library(caret)
fit2 <- train(y ~ ., data = training,
method = 'svmRadial', tuneLength = 9)
fit2$results
## sigma C Accuracy Kappa AccuracySD KappaSD
## 1 0.01063739 0.25 0.9640127 0.9600011 0.0011739388 0.001304053
## 2 0.01063739 0.50 0.9705297 0.9672445 0.0011794591 0.001310233
## 3 0.01063739 1.00 0.9752271 0.9724656 0.0010846432 0.001205295
## 4 0.01063739 2.00 0.9782802 0.9758590 0.0009134394 0.001015332
## 5 0.01063739 4.00 0.9797290 0.9774692 0.0010262711 0.001140656
## 6 0.01063739 8.00 0.9801942 0.9779863 0.0009619072 0.001068995
## 7 0.01063739 16.00 0.9801452 0.9779320 0.0009539227 0.001059886
## 8 0.01063739 32.00 0.9800800 0.9778595 0.0010167117 0.001129699
## 9 0.01063739 64.00 0.9800692 0.9778475 0.0010309669 0.001145548