273   vild   plac         Garber2008
## 19 -0.37 0.1184   metf   sulf           Alex1998
## 20 -0.74 0.1839   migl   plac       Johnston1994
## 21 -1.41 0.2235   migl   plac      Johnston1998a
## 22  0.00 0.2339   rosi   metf            Kim2007
## 23 -0.68 0.2828   migl   plac      Johnston1998b
## 24 -0.40 0.4356   metf   plac Gonzalez-Ortiz2004
## 25 -0.23 0.3467   benf   plac         Stucci1996
## 26 -1.01 0.1366   benf   plac         Moulin2006
## 27 -1.20 0.3758   metf   plac         Willms1999
## 28 -1.00 0.4669   acar   plac         Willms1999
help("Senn2013")
## starting httpd help server ...
##  done
willms <- data.frame(treatment=c("metf", "acar", "plac"), 
                     n=c(29, 31, 29), 
                     mean=c(-2.5, -2.3, -1.3), 
                     sd=c(0.862, 1.782, 1.831), 
                     stringsAsFactors=FALSE)
willms
##   treatment  n mean    sd
## 1      metf 29 -2.5 0.862
## 2      acar 31 -2.3 1.782
## 3      plac 29 -1.3 1.831
comp12 <- metacont(n[1], mean[1], sd[1], n[2], mean[2], sd[2], data=willms, sm="MD")
comp13 <- metacont(n[1], mean[1], sd[1], n[3], mean[3], sd[3], data=willms, sm="MD")
comp23 <- metacont(n[2], mean[2], sd[2], n[3], mean[3], sd[3], data=willms, sm="MD")

TE <- c(comp12$TE, comp13$TE, comp23$TE)
seTE <- c(comp12$seTE, comp13$seTE, comp23$seTE)

treat1 <- c(willms$treatment[1], willms$treatment[1], willms$treatment[2])
treat2 <- c(willms$treatment[2], willms$treatment[3], willms$treatment[3])

data.frame(TE, seTE=round(seTE, 4), treat1, treat2, studlab="Willms1999")
##     TE   seTE treat1 treat2    studlab
## 1 -0.2 0.3579   metf   acar Willms1999
## 2 -1.2 0.3758   metf   plac Willms1999
## 3 -1.0 0.4669   acar   plac Willms1999
args(netmeta)
## function (TE, seTE, treat1, treat2, studlab, data = NULL, subset = NULL, 
##     sm, level = 0.95, level.comb = 0.95, comb.fixed = TRUE, comb.random = !is.null(tau.preset), 
##     prediction = FALSE, level.predict = 0.95, reference.group = "", 
##     baseline.reference = TRUE, all.treatments = NULL, seq = NULL, 
##     tau.preset = NULL, tol.multiarm = 5e-04, details.chkmultiarm = FALSE, 
##     sep.trts = ":", title = "", warn = TRUE) 
## NULL
mn0 <- netmeta(TE, seTE, treat1, treat2, data=data15)
## Warning in netmeta(TE, seTE, treat1, treat2, data = data15): No information
## given for argument 'studlab'. Assuming that comparisons are from
## independent studies.
## Warning: Note, treatments within a comparison have been re-sorted in
## increasing order.
mn0
## Original data:
## 
##    treat1 treat2    TE   seTE
## 1    metf   plac -1.90 0.1414
## 2    metf   plac -0.82 0.0992
## 3    acar   metf  0.20 0.3579
## 4    plac   rosi  1.34 0.1435
## 5    plac   rosi  1.10 0.1141
## 6    piog   plac -1.30 0.1268
## 7    plac   rosi  0.77 0.1078
## 8    metf   piog -0.16 0.0849
## 9    piog   rosi  0.10 0.1831
## 10   plac   rosi  1.30 0.1014
## 11   plac   rosi  1.09 0.2263
## 12   plac   rosi  1.50 0.1624
## 13   metf   rosi  0.14 0.2239
## 14   rosi   sulf -1.20 0.1436
## 15   acar   sulf -0.40 0.1549
## 16   acar   plac -0.80 0.1432
## 17   plac   sita  0.57 0.1291
## 18   plac   vild  0.70 0.1273
## 19   metf   sulf -0.37 0.1184
## 20   migl   plac -0.74 0.1839
## 21   migl   plac -1.41 0.2235
## 22   metf   rosi  0.00 0.2339
## 23   migl   plac -0.68 0.2828
## 24   metf   plac -0.40 0.4356
## 25   benf   plac -0.23 0.3467
## 26   benf   plac -1.01 0.1366
## 27   metf   plac -1.20 0.3758
## 28   acar   plac -1.00 0.4669
## 
## Number of treatment arms (by study):
##    narms
## 1      2
## 2      2
## 3      2
## 4      2
## 5      2
## 6      2
## 7      2
## 8      2
## 9      2
## 10     2
## 11     2
## 12     2
## 13     2
## 14     2
## 15     2
## 16     2
## 17     2
## 18     2
## 19     2
## 20     2
## 21     2
## 22     2
## 23     2
## 24     2
## 25     2
## 26     2
## 27     2
## 28     2
## 
## Results (fixed effect model):
## 
##    treat1 treat2                      95%-CI     Q leverage
## 1    metf   plac -1.1148  [-1.2312; -0.9984] 30.84     0.18
## 2    metf   plac -1.1148  [-1.2312; -0.9984]  8.83     0.36
## 3    acar   metf  0.2803  [ 0.0604;  0.5001]  0.05     0.10
## 4    plac   rosi  1.2022  [ 1.1088;  1.2955]  0.92     0.11
## 5    plac   rosi  1.2022  [ 1.1088;  1.2955]  0.80     0.17
## 6    piog   plac -1.0669  [-1.2154; -0.9184]  3.38     0.36
## 7    plac   rosi  1.2022  [ 1.1088;  1.2955] 16.07     0.20
## 8    metf   piog -0.0479  [-0.1847;  0.0888]  1.74     0.68
## 9    piog   rosi  0.1353  [-0.0250;  0.2955]  0.04     0.20
## 10   plac   rosi  1.2022  [ 1.1088;  1.2955]  0.93     0.22
## 11   plac   rosi  1.2022  [ 1.1088;  1.2955]  0.25     0.04
## 12   plac   rosi  1.2022  [ 1.1088;  1.2955]  3.36     0.09
## 13   metf   rosi  0.0873  [-0.0450;  0.2197]  0.06     0.09
## 14   rosi   sulf -0.7604  [-0.9404; -0.5804]  9.37     0.41
## 15   acar   sulf -0.3928  [-0.6120; -0.1736]  0.00     0.52
## 16   acar   plac -0.8346  [-1.0423; -0.6268]  0.06     0.55
## 17   plac   sita  0.5700  [ 0.3170;  0.8230]  0.00     1.00
## 18   plac   vild  0.7000  [ 0.4505;  0.9495]  0.00     1.00
## 19   metf   sulf -0.6731  [-0.8461; -0.5000]  6.55     0.56
## 20   migl   plac -0.9439  [-1.1927; -0.6952]  1.23     0.48
## 21   migl   plac -0.9439  [-1.1927; -0.6952]  4.35     0.32
## 22   metf   rosi  0.0873  [-0.0450;  0.2197]  0.14     0.08
## 23   migl   plac -0.9439  [-1.1927; -0.6952]  0.87     0.20
## 24   metf   plac -1.1148  [-1.2312; -0.9984]  2.69     0.02
## 25   benf   plac -0.9052  [-1.1543; -0.6561]  3.79     0.13
## 26   benf   plac -0.9052  [-1.1543; -0.6561]  0.59     0.87
## 27   metf   plac -1.1148  [-1.2312; -0.9984]  0.05     0.02
## 28   acar   plac -0.8346  [-1.0423; -0.6268]  0.13     0.05
## 
## Number of studies: k = 28
## Number of treatments: n = 10
## Number of pairwise comparisons: m = 28
## Number of designs: d = 15
## 
## Fixed effect model
## 
## Treatment estimate (sm = ''):
##         acar    benf    metf    migl    piog    plac   rosi    sita
## acar       .  0.0706  0.2803  0.1094  0.2323 -0.8346 0.3676 -0.2646
## benf -0.0706       .  0.2096  0.0387  0.1617 -0.9052 0.2970 -0.3352
## metf -0.2803 -0.2096       . -0.1709 -0.0479 -1.1148 0.0873 -0.5448
## migl -0.1094 -0.0387  0.1709       .  0.1230 -0.9439 0.2582 -0.3739
## piog -0.2323 -0.1617  0.0479 -0.1230       . -1.0669 0.1353 -0.4969
## plac  0.8346  0.9052  1.1148  0.9439  1.0669       . 1.2022  0.5700
## rosi -0.3676 -0.2970 -0.0873 -0.2582 -0.1353 -1.2022      . -0.6322
## sita  0.2646  0.3352  0.5448  0.3739  0.4969 -0.5700 0.6322       .
## sulf  0.3928  0.4634  0.6731  0.5022  0.6251 -0.4418 0.7604  0.1282
## vild  0.1346  0.2052  0.4148  0.2439  0.3669 -0.7000 0.5022 -0.1300
##         sulf    vild
## acar -0.3928 -0.1346
## benf -0.4634 -0.2052
## metf -0.6731 -0.4148
## migl -0.5022 -0.2439
## piog -0.6251 -0.3669
## plac  0.4418  0.7000
## rosi -0.7604 -0.5022
## sita -0.1282  0.1300
## sulf       .  0.2582
## vild -0.2582       .
## 
## Lower 95%-confidence limit:
##         acar    benf    metf    migl    piog    plac    rosi    sita
## acar       . -0.2537  0.0604 -0.2147 -0.0120 -1.0423  0.1481 -0.5920
## benf -0.3950       . -0.0653 -0.3133 -0.1283 -1.1543  0.0309 -0.6903
## metf -0.5001 -0.4846       . -0.4455 -0.1847 -1.2312 -0.0450 -0.8233
## migl -0.4335 -0.3908 -0.1037       . -0.1667 -1.1927 -0.0075 -0.7287
## piog -0.4767 -0.4517 -0.0888 -0.4127       . -1.2154 -0.0250 -0.7903
## plac  0.6268  0.6561  0.9984  0.6952  0.9184       .  1.1088  0.3170
## rosi -0.5870 -0.5630 -0.2197 -0.5239 -0.2955 -1.2955       . -0.9019
## sita -0.0628 -0.0199  0.2663  0.0191  0.2035 -0.8230  0.3624       .
## sulf  0.1736  0.1568  0.5000  0.1959  0.4163 -0.6205  0.5804 -0.1816
## vild -0.1901 -0.1474  0.1395 -0.1084  0.0765 -0.9495  0.2357 -0.4854
##         sulf    vild
## acar -0.6120 -0.4592
## benf -0.7700 -0.5577
## metf -0.8461 -0.6901
## migl -0.8085 -0.5962
## piog -0.8339 -0.6573
## plac  0.2630  0.4505
## rosi -0.9404 -0.7686
## sita -0.4381 -0.2254
## sulf       . -0.0487
## vild -0.5652       .
## 
## Upper 95%-confidence limit:
##         acar    benf   metf   migl   piog    plac   rosi    sita    sulf
## acar       .  0.3950 0.5001 0.4335 0.4767 -0.6268 0.5870  0.0628 -0.1736
## benf  0.2537       . 0.4846 0.3908 0.4517 -0.6561 0.5630  0.0199 -0.1568
## metf -0.0604  0.0653      . 0.1037 0.0888 -0.9984 0.2197 -0.2663 -0.5000
## migl  0.2147  0.3133 0.4455      . 0.4127 -0.6952 0.5239 -0.0191 -0.1959
## piog  0.0120  0.1283 0.1847 0.1667      . -0.9184 0.2955 -0.2035 -0.4163
## plac  1.0423  1.1543 1.2312 1.1927 1.2154       . 1.2955  0.8230  0.6205
## rosi -0.1481 -0.0309 0.0450 0.0075 0.0250 -1.1088      . -0.3624 -0.5804
## sita  0.5920  0.6903 0.8233 0.7287 0.7903 -0.3170 0.9019       .  0.1816
## sulf  0.6120  0.7700 0.8461 0.8085 0.8339 -0.2630 0.9404  0.4381       .
## vild  0.4592  0.5577 0.6901 0.5962 0.6573 -0.4505 0.7686  0.2254  0.0487
##         vild
## acar  0.1901
## benf  0.1474
## metf -0.1395
## migl  0.1084
## piog -0.0765
## plac  0.9495
## rosi -0.2357
## sita  0.4854
## sulf  0.5652
## vild       .
## 
## Quantifying heterogeneity / inconsistency:
## tau^2 = 0.1063; I^2 = 80.4%
## 
## Tests of heterogeneity (within designs) and inconsistency (between designs):
##                     Q d.f.  p-value
## Total           97.09   19 < 0.0001
## Within designs  74.64   13 < 0.0001
## Between designs 22.45    6   0.0010
mn1 <- netmeta(TE, seTE, treat1, treat2, studlab, data=data15, sm="MD")
## Warning: Note, treatments within a comparison have been re-sorted in
## increasing order.
netgraph(mn1, seq=c("plac", "benf", "migl", "acar", "sulf", "metf", "rosi", "piog", "sita", "vild"))

print(mn1, digits=2)
## Original data (with adjusted standard errors for multi-arm studies):
## 
##                    treat1 treat2    TE seTE seTE.adj narms multiarm
## DeFronzo1995         metf   plac -1.90 0.14     0.14     2         
## Lewin2007            metf   plac -0.82 0.10     0.10     2         
## Willms1999           acar   metf  0.20 0.36     0.39     3        *
## Davidson2007         plac   rosi  1.34 0.14     0.14     2         
## Wolffenbuttel1999    plac   rosi  1.10 0.11     0.11     2         
## Kipnes2001           piog   plac -1.30 0.13     0.13     2         
## Kerenyi2004          plac   rosi  0.77 0.11     0.11     2         
## Hanefeld2004         metf   piog -0.16 0.08     0.08     2         
## Derosa2004           piog   rosi  0.10 0.18     0.18     2         
## Baksi2004            plac   rosi  1.30 0.10     0.10     2         
## Rosenstock2008       plac   rosi  1.09 0.23     0.23     2         
## Zhu2003              plac   rosi  1.50 0.16     0.16     2         
## Yang2003             metf   rosi  0.14 0.22     0.22     2         
## Vongthavaravat2002   rosi   sulf -1.20 0.14     0.14     2         
## Oyama2008            acar   sulf -0.40 0.15     0.15     2         
## Costa1997            acar   plac -0.80 0.14     0.14     2         
## Hermansen2007        plac   sita  0.57 0.13     0.13     2         
## Garber2008           plac   vild  0.70 0.13     0.13     2         
## Alex1998             metf   sulf -0.37 0.12     0.12     2         
## Johnston1994         migl   plac -0.74 0.18     0.18     2         
## Johnston1998a        migl   plac -1.41 0.22     0.22     2         
## Kim2007              metf   rosi  0.00 0.23     0.23     2         
## Johnston1998b        migl   plac -0.68 0.28     0.28     2         
## Gonzalez-Ortiz2004   metf   plac -0.40 0.44     0.44     2         
## Stucci1996           benf   plac -0.23 0.35     0.35     2         
## Moulin2006           benf   plac -1.01 0.14     0.14     2         
## Willms1999           metf   plac -1.20 0.38     0.41     3        *
## Willms1999           acar   plac -1.00 0.47     0.82     3        *
## 
## Number of treatment arms (by study):
##                    narms
## Alex1998               2
## Baksi2004              2
## Costa1997              2
## Davidson2007           2
## DeFronzo1995           2
## Derosa2004             2
## Garber2008             2
## Gonzalez-Ortiz2004     2
## Hanefeld2004           2
## Hermansen2007          2
## Johnston1994           2
## Johnston1998a          2
## Johnston1998b          2
## Kerenyi2004            2
## Kim2007                2
## Kipnes2001             2
## Lewin2007              2
## Moulin2006             2
## Oyama2008              2
## Rosenstock2008         2
## Stucci1996             2
## Vongthavaravat2002     2
## Willms1999             3
## Wolffenbuttel1999      2
## Yang2003               2
## Zhu2003                2
## 
## Results (fixed effect model):
## 
##                    treat1 treat2    MD          95%-CI     Q leverage
## DeFronzo1995         metf   plac -1.11  [-1.23; -1.00] 30.89     0.18
## Lewin2007            metf   plac -1.11  [-1.23; -1.00]  8.79     0.36
## Willms1999           acar   metf  0.29  [ 0.06;  0.51]  0.05     0.09
## Davidson2007         plac   rosi  1.20  [ 1.11;  1.30]  0.93     0.11
## Wolffenbuttel1999    plac   rosi  1.20  [ 1.11;  1.30]  0.80     0.17
## Kipnes2001           piog   plac -1.07  [-1.22; -0.92]  3.39     0.36
## Kerenyi2004          plac   rosi  1.20  [ 1.11;  1.30] 16.05     0.20
## Hanefeld2004         metf   piog -0.05  [-0.18;  0.09]  1.75     0.68
## Derosa2004           piog   rosi  0.14  [-0.02;  0.30]  0.04     0.20
## Baksi2004            plac   rosi  1.20  [ 1.11;  1.30]  0.94     0.22
## Rosenstock2008       plac   rosi  1.20  [ 1.11;  1.30]  0.24     0.04
## Zhu2003              plac   rosi  1.20  [ 1.11;  1.30]  3.37     0.09
## Yang2003             metf   rosi  0.09  [-0.04;  0.22]  0.05     0.09
## Vongthavaravat2002   rosi   sulf -0.76  [-0.94; -0.58]  9.29     0.41
## Oyama2008            acar   sulf -0.39  [-0.61; -0.17]  0.01     0.53
## Costa1997            acar   plac -0.83  [-1.04; -0.61]  0.04     0.57
## Hermansen2007        plac   sita  0.57  [ 0.32;  0.82]  0.00     1.00
## Garber2008           plac   vild  0.70  [ 0.45;  0.95]  0.00     1.00
## Alex1998             metf   sulf -0.67  [-0.85; -0.50]  6.62     0.56
## Johnston1994         migl   plac -0.94  [-1.19; -0.70]  1.23     0.48
## Johnston1998a        migl   plac -0.94  [-1.19; -0.70]  4.35     0.32
## Kim2007              metf   rosi  0.09  [-0.04;  0.22]  0.14     0.08
## Johnston1998b        migl   plac -0.94  [-1.19; -0.70]  0.87     0.20
## Gonzalez-Ortiz2004   metf   plac -1.11  [-1.23; -1.00]  2.69     0.02
## Stucci1996           benf   plac -0.91  [-1.15; -0.66]  3.79     0.13
## Moulin2006           benf   plac -0.91  [-1.15; -0.66]  0.59     0.87
## Willms1999           metf   plac -1.11  [-1.23; -1.00]  0.04     0.02
## Willms1999           acar   plac -0.83  [-1.04; -0.61]  0.04     0.02
## 
## Number of studies: k = 26
## Number of treatments: n = 10
## Number of pairwise comparisons: m = 28
## Number of designs: d = 15
## 
## Fixed effect model
## 
## Treatment estimate (sm = 'MD'):
##       acar  benf  metf  migl  piog  plac rosi  sita  sulf  vild
## acar     .  0.08  0.29  0.12  0.24 -0.83 0.37 -0.26 -0.39 -0.13
## benf -0.08     .  0.21  0.04  0.16 -0.91 0.30 -0.34 -0.47 -0.21
## metf -0.29 -0.21     . -0.17 -0.05 -1.11 0.09 -0.54 -0.67 -0.41
## migl -0.12 -0.04  0.17     .  0.12 -0.94 0.26 -0.37 -0.50 -0.24
## piog -0.24 -0.16  0.05 -0.12     . -1.07 0.14 -0.50 -0.63 -0.37
## plac  0.83  0.91  1.11  0.94  1.07     . 1.20  0.57  0.44  0.70
## rosi -0.37 -0.30 -0.09 -0.26 -0.14 -1.20    . -0.63 -0.76 -0.50
## sita  0.26  0.34  0.54  0.37  0.50 -0.57 0.63     . -0.13  0.13
## sulf  0.39  0.47  0.67  0.50  0.63 -0.44 0.76  0.13     .  0.26
## vild  0.13  0.21  0.41  0.24  0.37 -0.70 0.50 -0.13 -0.26     .
## 
## Lower 95%-confidence limit:
##       acar  benf  metf  migl  piog  plac  rosi  sita  sulf  vild
## acar     . -0.25  0.06 -0.21 -0.01 -1.04  0.15 -0.59 -0.61 -0.46
## benf -0.41     . -0.07 -0.31 -0.13 -1.15  0.03 -0.69 -0.77 -0.56
## metf -0.51 -0.48     . -0.44 -0.18 -1.23 -0.04 -0.82 -0.85 -0.69
## migl -0.44 -0.39 -0.10     . -0.17 -1.19 -0.01 -0.73 -0.81 -0.60
## piog -0.49 -0.45 -0.09 -0.41     . -1.22 -0.02 -0.79 -0.84 -0.66
## plac  0.61  0.66  1.00  0.70  0.92     .  1.11  0.32  0.26  0.45
## rosi -0.60 -0.56 -0.22 -0.52 -0.30 -1.30     . -0.90 -0.94 -0.77
## sita -0.07 -0.02  0.27  0.02  0.20 -0.82  0.36     . -0.44 -0.23
## sulf  0.17  0.16  0.50  0.20  0.42 -0.62  0.58 -0.18     . -0.05
## vild -0.20 -0.15  0.14 -0.11  0.08 -0.95  0.24 -0.49 -0.57     .
## 
## Upper 95%-confidence limit:
##       acar  benf metf migl piog  plac rosi  sita  sulf  vild
## acar     .  0.41 0.51 0.44 0.49 -0.61 0.60  0.07 -0.17  0.20
## benf  0.25     . 0.48 0.39 0.45 -0.66 0.56  0.02 -0.16  0.15
## metf -0.06  0.07    . 0.10 0.09 -1.00 0.22 -0.27 -0.50 -0.14
## migl  0.21  0.31 0.44    . 0.41 -0.70 0.52 -0.02 -0.20  0.11
## piog  0.01  0.13 0.18 0.17    . -0.92 0.30 -0.20 -0.42 -0.08
## plac  1.04  1.15 1.23 1.19 1.22     . 1.30  0.82  0.62  0.95
## rosi -0.15 -0.03 0.04 0.01 0.02 -1.11    . -0.36 -0.58 -0.24
## sita  0.59  0.69 0.82 0.73 0.79 -0.32 0.90     .  0.18  0.49
## sulf  0.61  0.77 0.85 0.81 0.84 -0.26 0.94  0.44     .  0.57
## vild  0.46  0.56 0.69 0.60 0.66 -0.45 0.77  0.23  0.05     .
## 
## Quantifying heterogeneity / inconsistency:
## tau^2 = 0.1087; I^2 = 81.4%
## 
## Tests of heterogeneity (within designs) and inconsistency (between designs):
##                     Q d.f.  p-value
## Total           96.99   18 < 0.0001
## Within designs  74.46   11 < 0.0001
## Between designs 22.53    7   0.0021
mn1$n
## [1] 10
mn1$m
## [1] 28
mean(mn1$leverage.fixed)
## [1] 0.3214286
(mn1$n-1)/mn1$m
## [1] 0.3214286
print(summary(mn1))
## Number of studies: k = 26
## Number of treatments: n = 10
## Number of pairwise comparisons: m = 28
## Number of designs: d = 15
## 
## Fixed effect model
## 
## Treatment estimate (sm = 'MD'):
##         acar    benf    metf    migl    piog    plac   rosi    sita
## acar       .  0.0778  0.2867  0.1166  0.2391 -0.8274 0.3745 -0.2574
## benf -0.0778       .  0.2089  0.0387  0.1612 -0.9052 0.2967 -0.3352
## metf -0.2867 -0.2089       . -0.1702 -0.0477 -1.1141 0.0877 -0.5441
## migl -0.1166 -0.0387  0.1702       .  0.1225 -0.9439 0.2579 -0.3739
## piog -0.2391 -0.1612  0.0477 -0.1225       . -1.0664 0.1354 -0.4964
## plac  0.8274  0.9052  1.1141  0.9439  1.0664       . 1.2018  0.5700
## rosi -0.3745 -0.2967 -0.0877 -0.2579 -0.1354 -1.2018      . -0.6318
## sita  0.2574  0.3352  0.5441  0.3739  0.4964 -0.5700 0.6318       .
## sulf  0.3879  0.4657  0.6746  0.5044  0.6269 -0.4395 0.7623  0.1305
## vild  0.1274  0.2052  0.4141  0.2439  0.3664 -0.7000 0.5018 -0.1300
##         sulf    vild
## acar -0.3879 -0.1274
## benf -0.4657 -0.2052
## metf -0.6746 -0.4141
## migl -0.5044 -0.2439
## piog -0.6269 -0.3664
## plac  0.4395  0.7000
## rosi -0.7623 -0.5018
## sita -0.1305  0.1300
## sulf       .  0.2605
## vild -0.2605       .
## 
## Lower 95%-confidence limit:
##         acar    benf    metf    migl    piog    plac    rosi    sita
## acar       . -0.2497  0.0622 -0.2107 -0.0094 -1.0401  0.1506 -0.5879
## benf -0.4054       . -0.0662 -0.3133 -0.1288 -1.1543  0.0306 -0.6903
## metf -0.5113 -0.4841       . -0.4450 -0.1845 -1.2309 -0.0449 -0.8228
## migl -0.4438 -0.3908 -0.1046       . -0.1673 -1.1927 -0.0078 -0.7287
## piog -0.4876 -0.4513 -0.0891 -0.4123       . -1.2151 -0.0249 -0.7899
## plac  0.6147  0.6561  0.9973  0.6952  0.9178       .  1.1084  0.3170
## rosi -0.5983 -0.5627 -0.2203 -0.5236 -0.2957 -1.2953       . -0.9016
## sita -0.0732 -0.0199  0.2654  0.0191  0.2030 -0.8230  0.3621       .
## sulf  0.1662  0.1588  0.5011  0.1978  0.4178 -0.6188  0.5820 -0.1796
## vild -0.2005 -0.1474  0.1386 -0.1084  0.0760 -0.9495  0.2354 -0.4854
##         sulf    vild
## acar -0.6095 -0.4552
## benf -0.7726 -0.5577
## metf -0.8482 -0.6896
## migl -0.8111 -0.5962
## piog -0.8361 -0.6569
## plac  0.2602  0.4505
## rosi -0.9427 -0.7683
## sita -0.4406 -0.2254
## sulf       . -0.0467
## vild -0.5677       .
## 
## Upper 95%-confidence limit:
##         acar    benf   metf   migl   piog    plac   rosi    sita    sulf
## acar       .  0.4054 0.5113 0.4438 0.4876 -0.6147 0.5983  0.0732 -0.1662
## benf  0.2497       . 0.4841 0.3908 0.4513 -0.6561 0.5627  0.0199 -0.1588
## metf -0.0622  0.0662      . 0.1046 0.0891 -0.9973 0.2203 -0.2654 -0.5011
## migl  0.2107  0.3133 0.4450      . 0.4123 -0.6952 0.5236 -0.0191 -0.1978
## piog  0.0094  0.1288 0.1845 0.1673      . -0.9178 0.2957 -0.2030 -0.4178
## plac  1.0401  1.1543 1.2309 1.1927 1.2151       . 1.2953  0.8230  0.6188
## rosi -0.1506 -0.0306 0.0449 0.0078 0.0249 -1.1084      . -0.3621 -0.5820
## sita  0.5879  0.6903 0.8228 0.7287 0.7899 -0.3170 0.9016       .  0.1796
## sulf  0.6095  0.7726 0.8482 0.8111 0.8361 -0.2602 0.9427  0.4406       .
## vild  0.4552  0.5577 0.6896 0.5962 0.6569 -0.4505 0.7683  0.2254  0.0467
##         vild
## acar  0.2005
## benf  0.1474
## metf -0.1386
## migl  0.1084
## piog -0.0760
## plac  0.9495
## rosi -0.2354
## sita  0.4854
## sulf  0.5677
## vild       .
## 
## Quantifying heterogeneity / inconsistency:
## tau^2 = 0.1087; I^2 = 81.4%
## 
## Tests of heterogeneity (within designs) and inconsistency (between designs):
##                     Q d.f.  p-value
## Total           96.99   18 < 0.0001
## Within designs  74.46   11 < 0.0001
## Between designs 22.53    7   0.0021
netgraph(mn1, start="random", iterate=TRUE, col="darkgray", cex=1.5, multiarm=FALSE, 
         points=TRUE, col.points="green", cex.points=3)

netgraph(mn1, start="circle", iterate=TRUE, col="darkgray", cex=1.5, 
         points=TRUE, col.points="black", cex.points=3, col.multiarm="gray")

netgraph(mn1, start="circle", iterate=TRUE, col="darkgray", cex=1.5, 
         points=TRUE, col.points="black", cex.points=3, col.multiarm="gray", allfigures=TRUE)

summary(mn1, ref="plac")
## Number of studies: k = 26
## Number of treatments: n = 10
## Number of pairwise comparisons: m = 28
## Number of designs: d = 15
## 
## Fixed effect model
## 
## Treatment estimate (sm = 'MD', comparison: other treatments vs 'plac'):
##           MD              95%-CI
## acar -0.8274  [-1.0401; -0.6147]
## benf -0.9052  [-1.1543; -0.6561]
## metf -1.1141  [-1.2309; -0.9973]
## migl -0.9439  [-1.1927; -0.6952]
## piog -1.0664  [-1.2151; -0.9178]
## plac       .                   .
## rosi -1.2018  [-1.2953; -1.1084]
## sita -0.5700  [-0.8230; -0.3170]
## sulf -0.4395  [-0.6188; -0.2602]
## vild -0.7000  [-0.9495; -0.4505]
## 
## Quantifying heterogeneity / inconsistency:
## tau^2 = 0.1087; I^2 = 81.4%
## 
## Tests of heterogeneity (within designs) and inconsistency (between designs):
##                     Q d.f.  p-value
## Total           96.99   18 < 0.0001
## Within designs  74.46   11 < 0.0001
## Between designs 22.53    7   0.0021
forest(mn1, ref="plac")

forest(mn1, xlim=c(-1.5, 1), ref="plac", leftlabs="Contrast to Placebo", xlab="HbA1c difference")

forest(mn1, xlim=c(-1.5, 1), ref="plac", leftlabs="Contrast to placebo", xlab="HbA1c difference", pooled="random")

round(decomp.design(mn1)$Q.decomp, 3)
##                      Q df  pval
## Total           96.986 18 0.000
## Within designs  74.455 11 0.000
## Between designs 22.530  7 0.002
print(decomp.design(mn1)$Q.het.design, digits=2)
##            design     Q df    pval
## 1       acar:plac  0.00  0      NA
## 2       acar:sulf  0.00  0      NA
## 3       benf:plac  4.38  1 3.6e-02
## 4       metf:piog  0.00  0      NA
## 5       metf:plac 42.16  2 7.0e-10
## 6       metf:rosi  0.19  1 6.7e-01
## 7       metf:sulf  0.00  0      NA
## 8       migl:plac  6.45  2 4.0e-02
## 9       piog:plac  0.00  0      NA
## 10      piog:rosi  0.00  0      NA
## 11      plac:rosi 21.27  5 7.2e-04
## 12      plac:sita  0.00  0      NA
## 13      plac:vild  0.00  0      NA
## 14      rosi:sulf  0.00  0      NA
## 15 acar:metf:plac  0.00  0      NA
round(decomp.design(mn1)$Q.inc.random, 3)
##                     Q df  pval tau.within
## Between designs 2.194  7 0.948       0.38
netheat(mn1)

round(decomp.design(mn1)$Q.inc.design, 2)
##      acar:plac      acar:sulf      benf:plac      metf:piog      metf:plac 
##           0.04           0.01           0.00           1.75           0.20 
##      metf:rosi      metf:sulf      migl:plac      piog:plac      piog:rosi 
##           0.01           6.62           0.00           3.39           0.04 
##      plac:rosi      plac:sita      plac:vild      rosi:sulf acar:metf:plac 
##           1.05           0.00           0.00           9.29           0.01 
## acar:metf:plac 
##           0.13
netheat(mn1, random=TRUE)

set.seed(123)
fe <- mn1$TE.nma.fixed
re <- mn1$TE.nma.random
plot(jitter((fe+re)/2, 5), jitter(fe-re, 5), xlim=c(-1.2, 1.2), 
     ylim=c(-0.25, 0.25), xlab="Mean treatment effect (in fixed effect and random effects model)", ylab="Difference of treatment effect (fixed effect minus random effects model)")
abline(h=0)

summary(mn1$seTE.nma.random / mn1$seTE.nma.fixed)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   1.826   2.265   2.588   2.502   2.681   3.231