data1 <- read.csv("data1.csv")
str(data1)
## 'data.frame':    17 obs. of  8 variables:
##  $ author: Factor w/ 17 levels "Aishwarya","Anarkalli",..: 4 6 5 2 3 8 7 13 14 16 ...
##  $ year  : int  1998 1999 2007 1993 1994 1994 1997 2006 2008 1997 ...
##  $ Ne    : int  23 21 14 21 18 13 11 14 19 25 ...
##  $ Me    : num  23.5 17.5 22.3 16.9 18.8 ...
##  $ Se    : num  11.7 15.3 14.5 12.9 11.5 19.1 16.5 19.2 12.6 14.2 ...
##  $ Nc    : int  16 25 13 16 18 23 11 14 15 16 ...
##  $ Mc    : num  21.3 21.4 31.4 23.6 29.9 ...
##  $ Sc    : num  22.2 17.3 21.3 16.5 18.3 ...
data1
##       author year Ne    Me    Se Nc    Mc    Sc
## 1       Bill 1998 23 23.54 11.70 16 21.33 22.22
## 2       Dick 1999 21 17.50 15.30 25 21.43 17.32
## 3     Chawla 2007 14 22.30 14.50 13 31.43 21.32
## 4  Anarkalli 1993 21 16.90 12.90 16 23.65 16.54
## 5     Biaggi 1994 18 18.80 11.50 18 29.88 18.32
## 6    Lundwig 1994 13 15.30 19.10 23 35.43 17.65
## 7    Dulquer 1997 11 14.90 16.50 11 29.87 18.43
## 8      Nivin 2006 14 24.56 19.20 14 45.44 16.32
## 9      Pauly 2008 19 18.60 12.60 15 43.67 18.43
## 10   Salmaan 1997 25 13.56 14.20 16 29.65 12.21
## 11 Aishwarya 1994 11 14.44 11.54 16 41.27 20.01
## 12    Rajesh 1993 14 19.32  9.21 21 38.65 12.07
## 13     Meena 1995 12 14.00 11.65 17 31.49 15.32
## 14  Mohanlal 1985 13 13.30 11.54 21 38.32 14.27
## 15  Mammooty 1999 11 13.50 19.43 10 45.67 18.54
## 16     Manju 2000 10 19.50  8.54 12 43.21 11.54
## 17   Warrier 2003  9 13.10  9.67 12 32.10  7.86
library(meta)
## Loading 'meta' package (version 4.8-4).
## Type 'help(meta)' for a brief overview.
m <- metacont(Ne, Me, Se, Nc, Mc, Sc,
              studlab=paste(author, year),
              data=data1)
m
##                      MD               95%-CI %W(fixed) %W(random)
## Bill 1998        2.2100 [ -9.6813;  14.1013]       4.2        5.3
## Dick 1999       -3.9300 [-13.3595;   5.4995]       6.6        6.5
## Chawla 2007     -9.1300 [-22.9866;   4.7266]       3.1        4.5
## Anarkalli 1993  -6.7500 [-16.5542;   3.0542]       6.2        6.3
## Biaggi 1994    -11.0800 [-21.0725;  -1.0875]       5.9        6.2
## Lundwig 1994   -20.1300 [-32.7724;  -7.4876]       3.7        5.0
## Dulquer 1997   -14.9700 [-29.5883;  -0.3517]       2.8        4.2
## Nivin 2006     -20.8800 [-34.0797;  -7.6803]       3.4        4.8
## Pauly 2008     -25.0700 [-35.9826; -14.1574]       5.0        5.8
## Salmaan 1997   -16.0900 [-24.2617;  -7.9183]       8.9        7.1
## Aishwarya 1994 -26.8300 [-38.7732; -14.8868]       4.1        5.3
## Rajesh 1993    -19.3300 [-26.3957; -12.2643]      11.8        7.8
## Meena 1995     -17.4900 [-27.3126;  -7.6674]       6.1        6.3
## Mohanlal 1985  -25.0200 [-33.7722; -16.2678]       7.7        6.8
## Mammooty 1999  -32.1700 [-48.4145; -15.9255]       2.2        3.7
## Manju 2000     -23.7100 [-32.1152; -15.3048]       8.4        7.0
## Warrier 2003   -19.0000 [-26.7259; -11.2741]       9.9        7.4
## 
## Number of studies combined: k = 17
## 
##                            MD               95%-CI      z  p-value
## Fixed effect model   -17.0477 [-19.4791; -14.6163] -13.74 < 0.0001
## Random effects model -16.8843 [-20.8045; -12.9641]  -8.44 < 0.0001
## 
## Quantifying heterogeneity:
##  tau^2 = 38.5732; H = 1.57 [1.20; 2.05]; I^2 = 59.3% [30.5%; 76.1%]
## 
## Test of heterogeneity:
##      Q d.f.  p-value
##  39.29   16   0.0010
## 
## Details on meta-analytical method:
## - Inverse variance method
## - DerSimonian-Laird estimator for tau^2
forest(m, xlab="difference in outcome measure")

MD <- with(data1[1,], Me - Mc)
seMD <- with(data1[1,], sqrt(Se^2/Ne + Sc^2/Nc))

round(c(MD, MD + c(-1,1) * qnorm(1-(0.05/2)) * seMD), 2)
## [1]  2.21 -9.68 14.10
with(data1[1, ],
     print(metacont(Ne, Me, Se, Nc, Mc, Sc),
        digits=2))
##    MD         95%-CI    z  p-value
##  2.21 [-9.68; 14.10] 0.36   0.7157
## 
## Details:
## - Inverse variance method
print(metacont(Ne, Me, Se, Nc, Mc, Sc, data=data1, subset=1), digits=2)
##    MD         95%-CI    z  p-value
##  2.21 [-9.68; 14.10] 0.36   0.7157
## 
## Details:
## - Inverse variance method
zscore <- MD/seMD
zscore
## [1] 0.3642594
data2 <- read.csv("data2.csv")
data2
##     author Ne     Me    Se Nc     Mc    Sc
## 1   Balram 11   6.50 11.21 19  13.50  5.43
## 2    Shane 16  10.00 12.32 15  21.00  6.56
## 3    Neela 14  14.90  6.75 12  22.40 12.32
## 4   Kepler 16  15.10  4.56 14  17.60 10.43
## 5    Sunny 17  13.90 11.21 55  19.20 11.23
## 6    Leone 11   9.40  9.67 36  13.20 10.45
## 7  Antonio 12  21.60 16.78 17  23.50 12.34
## 8    Bilal 11  13.50  9.21 17  14.00  7.90
## 9    Bagra 15   5.40  4.56 49 -10.40  6.54
## 10 Jackson 15  28.10  5.43 26  19.40  2.34
## 11  Taylor 13  11.90  9.43 43  16.50  8.76
## 12   Anton 14  10.11  4.21 25   5.43  1.23
## 13 Dickson 17   8.88  2.13 24  13.43 12.34
## 14   Damon 11  17.50  0.54 65  16.54  6.56
## 15    Dogg 19  13.21  7.43 58  -7.65  8.76
## 16    Dice 12 -10.40 17.30 23  56.78 19.87
## 17    Digg 14   9.32 10.32 21  11.23 12.54
N <- with(data2[1,], Ne + Nc)
SMD <- with(data2[1,],
              (1 - 3/(4 * N - 9)) * (Me - Mc) /
              sqrt(((Ne - 1) * Se^2 + (Nc - 1) * Sc^2)/(N - 2)))
seSMD <- with(data2[1,],
          sqrt(N/(Ne * Nc) + SMD^2/(2 * (N - 3.94))))

round(c(SMD, SMD + c(-1,1) * qnorm(1-(0.05/2)) * seSMD), 2)
## [1] -0.85 -1.63 -0.07
print(metacont(Ne, Me, Se, Nc, Mc, Sc, sm="SMD",
               data=data2, subset=1), digits=2)
##    SMD         95%-CI     z  p-value
##  -0.85 [-1.63; -0.07] -2.15   0.0317
## 
## Details:
## - Inverse variance method
## - Hedges' g (bias corrected standardised mean difference)
MD <- with(data1, Me - Mc)
varMD <- with(data1, Se^2/Ne + Sc^2/Nc)
weight <- 1/varMD

round(weighted.mean(MD, weight), 4)
## [1] -17.0477
round(1/sum(weight), 4)
## [1] 1.539
mc1 <- metacont(Ne, Me, Se, Nc, Mc, Sc,
                data=data1,
                studlab=paste(author, year))
round(c(mc1$TE.fixed, mc1$seTE.fixed^2), 4)
## [1] -17.0477   1.5390
mc1
##                      MD               95%-CI %W(fixed) %W(random)
## Bill 1998        2.2100 [ -9.6813;  14.1013]       4.2        5.3
## Dick 1999       -3.9300 [-13.3595;   5.4995]       6.6        6.5
## Chawla 2007     -9.1300 [-22.9866;   4.7266]       3.1        4.5
## Anarkalli 1993  -6.7500 [-16.5542;   3.0542]       6.2        6.3
## Biaggi 1994    -11.0800 [-21.0725;  -1.0875]       5.9        6.2
## Lundwig 1994   -20.1300 [-32.7724;  -7.4876]       3.7        5.0
## Dulquer 1997   -14.9700 [-29.5883;  -0.3517]       2.8        4.2
## Nivin 2006     -20.8800 [-34.0797;  -7.6803]       3.4        4.8
## Pauly 2008     -25.0700 [-35.9826; -14.1574]       5.0        5.8
## Salmaan 1997   -16.0900 [-24.2617;  -7.9183]       8.9        7.1
## Aishwarya 1994 -26.8300 [-38.7732; -14.8868]       4.1        5.3
## Rajesh 1993    -19.3300 [-26.3957; -12.2643]      11.8        7.8
## Meena 1995     -17.4900 [-27.3126;  -7.6674]       6.1        6.3
## Mohanlal 1985  -25.0200 [-33.7722; -16.2678]       7.7        6.8
## Mammooty 1999  -32.1700 [-48.4145; -15.9255]       2.2        3.7
## Manju 2000     -23.7100 [-32.1152; -15.3048]       8.4        7.0
## Warrier 2003   -19.0000 [-26.7259; -11.2741]       9.9        7.4
## 
## Number of studies combined: k = 17
## 
##                            MD               95%-CI      z  p-value
## Fixed effect model   -17.0477 [-19.4791; -14.6163] -13.74 < 0.0001
## Random effects model -16.8843 [-20.8045; -12.9641]  -8.44 < 0.0001
## 
## Quantifying heterogeneity:
##  tau^2 = 38.5732; H = 1.57 [1.20; 2.05]; I^2 = 59.3% [30.5%; 76.1%]
## 
## Test of heterogeneity:
##      Q d.f.  p-value
##  39.29   16   0.0010
## 
## Details on meta-analytical method:
## - Inverse variance method
## - DerSimonian-Laird estimator for tau^2
forest(mc1)

mc1$w.fixed[1]
## [1] 0.0271667
sum(mc1$w.fixed)
## [1] 0.6497859
round(100*mc1$w.fixed[1] / sum(mc1$w.fixed), 2)
## [1] 4.18
forest(mc1, comb.random=FALSE, xlab= "Difference in mean response",
      xlim=c(-50,10), xlab.pos=-20, smlab.pos=-20)

mc1.gen <- metagen(mc1$TE, mc1$seTE, sm="MD")

mc1.gen <- metagen(TE, seTE, data=mc1, sm="MD")

c(mc1$TE.fixed, mc1$TE.random)
## [1] -17.04771 -16.88430
c(mc1.gen$TE.fixed, mc1.gen$TE.random)
## [1] -17.04771 -16.88430
N <- with(data2, Ne + Nc)
SMD <- with(data2,
            (1 - 3/(4 * N - 9)) * (Me - Mc)/
            sqrt(((Ne - 1) * Se^2 + (Nc - 1) * Sc^2)/(N - 2)))
varSMD <- with(data2,
                 N/(Ne * Nc) + SMD^2/(2 * (N - 3.94)))
weight <- 1/varSMD

round(weighted.mean(SMD, weight), 4)
## [1] 0.1119
round(1/sum(weight), 4)
## [1] 0.0077
mc2 <- metacont(Ne, Me, Se, Nc, Mc, Sc, sm="SMD",
                data=data2)
round(c(mc2$TE.fixed, mc2$seTE.fixed^2), 4)
## [1] 0.1119 0.0077
print(summary(mc2), digits=2)
## Number of studies combined: k = 17
## 
##                       SMD        95%-CI    z  p-value
## Fixed effect model   0.11 [-0.06; 0.28] 1.28   0.2022
## Random effects model 0.05 [-0.58; 0.67] 0.15   0.8794
## 
## Quantifying heterogeneity:
##  tau^2 = 1.5904; H = 3.62 [3.05; 4.28]; I^2 = 92.4% [89.3%; 94.6%]
## 
## Test of heterogeneity:
##       Q d.f.  p-value
##  209.37   16 < 0.0001
## 
## Details on meta-analytical method:
## - Inverse variance method
## - DerSimonian-Laird estimator for tau^2
## - Hedges' g (bias corrected standardised mean difference)
mc2.hk <- metacont(Ne, Me, Se, Nc, Mc, Sc, sm="SMD",
                   data=data2, comb.fixed=FALSE,
                   hakn=TRUE)
mc2.hk
##        SMD             95%-CI %W(random)
## 1  -0.8525 [-1.6302; -0.0747]        5.8
## 2  -1.0752 [-1.8356; -0.3147]        5.9
## 3  -0.7482 [-1.5502;  0.0539]        5.8
## 4  -0.3098 [-1.0320;  0.4124]        5.9
## 5  -0.4671 [-1.0166;  0.0825]        6.1
## 6  -0.3634 [-1.0430;  0.3162]        6.0
## 7  -0.1290 [-0.8688;  0.6108]        5.9
## 8  -0.0576 [-0.8162;  0.7010]        5.9
## 9   2.5384 [ 1.8031;  3.2736]        5.9
## 10  2.2725 [ 1.4531;  3.0920]        5.8
## 11 -0.5089 [-1.1369;  0.1191]        6.0
## 12  1.7075 [ 0.9408;  2.4742]        5.8
## 13 -0.4660 [-1.0963;  0.1643]        6.0
## 14  0.1557 [-0.4838;  0.7952]        6.0
## 15  2.4410 [ 1.7890;  3.0930]        6.0
## 16 -3.4454 [-4.5505; -2.3403]        5.3
## 17 -0.1593 [-0.8367;  0.5181]        6.0
## 
## Number of studies combined: k = 17
## 
##                         SMD            95%-CI    t  p-value
## Random effects model 0.0484 [-0.7082; 0.8050] 0.14   0.8938
## 
## Quantifying heterogeneity:
##  tau^2 = 1.5904; H = 3.62 [3.05; 4.28]; I^2 = 92.4% [89.3%; 94.6%]
## 
## Test of heterogeneity:
##       Q d.f.  p-value
##  209.37   16 < 0.0001
## 
## Details on meta-analytical method:
## - Inverse variance method
## - DerSimonian-Laird estimator for tau^2
## - Hartung-Knapp adjustment for random effects model
## - Hedges' g (bias corrected standardised mean difference)
mc2.hk <- metagen(TE, seTE, data=mc2, comb.fixed=FALSE,
                  hakn=TRUE)
print(summary(mc2.hk), digits=2)
## Number of studies combined: k = 17
## 
##                                  95%-CI    t  p-value
## Random effects model 0.05 [-0.71; 0.81] 0.14   0.8938
## 
## Quantifying heterogeneity:
##  tau^2 = 1.5904; H = 3.62 [3.05; 4.28]; I^2 = 92.4% [89.3%; 94.6%]
## 
## Test of heterogeneity:
##       Q d.f.  p-value
##  209.37   16 < 0.0001
## 
## Details on meta-analytical method:
## - Inverse variance method
## - DerSimonian-Laird estimator for tau^2
## - Hartung-Knapp adjustment for random effects model
print(summary(mc1, prediction=TRUE), digits=2)
## Number of studies combined: k = 17
## 
##                          MD           95%-CI      z  p-value
## Fixed effect model   -17.05 [-19.48; -14.62] -13.74 < 0.0001
## Random effects model -16.88 [-20.80; -12.96]  -8.44 < 0.0001
## Prediction interval         [-30.79;  -2.98]                
## 
## Quantifying heterogeneity:
##  tau^2 = 38.5732; H = 1.57 [1.20; 2.05]; I^2 = 59.3% [30.5%; 76.1%]
## 
## Test of heterogeneity:
##      Q d.f.  p-value
##  39.29   16   0.0010
## 
## Details on meta-analytical method:
## - Inverse variance method
## - DerSimonian-Laird estimator for tau^2
forest(mc1, prediction=TRUE, col.predict="black")

data3 <- read.csv("data3.csv")
data3
##        author    year  Ne   Me   Se  Nc   Mc   Sc    duration
## 1     Lorenzo  "1999"  43 0.84 4.56  26 2.31 5.41 <= 6 months
## 2      Faiman  "1989"  35 0.45 0.18  30 1.56 1.22 <= 6 months
## 3     Matthew  "2001"  54 0.28 0.35 200 0.96 0.56 <= 6 months
## 4       Lines  "1992"  23 0.19 0.28  40 0.43 0.66 <= 6 months
## 5        Carl  "1989"  76 0.12 0.54  68 0.25 0.32 <= 6 months
## 6     Ragazan  "2005" 123 0.21 2.11 220 0.18 0.08  > 6 months
## 7      Daniel  "1995" 321 0.45 0.14 128 0.96 0.21  > 6 months
## 8   Radcliffe  "2004"  78 0.71 0.24 109 1.54 0.26  > 6 months
## 9        Emma  "1991" 124 0.28 1.12  21 0.21 0.32  > 6 months
## 10      Stone  "2012" 342 0.42 1.21 239 0.15 0.54  > 6 months
## 11    Stephen  "1997"  37 0.18 0.96  42 0.22 0.87  > 6 months
## 12    Walters  "1982"  76 0.64 0.43  68 0.10 0.32  > 6 months
## 13    Shanika  "2011"  43 0.13 0.23  73 0.18 0.12  > 6 months
## 14  Gillespie  "2009" 213 0.04 1.08 118 0.12 0.72  > 6 months
## 15      Brian  "1993"  87 0.08 1.00  82 0.08 0.48  > 6 months
## 16       Bond  "2001"  92 0.24 1.54  88 0.54 0.36  > 6 months
## 17      Heath  "2007" 114 0.12 0.34 156 0.78 0.44  > 6 months
## 18     Bottle  "1985"  58 0.08 4.32  56 0.65 0.24  > 6 months
## 19 Billington  "1998" 129 0.05 0.36 192 0.12 0.51  > 6 months
## 20     Rachel  "2005" 234 0.16 2.34 126 0.14 0.12  > 6 months
## 21       Blow  "2017"  34 0.24 3.21 154 0.99 0.44  > 6 months
## 22     Amanda  "2016"  89 0.24 0.65  88 0.28 0.31  > 6 months
## 23       Butz  "2015"  57 0.15 0.45  48 0.36 0.33  > 6 months
mc3 <- metacont(Ne, Me, Se, Nc, Mc, Sc, data=data3,
                studlab=paste(author, year))
mc3
##                         MD             95%-CI %W(fixed) %W(random)
## Lorenzo  "1999"    -1.4700 [-3.9564;  1.0164]       0.0        0.4
## Faiman  "1989"     -1.1100 [-1.5506; -0.6694]       0.3        3.8
## Matthew  "2001"    -0.6800 [-0.8014; -0.5586]       4.0        5.1
## Lines  "1992"      -0.2400 [-0.4744; -0.0056]       1.1        4.8
## Carl  "1989"       -0.1300 [-0.2733;  0.0133]       2.9        5.1
## Ragazan  "2005"     0.0300 [-0.3430;  0.4030]       0.4        4.2
## Daniel  "1995"     -0.5100 [-0.5495; -0.4705]      38.2        5.2
## Radcliffe  "2004"  -0.8300 [-0.9022; -0.7578]      11.4        5.2
## Emma  "1991"        0.0700 [-0.1700;  0.3100]       1.0        4.7
## Stone  "2012"       0.2700 [ 0.1246;  0.4154]       2.8        5.0
## Stephen  "1997"    -0.0400 [-0.4461;  0.3661]       0.4        4.0
## Walters  "1982"     0.5400 [ 0.4170;  0.6630]       3.9        5.1
## Shanika  "2011"    -0.0500 [-0.1241;  0.0241]      10.8        5.2
## Gillespie  "2009"  -0.0800 [-0.2747;  0.1147]       1.6        4.9
## Brian  "1993"       0.0000 [-0.2344;  0.2344]       1.1        4.8
## Bond  "2001"       -0.3000 [-0.6235;  0.0235]       0.6        4.4
## Heath  "2007"      -0.6600 [-0.7531; -0.5669]       6.9        5.2
## Bottle  "1985"     -0.5700 [-1.6836;  0.5436]       0.0        1.6
## Billington  "1998" -0.0700 [-0.1652;  0.0252]       6.6        5.2
## Rachel  "2005"      0.0200 [-0.2805;  0.3205]       0.7        4.5
## Blow  "2017"       -0.7500 [-1.8312;  0.3312]       0.1        1.6
## Amanda  "2016"     -0.0400 [-0.1898;  0.1098]       2.7        5.0
## Butz  "2015"       -0.2100 [-0.3595; -0.0605]       2.7        5.0
## 
## Number of studies combined: k = 23
## 
##                           MD             95%-CI      z  p-value
## Fixed effect model   -0.3624 [-0.3868; -0.3381] -29.13 < 0.0001
## Random effects model -0.2176 [-0.3849; -0.0503]  -2.55   0.0108
## 
## Quantifying heterogeneity:
##  tau^2 = 0.1389; H = 5.85 [5.25; 6.51]; I^2 = 97.1% [96.4%; 97.6%]
## 
## Test of heterogeneity:
##       Q d.f.  p-value
##  752.43   22 < 0.0001
## 
## Details on meta-analytical method:
## - Inverse variance method
## - DerSimonian-Laird estimator for tau^2
mc3$studlab[mc3$w.fixed==0]
## character(0)
print(summary(mc3), digits=2)
## Number of studies combined: k = 23
## 
##                         MD         95%-CI      z  p-value
## Fixed effect model   -0.36 [-0.39; -0.34] -29.13 < 0.0001
## Random effects model -0.22 [-0.38; -0.05]  -2.55   0.0108
## 
## Quantifying heterogeneity:
##  tau^2 = 0.1389; H = 5.85 [5.25; 6.51]; I^2 = 97.1% [96.4%; 97.6%]
## 
## Test of heterogeneity:
##       Q d.f.  p-value
##  752.43   22 < 0.0001
## 
## Details on meta-analytical method:
## - Inverse variance method
## - DerSimonian-Laird estimator for tau^2
mc3s <- metacont(Ne, Me, Se, Nc, Mc, Sc, data=data3,
                 studlab=paste(author, year),
                 byvar=duration, print.byvar=FALSE)
mc3s
##                         MD             95%-CI %W(fixed) %W(random)
## Lorenzo  "1999"    -1.4700 [-3.9564;  1.0164]       0.0        0.4
## Faiman  "1989"     -1.1100 [-1.5506; -0.6694]       0.3        3.8
## Matthew  "2001"    -0.6800 [-0.8014; -0.5586]       4.0        5.1
## Lines  "1992"      -0.2400 [-0.4744; -0.0056]       1.1        4.8
## Carl  "1989"       -0.1300 [-0.2733;  0.0133]       2.9        5.1
## Ragazan  "2005"     0.0300 [-0.3430;  0.4030]       0.4        4.2
## Daniel  "1995"     -0.5100 [-0.5495; -0.4705]      38.2        5.2
## Radcliffe  "2004"  -0.8300 [-0.9022; -0.7578]      11.4        5.2
## Emma  "1991"        0.0700 [-0.1700;  0.3100]       1.0        4.7
## Stone  "2012"       0.2700 [ 0.1246;  0.4154]       2.8        5.0
## Stephen  "1997"    -0.0400 [-0.4461;  0.3661]       0.4        4.0
## Walters  "1982"     0.5400 [ 0.4170;  0.6630]       3.9        5.1
## Shanika  "2011"    -0.0500 [-0.1241;  0.0241]      10.8        5.2
## Gillespie  "2009"  -0.0800 [-0.2747;  0.1147]       1.6        4.9
## Brian  "1993"       0.0000 [-0.2344;  0.2344]       1.1        4.8
## Bond  "2001"       -0.3000 [-0.6235;  0.0235]       0.6        4.4
## Heath  "2007"      -0.6600 [-0.7531; -0.5669]       6.9        5.2
## Bottle  "1985"     -0.5700 [-1.6836;  0.5436]       0.0        1.6
## Billington  "1998" -0.0700 [-0.1652;  0.0252]       6.6        5.2
## Rachel  "2005"      0.0200 [-0.2805;  0.3205]       0.7        4.5
## Blow  "2017"       -0.7500 [-1.8312;  0.3312]       0.1        1.6
## Amanda  "2016"     -0.0400 [-0.1898;  0.1098]       2.7        5.0
## Butz  "2015"       -0.2100 [-0.3595; -0.0605]       2.7        5.0
##                    duration
## Lorenzo  "1999"           1
## Faiman  "1989"            1
## Matthew  "2001"           1
## Lines  "1992"             1
## Carl  "1989"              1
## Ragazan  "2005"           2
## Daniel  "1995"            2
## Radcliffe  "2004"         2
## Emma  "1991"              2
## Stone  "2012"             2
## Stephen  "1997"           2
## Walters  "1982"           2
## Shanika  "2011"           2
## Gillespie  "2009"         2
## Brian  "1993"             2
## Bond  "2001"              2
## Heath  "2007"             2
## Bottle  "1985"            2
## Billington  "1998"        2
## Rachel  "2005"            2
## Blow  "2017"              2
## Amanda  "2016"            2
## Butz  "2015"              2
## 
## Number of studies combined: k = 23
## 
##                           MD             95%-CI      z  p-value
## Fixed effect model   -0.3624 [-0.3868; -0.3381] -29.13 < 0.0001
## Random effects model -0.2176 [-0.3849; -0.0503]  -2.55   0.0108
## 
## Quantifying heterogeneity:
##  tau^2 = 0.1389; H = 5.85 [5.25; 6.51]; I^2 = 97.1% [96.4%; 97.6%]
## 
## Test of heterogeneity:
##       Q d.f.  p-value
##  752.43   22 < 0.0001
## 
## Results for subgroups (fixed effect model):
##               k      MD             95%-CI      Q    tau^2   I^2
## <= 6 months   5 -0.4483 [-0.5327; -0.3638]  45.30   0.1226 91.2%
## > 6 months   18 -0.3546 [-0.3801; -0.3292] 702.80   0.1482 97.6%
## 
## Test for subgroup differences (fixed effect model):
##                     Q d.f.  p-value
## Between groups   4.32    1   0.0376
## Within groups  748.10   21 < 0.0001
## 
## Results for subgroups (random effects model):
##               k      MD             95%-CI      Q    tau^2   I^2
## <= 6 months   5 -0.5243 [-0.8859; -0.1628]  45.30   0.1226 91.2%
## > 6 months   18 -0.1441 [-0.3358;  0.0476] 702.80   0.1482 97.6%
## 
## Test for subgroup differences (random effects model):
##                     Q d.f.  p-value
## Between groups   3.32    1   0.0686
## 
## Details on meta-analytical method:
## - Inverse variance method
## - DerSimonian-Laird estimator for tau^2
mc3s <- update(mc3, byvar=duration, print.byvar=FALSE)
mc3s
##                         MD             95%-CI %W(fixed) %W(random)
## Lorenzo  "1999"    -1.4700 [-3.9564;  1.0164]       0.0        0.4
## Faiman  "1989"     -1.1100 [-1.5506; -0.6694]       0.3        3.8
## Matthew  "2001"    -0.6800 [-0.8014; -0.5586]       4.0        5.1
## Lines  "1992"      -0.2400 [-0.4744; -0.0056]       1.1        4.8
## Carl  "1989"       -0.1300 [-0.2733;  0.0133]       2.9        5.1
## Ragazan  "2005"     0.0300 [-0.3430;  0.4030]       0.4        4.2
## Daniel  "1995"     -0.5100 [-0.5495; -0.4705]      38.2        5.2
## Radcliffe  "2004"  -0.8300 [-0.9022; -0.7578]      11.4        5.2
## Emma  "1991"        0.0700 [-0.1700;  0.3100]       1.0        4.7
## Stone  "2012"       0.2700 [ 0.1246;  0.4154]       2.8        5.0
## Stephen  "1997"    -0.0400 [-0.4461;  0.3661]       0.4        4.0
## Walters  "1982"     0.5400 [ 0.4170;  0.6630]       3.9        5.1
## Shanika  "2011"    -0.0500 [-0.1241;  0.0241]      10.8        5.2
## Gillespie  "2009"  -0.0800 [-0.2747;  0.1147]       1.6        4.9
## Brian  "1993"       0.0000 [-0.2344;  0.2344]       1.1        4.8
## Bond  "2001"       -0.3000 [-0.6235;  0.0235]       0.6        4.4
## Heath  "2007"      -0.6600 [-0.7531; -0.5669]       6.9        5.2
## Bottle  "1985"     -0.5700 [-1.6836;  0.5436]       0.0        1.6
## Billington  "1998" -0.0700 [-0.1652;  0.0252]       6.6        5.2
## Rachel  "2005"      0.0200 [-0.2805;  0.3205]       0.7        4.5
## Blow  "2017"       -0.7500 [-1.8312;  0.3312]       0.1        1.6
## Amanda  "2016"     -0.0400 [-0.1898;  0.1098]       2.7        5.0
## Butz  "2015"       -0.2100 [-0.3595; -0.0605]       2.7        5.0
##                    duration
## Lorenzo  "1999"           1
## Faiman  "1989"            1
## Matthew  "2001"           1
## Lines  "1992"             1
## Carl  "1989"              1
## Ragazan  "2005"           2
## Daniel  "1995"            2
## Radcliffe  "2004"         2
## Emma  "1991"              2
## Stone  "2012"             2
## Stephen  "1997"           2
## Walters  "1982"           2
## Shanika  "2011"           2
## Gillespie  "2009"         2
## Brian  "1993"             2
## Bond  "2001"              2
## Heath  "2007"             2
## Bottle  "1985"            2
## Billington  "1998"        2
## Rachel  "2005"            2
## Blow  "2017"              2
## Amanda  "2016"            2
## Butz  "2015"              2
## 
## Number of studies combined: k = 23
## 
##                           MD             95%-CI      z  p-value
## Fixed effect model   -0.3624 [-0.3868; -0.3381] -29.13 < 0.0001
## Random effects model -0.2176 [-0.3849; -0.0503]  -2.55   0.0108
## 
## Quantifying heterogeneity:
##  tau^2 = 0.1389; H = 5.85 [5.25; 6.51]; I^2 = 97.1% [96.4%; 97.6%]
## 
## Test of heterogeneity:
##       Q d.f.  p-value
##  752.43   22 < 0.0001
## 
## Results for subgroups (fixed effect model):
##               k      MD             95%-CI      Q    tau^2   I^2
## <= 6 months   5 -0.4483 [-0.5327; -0.3638]  45.30   0.1226 91.2%
## > 6 months   18 -0.3546 [-0.3801; -0.3292] 702.80   0.1482 97.6%
## 
## Test for subgroup differences (fixed effect model):
##                     Q d.f.  p-value
## Between groups   4.32    1   0.0376
## Within groups  748.10   21 < 0.0001
## 
## Results for subgroups (random effects model):
##               k      MD             95%-CI      Q    tau^2   I^2
## <= 6 months   5 -0.5243 [-0.8859; -0.1628]  45.30   0.1226 91.2%
## > 6 months   18 -0.1441 [-0.3358;  0.0476] 702.80   0.1482 97.6%
## 
## Test for subgroup differences (random effects model):
##                     Q d.f.  p-value
## Between groups   3.32    1   0.0686
## 
## Details on meta-analytical method:
## - Inverse variance method
## - DerSimonian-Laird estimator for tau^2
print(summary(mc3s), digits=2)
## Number of studies combined: k = 23
## 
##                         MD         95%-CI      z  p-value
## Fixed effect model   -0.36 [-0.39; -0.34] -29.13 < 0.0001
## Random effects model -0.22 [-0.38; -0.05]  -2.55   0.0108
## 
## Quantifying heterogeneity:
##  tau^2 = 0.1389; H = 5.85 [5.25; 6.51]; I^2 = 97.1% [96.4%; 97.6%]
## 
## Test of heterogeneity:
##       Q d.f.  p-value
##  752.43   22 < 0.0001
## 
## Results for subgroups (fixed effect model):
##               k    MD         95%-CI      Q    tau^2   I^2
## <= 6 months   5 -0.45 [-0.53; -0.36]  45.30   0.1226 91.2%
## > 6 months   18 -0.35 [-0.38; -0.33] 702.80   0.1482 97.6%
## 
## Test for subgroup differences (fixed effect model):
##                     Q d.f.  p-value
## Between groups   4.32    1   0.0376
## Within groups  748.10   21 < 0.0001
## 
## Results for subgroups (random effects model):
##               k    MD         95%-CI      Q    tau^2   I^2
## <= 6 months   5 -0.52 [-0.89; -0.16]  45.30   0.1226 91.2%
## > 6 months   18 -0.14 [-0.34;  0.05] 702.80   0.1482 97.6%
## 
## Test for subgroup differences (random effects model):
##                     Q d.f.  p-value
## Between groups   3.32    1   0.0686
## 
## Details on meta-analytical method:
## - Inverse variance method
## - DerSimonian-Laird estimator for tau^2
forest(mc3s,
       xlab="Difference in mean response")

print(metacont(Ne, Me, Se, Nc, Mc, Sc, data=data3,
               subset=duration=="<= 6 months",
               studlab=paste(author, year)),
      digits=2)
##                    MD         95%-CI %W(fixed) %W(random)
## Lorenzo  "1999" -1.47 [-3.96;  1.02]       0.1        2.0
## Faiman  "1989"  -1.11 [-1.55; -0.67]       3.7       19.7
## Matthew  "2001" -0.68 [-0.80; -0.56]      48.4       26.9
## Lines  "1992"   -0.24 [-0.47; -0.01]      13.0       24.9
## Carl  "1989"    -0.13 [-0.27;  0.01]      34.8       26.6
## 
## Number of studies combined: k = 5
## 
##                         MD         95%-CI      z  p-value
## Fixed effect model   -0.45 [-0.53; -0.36] -10.40 < 0.0001
## Random effects model -0.52 [-0.89; -0.16]  -2.84   0.0045
## 
## Quantifying heterogeneity:
##  tau^2 = 0.1226; H = 3.37 [2.38; 4.76]; I^2 = 91.2% [82.4%; 95.6%]
## 
## Test of heterogeneity:
##      Q d.f.  p-value
##  45.30    4 < 0.0001
## 
## Details on meta-analytical method:
## - Inverse variance method
## - DerSimonian-Laird estimator for tau^2
print(update(mc3, subset=duration=="<= 6 months"),
      digits=2)
##                    MD         95%-CI %W(fixed) %W(random)
## Lorenzo  "1999" -1.47 [-3.96;  1.02]       0.1        2.0
## Faiman  "1989"  -1.11 [-1.55; -0.67]       3.7       19.7
## Matthew  "2001" -0.68 [-0.80; -0.56]      48.4       26.9
## Lines  "1992"   -0.24 [-0.47; -0.01]      13.0       24.9
## Carl  "1989"    -0.13 [-0.27;  0.01]      34.8       26.6
## 
## Number of studies combined: k = 5
## 
##                         MD         95%-CI      z  p-value
## Fixed effect model   -0.45 [-0.53; -0.36] -10.40 < 0.0001
## Random effects model -0.52 [-0.89; -0.16]  -2.84   0.0045
## 
## Quantifying heterogeneity:
##  tau^2 = 0.1226; H = 3.37 [2.38; 4.76]; I^2 = 91.2% [82.4%; 95.6%]
## 
## Test of heterogeneity:
##      Q d.f.  p-value
##  45.30    4 < 0.0001
## 
## Details on meta-analytical method:
## - Inverse variance method
## - DerSimonian-Laird estimator for tau^2
data4 <- read.csv("data4.csv")
data4
##        author year  Ne  Nc  logHR selogHR
## 1     Charlie 1995  58  76 -0.654   0.321
## 2 Neelakasham 2000 278 456 -0.432   0.214
## 3       Satya 2001 156 274 -0.135   0.215
## 4      Tovino 2003 175 164  0.098   0.333
mg1 <- metagen(logHR, selogHR,
               studlab=paste(author, year), data=data4,
               sm="HR")
print(mg1, digits=2)
##                    HR       95%-CI %W(fixed) %W(random)
## Charlie 1995     0.52 [0.28; 0.98]      15.6       17.1
## Neelakasham 2000 0.65 [0.43; 0.99]      35.1       33.6
## Satya 2001       0.87 [0.57; 1.33]      34.8       33.3
## Tovino 2003      1.10 [0.57; 2.12]      14.5       16.0
## 
## Number of studies combined: k = 4
## 
##                        HR       95%-CI     z  p-value
## Fixed effect model   0.75 [0.59; 0.96] -2.26   0.0239
## Random effects model 0.75 [0.57; 0.99] -2.03   0.0428
## 
## Quantifying heterogeneity:
##  tau^2 = 0.0136; H = 1.10 [1.00; 2.80]; I^2 = 16.7% [0.0%; 87.2%]
## 
## Test of heterogeneity:
##     Q d.f.  p-value
##  3.60    3   0.3077
## 
## Details on meta-analytical method:
## - Inverse variance method
## - DerSimonian-Laird estimator for tau^2
data5 <- read.csv("data5.csv")
data5
##     author year   N mean  SE corr
## 1     Amal 1999 200  3.2 2.4 0.44
## 2    Kamal 2000 124 -1.5 1.8 0.32
## 3    Bimal 2002 125 -3.6 1.3 0.43
## 4    Udeni 2002  32 -2.2 1.6 0.23
## 5  Divakar 2004  48 -1.4 2.2 0.66
## 6    Devmi 2005  76  0.3 1.4 0.56
## 7   Shehan 2006  24 -5.2 1.8 0.87
## 8     Rose 2006  56 -4.2 2.6 0.37
## 9     Jack 2007  32 -4.2 1.7 0.73
## 10     Cal 2007  55 -2.4 2.6 0.55
## 11     Kim 2008  33  1.6 2.8 0.43
## 12  Mikael 2009  28 -0.8 1.6 0.67
## 13     Dan 2009  72 -3.6 2.6 0.44
## 14    Matt 2010  64  5.2 1.5 0.82
## 15 Dominik 2011  82  0.2 2.4 0.52
## 16   Shane 2012  32 -5.6 0.8 0.56
## 17   Nigam 2012  24 -3.3 2.2 0.46
## 18   Hemal 2013  32 -1.3 1.3 0.89
## 19  Naveen 2014 120  2.6 2.1 0.83
## 20   Raman 2015 224 -1.4 2.6 0.32
## 21   Preet 2017 180 -5.5 2.5 0.64
mg2 <- metagen(mean, SE, studlab=paste(author, year),
               data=data5, sm="MD")
print(summary(mg2), digits=2)
## Number of studies combined: k = 21
## 
##                         MD         95%-CI     z  p-value
## Fixed effect model   -2.20 [-2.92; -1.47] -5.94 < 0.0001
## Random effects model -1.63 [-3.05; -0.20] -2.23   0.0255
## 
## Quantifying heterogeneity:
##  tau^2 = 7.2554; H = 1.85 [1.48; 2.31]; I^2 = 70.8% [54.6%; 81.2%]
## 
## Test of heterogeneity:
##      Q d.f.  p-value
##  68.54   20 < 0.0001
## 
## Details on meta-analytical method:
## - Inverse variance method
## - DerSimonian-Laird estimator for tau^2
data6 <- read.csv("data6.csv")
data6
##              author year          b       SE
## 1              Liam 1994  0.0321600 0.002320
## 2           Mattkel 1999  0.0219300 0.004200
## 3             Svank 2004  0.0093200 0.004320
## 4         Jacobsson 1995  0.1234000 0.078400
## 5              Nils 2003  0.0936000 0.034500
## 6         Luxumburg 2002  0.0932000 0.067900
## 7              Webb 2013  0.0543200 0.004360
## 8             Raini 2005  0.0002100 0.007520
## 9         Dickinson 2012  0.0003200 0.009320
## 10        Rochester 1995  0.0423100 0.043700
## 11 Thomson&Thompson 1995  0.0000000 0.006830
## 12            Danny 1996  0.3421000 0.092340
## 13             Blue 2002  0.3256700 0.003276
## 14          Mcguire 2001  0.0342167 0.005478
## 15           Dawson 2003  0.0075000 0.002657
## 16            Frogg 2017 -0.0003200 0.004378
mg3 <- metagen(b, SE, studlab=paste(author, year),
               data=data6, sm="RR", backtransf=FALSE)
summary(mg3)
## Number of studies combined: k = 16
## 
##                       logRR           95%-CI     z  p-value
## Fixed effect model   0.0600 [0.0577; 0.0623] 50.97 < 0.0001
## Random effects model 0.0652 [0.0080; 0.1224]  2.23   0.0255
## 
## Quantifying heterogeneity:
##  tau^2 = 0.0126; H = 22.71 [21.57; 23.91]; I^2 = 99.8% [99.8%; 99.8%]
## 
## Test of heterogeneity:
##        Q d.f.  p-value
##  7737.16   15 < 0.0001
## 
## Details on meta-analytical method:
## - Inverse variance method
## - DerSimonian-Laird estimator for tau^2
library(meta)

data7 <- read.csv("data7.csv")
data7
##       study  Ee  Ne  Ec  Nc
## 1    Samson  12  24  15  32
## 2      Luca  37  44  32  44
## 3      Ekel 136 150 120 162
## 4  Ramnujam  18  48  18  71
## 5      Kurt 127 120  77 142
## 6    Dammer  63  80  66  82
## 7   Morelli  34  20  32  34
## 8     Jimmy  13  72  16  64
## 9    Dekles  82  88  51  88
## 10  Subaina  22  50  28  37
## 11   Rafael  48  72  46  44
## 12  Monicca  56 100  91 120
## 13 Veronica  36  41  20  30
## 14   Ludwig  46  72  72  60
summary(data7$Ee/data7$Ne)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.1806  0.5150  0.7271  0.7475  0.8995  1.7000
summary(data7$Ec/data7$Nc)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.2500  0.5516  0.7340  0.6954  0.7932  1.2000
logOR <- with(data7[data7$study=="Dekles",],
              log((Ee*(Nc-Ec)) / (Ec*(Ne-Ee))))
selogOR <- with(data7[data7$study=="Dekles",],
                sqrt(1/Ee + 1/(Ne-Ee) + 1/Ec + 1/(Nc-Ec)))

round(exp(c(logOR,
            logOR + c(-1,1) *
            qnorm(1-0.05/2) * selogOR)), 4)
## [1]  9.9150  3.9092 25.1478
metabin(Ee, Ne, Ec, Nc, sm="OR", method="I",
        data=data7, subset=study=="Dekles")
##      OR            95%-CI    z  p-value
##  9.9150 [3.9092; 25.1478] 4.83 < 0.0001
## 
## Details:
## - Inverse variance method
logRR <- with(data7[data7$study=="Dekles",],
              log((Ee/Ne) / (Ec/Nc)))
selogRR <- with(data7[data7$study=="Dekles",],
                sqrt(1/Ee + 1/Ec - 1/Ne - 1/Nc))

round(exp(c(logRR,
            logRR + c(-1,1) *
            qnorm(1-0.05/2) * selogRR)), 4)
## [1] 1.6078 1.3340 1.9379
metabin(Ee, Ne, Ec, Nc, sm="RR", method="I",
        data=data7, subset=study=="Dekles")
##      RR           95%-CI    z  p-value
##  1.6078 [1.3340; 1.9379] 4.98 < 0.0001
## 
## Details:
## - Inverse variance method
metabin(Ee, Ne, Ec, Nc, sm="RD", method="I",
        data=data7, subset=study=="Dekles")
##      RD           95%-CI    z  p-value
##  0.3523 [0.2365; 0.4681] 5.96 < 0.0001
## 
## Details:
## - Inverse variance method
ASD <- with(data7[data7$study=="Dekles",],
            asin(sqrt(Ee/Ne)) - asin(sqrt(Ec/Nc)))
seASD <- with(data7[data7$study=="Dekles",],
              sqrt(1/(4*Ne) + 1/(4*Nc)))

round(c(ASD, ASD + c(-1,1) * qnorm(1-0.05/2) * seASD), 4)
## [1] 0.4413 0.2936 0.5891
metabin(Ee, Ne, Ec, Nc, sm="ASD", method="I", data=data7, subset=study=="Dekles")
##     ASD           95%-CI    z  p-value
##  0.4413 [0.2936; 0.5891] 5.85 < 0.0001
## 
## Details:
## - Inverse variance method
data8 <- read.csv("data8.csv")
data8
##     study Ee   Ne Ec   Nc
## 1  Poland  0  280  1  240
## 2  Jerman  5  242  7  188
## 3    Karl  6  280  5  332
## 4    ABCD 11  269 16  282
## 5    BRFL 10 1000 13  956
## 6  Andrew  8 1900  8 1900
## 7    Bigg 13 1421 13 1234
## 8   Roger  1  600 15  500
## 9  Krikka  6 1200  4 1256
## 10  Prifd  3  200  1   78
## 11   JJKL 14 1508 15 1400
summary(data8$Ee/data8$Ne)
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
## 0.000000 0.004605 0.009284 0.012481 0.017831 0.040892
summary(data8$Ec/data8$Nc)
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
## 0.003185 0.007373 0.012821 0.018024 0.022530 0.056738
logOR <- with(data8[data8$study=="Poland",],
              log(((Ee+0.5)*(Nc-Ec+0.5)) /
                  ((Ec+0.5)*(Ne-Ee+0.5))))
selogOR <- with(data8[data8$study=="Poland",],
                sqrt(1/(Ee+0.5) + 1/(Ne-Ee+0.5) +
                     1/(Ec+0.5) + 1/(Nc-Ec+0.5)))
round(exp(c(logOR,
            logOR + c(-1,1) * qnorm(1-0.05/2) * selogOR)), 4)
## [1] 0.2846 0.0115 7.0190
metabin(Ee, Ne, Ec, Nc, sm="OR", method="I",
        data=data8, subset=study=="Poland")
##      OR           95%-CI     z  p-value
##  0.2846 [0.0115; 7.0190] -0.77   0.4422
## 
## Details:
## - Inverse variance method
## - Continuity correction of 0.5 in studies with zero cell frequencies
metabin(Ee, Ne, Ec, Nc, sm="OR", method="I",
        data=data8, subset=study=="Poland",
        incr=0.1)
##      OR            95%-CI     z  p-value
##  0.0776 [0.0001; 50.3847] -0.77   0.4391
## 
## Details:
## - Inverse variance method
## - Continuity correction of 0.1 in studies with zero cell frequencies
metabin(Ee, Ne, Ec, Nc, sm="OR", method="I",
        data=data8, subset=study=="Poland",
        incr="TACC")
##      OR           95%-CI     z  p-value
##  0.3145 [0.0138; 7.1880] -0.72   0.4687
## 
## Details:
## - Inverse variance method
## - Treatment arm continuity correction in studies with zero cell frequencies
metabin(Ee, Ne, Ec, Nc, sm="RR", method="I",
        data=data8, subset=study=="Poland")
##      RR           95%-CI     z  p-value
##  0.2858 [0.0117; 6.9832] -0.77   0.4424
## 
## Details:
## - Inverse variance method
## - Continuity correction of 0.5 in studies with zero cell frequencies
metabin(Ee, Ne, Ec, Nc, sm="OR", method="P",
        data=data7, subset=study=="Dekles")
##      OR            95%-CI    z  p-value
##  6.6671 [3.3585; 13.2353] 5.42 < 0.0001
## 
## Details:
## - Peto method
metabin(Ee, Ne, Ec, Nc, sm="OR", method="P",
        data=data8, subset=study=="Poland")
##      OR           95%-CI     z  p-value
##  0.1146 [0.0022; 5.8410] -1.08   0.2801
## 
## Details:
## - Peto method
logOR <- with(data7,
              log((Ee*(Nc-Ec)) / (Ec*(Ne-Ee))))
## Warning in log((Ee * (Nc - Ec))/(Ec * (Ne - Ee))): NaNs produced
varlogOR <- with(data7,
                 1/Ee + 1/(Ne-Ee) + 1/Ec + 1/(Nc-Ec))
weight <- 1/varlogOR

round(exp(weighted.mean(logOR, weight)), 4)
## [1] NaN
round(1/sum(weight), 4)
## [1] -0.0165
mb1 <- metabin(Ee, Ne, Ec, Nc, sm="OR", method="I",
               data=data7, studlab=study)
## Warning in metabin(Ee, Ne, Ec, Nc, sm = "OR", method = "I", data = data7, :
## Studies with event.e > n.e get no weight in meta-analysis.
## Warning in metabin(Ee, Ne, Ec, Nc, sm = "OR", method = "I", data = data7, :
## Studies with event.c > n.c get no weight in meta-analysis.
round(c(exp(mb1$TE.fixed), mb1$seTE.fixed^2), 4)
## [1] 1.2188 0.0174
print(summary(mb1), digits=2)
## Number of studies combined: k = 10
## 
##                        OR       95%-CI    z  p-value
## Fixed effect model   1.22 [0.94; 1.58] 1.50   0.1339
## Random effects model 1.37 [0.69; 2.74] 0.90   0.3691
## 
## Quantifying heterogeneity:
##  tau^2 = 1.0398; H = 2.61 [1.99; 3.42]; I^2 = 85.3% [74.8%; 91.5%]
## 
## Test of heterogeneity:
##      Q d.f.  p-value
##  61.43    9 < 0.0001
## 
## Details on meta-analytical method:
## - Inverse variance method
## - DerSimonian-Laird estimator for tau^2
forest(mb1, comb.random=FALSE, hetstat=FALSE)

logOR <- with(data8,
              log((Ee*(Nc-Ec)) / (Ec*(Ne-Ee))))
varlogOR <- with(data8,
                 1/Ee + 1/(Ne-Ee) + 1/Ec + 1/(Nc-Ec))
weight <- 1/varlogOR
weight[data8$study=="Poland"]
## [1] 0
mb2 <- metabin(Ee, Ne, Ec, Nc, sm="OR", method="I",
               data=data8, studlab=study)
print(summary(mb2), digits=2)
## Number of studies combined: k = 11
## 
##                       OR       95%-CI     z  p-value
## Fixed effect model   0.8 [0.59; 1.10] -1.37   0.1712
## Random effects model 0.8 [0.59; 1.10] -1.36   0.1744
## 
## Quantifying heterogeneity:
##  tau^2 = 0.0039; H = 1.01 [1.00; 1.60]; I^2 = 1.3% [0.0%; 60.7%]
## 
## Test of heterogeneity:
##      Q d.f.  p-value
##  10.13   10   0.4290
## 
## Details on meta-analytical method:
## - Inverse variance method
## - DerSimonian-Laird estimator for tau^2
## - Continuity correction of 0.5 in studies with zero cell frequencies
as.data.frame(mb2)[,c("studlab", "incr.e", "incr.c")]
##    studlab incr.e incr.c
## 1   Poland    0.5    0.5
## 2   Jerman    0.0    0.0
## 3     Karl    0.0    0.0
## 4     ABCD    0.0    0.0
## 5     BRFL    0.0    0.0
## 6   Andrew    0.0    0.0
## 7     Bigg    0.0    0.0
## 8    Roger    0.0    0.0
## 9   Krikka    0.0    0.0
## 10   Prifd    0.0    0.0
## 11    JJKL    0.0    0.0
mb1.mh <- metabin(Ee, Ne, Ec, Nc, sm="OR",
                  data=data7, studlab=study)
## Warning in metabin(Ee, Ne, Ec, Nc, sm = "OR", data = data7, studlab =
## study): Studies with event.e > n.e get no weight in meta-analysis.
## Warning in metabin(Ee, Ne, Ec, Nc, sm = "OR", data = data7, studlab =
## study): Studies with event.c > n.c get no weight in meta-analysis.
print(summary(mb1.mh), digits=2)
## Number of studies combined: k = 10
## 
##                        OR       95%-CI    z  p-value
## Fixed effect model   1.30 [1.02; 1.65] 2.15   0.0314
## Random effects model 1.37 [0.69; 2.74] 0.90   0.3698
## 
## Quantifying heterogeneity:
##  tau^2 = 1.0444; H = 2.62 [2.00; 3.43]; I^2 = 85.4% [74.9%; 91.5%]
## 
## Test of heterogeneity:
##      Q d.f.  p-value
##  61.66    9 < 0.0001
## 
## Details on meta-analytical method:
## - Mantel-Haenszel method
## - DerSimonian-Laird estimator for tau^2
forest(mb1.mh, comb.random=FALSE, hetstat=FALSE,
       text.fixed="MH estimate")

mb2.mh <- metabin(Ee, Ne, Ec, Nc, sm="OR", method="MH",
                  data=data8, studlab=study)
print(summary(mb2.mh), digits=2)
## Number of studies combined: k = 11
## 
##                        OR       95%-CI     z  p-value
## Fixed effect model   0.73 [0.54; 0.98] -2.08   0.0373
## Random effects model 0.80 [0.58; 1.11] -1.33   0.1834
## 
## Quantifying heterogeneity:
##  tau^2 = 0.0155; H = 1.03 [1.00; 1.63]; I^2 = 5.0% [0.0%; 62.2%]
## 
## Test of heterogeneity:
##      Q d.f.  p-value
##  10.53   10   0.3954
## 
## Details on meta-analytical method:
## - Mantel-Haenszel method
## - DerSimonian-Laird estimator for tau^2
## - Continuity correction of 0.5 in studies with zero cell frequencies
mb1.peto <- metabin(Ee, Ne, Ec, Nc, sm="OR", method="P",
                    data=data7, studlab=study)
## Warning in metabin(Ee, Ne, Ec, Nc, sm = "OR", method = "P", data = data7, :
## Studies with event.e > n.e get no weight in meta-analysis.
## Warning in metabin(Ee, Ne, Ec, Nc, sm = "OR", method = "P", data = data7, :
## Studies with event.c > n.c get no weight in meta-analysis.
print(summary(mb1.peto), digits=2)
## Number of studies combined: k = 10
## 
##                        OR       95%-CI    z  p-value
## Fixed effect model   1.31 [1.03; 1.67] 2.21   0.0274
## Random effects model 1.33 [0.68; 2.61] 0.83   0.4043
## 
## Quantifying heterogeneity:
##  tau^2 = 0.9982; H = 2.72 [2.09; 3.54]; I^2 = 86.5% [77.1%; 92.0%]
## 
## Test of heterogeneity:
##      Q d.f.  p-value
##  66.63    9 < 0.0001
## 
## Details on meta-analytical method:
## - Peto method
## - DerSimonian-Laird estimator for tau^2
mb2.peto <- metabin(Ee, Ne, Ec, Nc, sm="OR", method="Peto",
                    data=data8, studlab=study)
print(summary(mb2.peto), digits=2)
## Number of studies combined: k = 11
## 
##                        OR       95%-CI     z  p-value
## Fixed effect model   0.73 [0.54; 0.98] -2.10   0.0359
## Random effects model 0.72 [0.49; 1.07] -1.62   0.1049
## 
## Quantifying heterogeneity:
##  tau^2 = 0.1472; H = 1.25 [1.00; 1.78]; I^2 = 35.6% [0.0%; 68.3%]
## 
## Test of heterogeneity:
##      Q d.f.  p-value
##  15.52   10   0.1141
## 
## Details on meta-analytical method:
## - Peto method
## - DerSimonian-Laird estimator for tau^2
print(summary(mb1), digits=2)
## Number of studies combined: k = 10
## 
##                        OR       95%-CI    z  p-value
## Fixed effect model   1.22 [0.94; 1.58] 1.50   0.1339
## Random effects model 1.37 [0.69; 2.74] 0.90   0.3691
## 
## Quantifying heterogeneity:
##  tau^2 = 1.0398; H = 2.61 [1.99; 3.42]; I^2 = 85.3% [74.8%; 91.5%]
## 
## Test of heterogeneity:
##      Q d.f.  p-value
##  61.43    9 < 0.0001
## 
## Details on meta-analytical method:
## - Inverse variance method
## - DerSimonian-Laird estimator for tau^2
restmp1 <- rbind(c(exp(mb1$TE.fixed), exp(mb1$lower.fixed), exp(mb1$upper.fixed),
                   exp(mb1$TE.random), exp(mb1$lower.random), exp(mb1$upper.random),
                   mb1$tau^2),
                 c(exp(mb1.mh$TE.fixed), exp(mb1.mh$lower.fixed), exp(mb1.mh$upper.fixed),
                   exp(mb1.mh$TE.random), exp(mb1.mh$lower.random), exp(mb1.mh$upper.random),
                   mb1.mh$tau^2),
                 c(exp(mb1.peto$TE.fixed), exp(mb1.peto$lower.fixed), exp(mb1.peto$upper.fixed),
                   exp(mb1.peto$TE.random), exp(mb1.peto$lower.random), exp(mb1.peto$upper.random),
                   mb1.peto$tau^2)
                 )

restmp1 <- as.data.frame(restmp1)
restmp1[,1:6] <- round(restmp1[,1:6], 2)
restmp1[,7] <- round(restmp1[,7], 4)
names(restmp1) <- c("OR (fixed)", "lower", "upper", "OR (random)", "lower", "upper", "tau^2")
row.names(restmp1) <- c("IV", "MH", "Peto")

restmp2 <- rbind(c(exp(mb2$TE.fixed), exp(mb2$lower.fixed), exp(mb2$upper.fixed),
                   exp(mb2$TE.random), exp(mb2$lower.random), exp(mb2$upper.random),
                   mb2$tau^2),
                 c(exp(mb2.mh$TE.fixed), exp(mb2.mh$lower.fixed), exp(mb2.mh$upper.fixed),
                   exp(mb2.mh$TE.random), exp(mb2.mh$lower.random), exp(mb2.mh$upper.random),
                   mb2.mh$tau^2),
                 c(exp(mb2.peto$TE.fixed), exp(mb2.peto$lower.fixed), exp(mb2.peto$upper.fixed),
                   exp(mb2.peto$TE.random), exp(mb2.peto$lower.random), exp(mb2.peto$upper.random),
                   mb2.peto$tau^2)
                 )

restmp2 <- as.data.frame(restmp2)
restmp2[,1:6] <- round(restmp2[,1:6], 2)
restmp2[,7] <- round(restmp2[,7], 4)
names(restmp2) <- c("OR (fixed)", "lower", "upper", "OR (random)", "lower", "upper", "tau^2")
row.names(restmp2) <- c("IV", "MH", "Peto")

restmp1
##      OR (fixed) lower upper OR (random) lower upper  tau^2
## IV         1.22  0.94  1.58        1.37  0.69  2.74 1.0398
## MH         1.30  1.02  1.65        1.37  0.69  2.74 1.0444
## Peto       1.31  1.03  1.67        1.33  0.68  2.61 0.9982
restmp2
##      OR (fixed) lower upper OR (random) lower upper  tau^2
## IV         0.80  0.59  1.10        0.80  0.59  1.10 0.0039
## MH         0.73  0.54  0.98        0.80  0.58  1.11 0.0155
## Peto       0.73  0.54  0.98        0.72  0.49  1.07 0.1472
data9 <- read.csv("data9.csv")
data9
##        study Ee Ne Ec Nc   blind
## 1       Shay  1 12  5 12 Blinded
## 2    Michael 25 60 37 61 Blinded
## 3       Drew 21 50 21 55 Blinded
## 4  Sebastian 16 36 15 35      No
## 5     Taylor 12 38 32 47      No
## 6      Reign  8 21 12 21      No
## 7     Xavier  5 25 15 22      No
## 8     Arroyo  7 19  9 15      No
## 9      Shane  6 32 13 37      No
## 10     Frost  8 28 21 23      No
summary(data9$Ee/data9$Ne)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## 0.08333 0.22143 0.34211 0.31028 0.40774 0.44444
summary(data9$Ec/data9$Nc)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.3514  0.4196  0.5857  0.5632  0.6623  0.9130
mb3 <- metabin(Ee, Ne, Ec, Nc, sm="RR", method="I",
               data=data9, studlab=study)
print(summary(mb3), digits=2)
## Number of studies combined: k = 10
## 
##                        RR       95%-CI     z  p-value
## Fixed effect model   0.64 [0.53; 0.76] -4.83 < 0.0001
## Random effects model 0.59 [0.44; 0.80] -3.44   0.0006
## 
## Quantifying heterogeneity:
##  tau^2 = 0.1162; H = 1.51 [1.06; 2.14]; I^2 = 55.9% [10.3%; 78.3%]
## 
## Test of heterogeneity:
##      Q d.f.  p-value
##  20.39    9   0.0157
## 
## Details on meta-analytical method:
## - Inverse variance method
## - DerSimonian-Laird estimator for tau^2
mb3s <- update(mb3, byvar=blind, print.byvar=FALSE)
print(summary(mb3s), digits=2)
## Number of studies combined: k = 10
## 
##                        RR       95%-CI     z  p-value
## Fixed effect model   0.64 [0.53; 0.76] -4.83 < 0.0001
## Random effects model 0.59 [0.44; 0.80] -3.44   0.0006
## 
## Quantifying heterogeneity:
##  tau^2 = 0.1162; H = 1.51 [1.06; 2.14]; I^2 = 55.9% [10.3%; 78.3%]
## 
## Test of heterogeneity:
##      Q d.f.  p-value
##  20.39    9   0.0157
## 
## Results for subgroups (fixed effect model):
##           k   RR       95%-CI     Q    tau^2   I^2
## Blinded   3 0.80 [0.60; 1.06]  4.32   0.099  53.7%
## No        7 0.54 [0.43; 0.69] 11.95   0.1067 49.8%
## 
## Test for subgroup differences (fixed effect model):
##                    Q d.f.  p-value
## Between groups  4.12    1   0.0425
## Within groups  16.27    8   0.0387
## 
## Results for subgroups (random effects model):
##           k   RR       95%-CI     Q    tau^2   I^2
## Blinded   3 0.78 [0.47; 1.30]  4.32   0.099  53.7%
## No        7 0.53 [0.37; 0.75] 11.95   0.1067 49.8%
## 
## Test for subgroup differences (random effects model):
##                     Q d.f.  p-value
## Between groups   1.54    1   0.2140
## 
## Details on meta-analytical method:
## - Inverse variance method
## - DerSimonian-Laird estimator for tau^2
round(mc1$Q, 2) # Cochran's Q statistic
## [1] 39.29
round(100*c(mc1$I2, mc1$lower.I2, mc1$upper.I2), 1) # I-squared
## [1] 59.3 30.5 76.1
round(mc1$tau^2, 4) # Between-study variance tau-squared
## [1] 38.5732
# Conduct meta-analysis for first subgroup:
mc3s1 <- metacont(Ne, Me, Se, Nc, Mc, Sc, data=data3, studlab=paste(author, year), subset=duration=="<= 6 months")
# Conduct meta-analysis for second subgroup:
mc3s2 <- metacont(Ne, Me, Se, Nc, Mc, Sc, data=data3, studlab=paste(author, year), subset=duration=="> 6 months")

# Subgroup treatment effects (fixed effect model)
TE.duration <- c(mc3s1$TE.fixed, mc3s2$TE.fixed)
# Corresponding standard errors (fixed effect model)
seTE.duration <- c(mc3s1$seTE.fixed, mc3s2$seTE.fixed)

mh1 <- metagen(TE.duration, seTE.duration, sm="MD", 
               studlab=c("<= 6 months", " > 6 months"), comb.random=FALSE)
print(mh1, digits=2)  
##                MD         95%-CI %W(fixed)
## <= 6 months -0.45 [-0.53; -0.36]       8.3
##  > 6 months -0.35 [-0.38; -0.33]      91.7
## 
## Number of studies combined: k = 2
## 
##                       MD         95%-CI      z  p-value
## Fixed effect model -0.36 [-0.39; -0.34] -29.13 < 0.0001
## 
## Quantifying heterogeneity:
##  tau^2 = 0.0034; H = 2.08; I^2 = 76.9% [0.0%; 94.7%]
## 
## Test of heterogeneity:
##     Q d.f.  p-value
##  4.32    1   0.0376
## 
## Details on meta-analytical method:
## - Inverse variance method
print(summary(mc3s), digits=2)
## Number of studies combined: k = 23
## 
##                         MD         95%-CI      z  p-value
## Fixed effect model   -0.36 [-0.39; -0.34] -29.13 < 0.0001
## Random effects model -0.22 [-0.38; -0.05]  -2.55   0.0108
## 
## Quantifying heterogeneity:
##  tau^2 = 0.1389; H = 5.85 [5.25; 6.51]; I^2 = 97.1% [96.4%; 97.6%]
## 
## Test of heterogeneity:
##       Q d.f.  p-value
##  752.43   22 < 0.0001
## 
## Results for subgroups (fixed effect model):
##               k    MD         95%-CI      Q    tau^2   I^2
## <= 6 months   5 -0.45 [-0.53; -0.36]  45.30   0.1226 91.2%
## > 6 months   18 -0.35 [-0.38; -0.33] 702.80   0.1482 97.6%
## 
## Test for subgroup differences (fixed effect model):
##                     Q d.f.  p-value
## Between groups   4.32    1   0.0376
## Within groups  748.10   21 < 0.0001
## 
## Results for subgroups (random effects model):
##               k    MD         95%-CI      Q    tau^2   I^2
## <= 6 months   5 -0.52 [-0.89; -0.16]  45.30   0.1226 91.2%
## > 6 months   18 -0.14 [-0.34;  0.05] 702.80   0.1482 97.6%
## 
## Test for subgroup differences (random effects model):
##                     Q d.f.  p-value
## Between groups   3.32    1   0.0686
## 
## Details on meta-analytical method:
## - Inverse variance method
## - DerSimonian-Laird estimator for tau^2
mh1$Q
## [1] 4.323644
mc3s$Q.b.fixed
## [1] 4.323644
data.frame(duration=c("<= 6 months", " > 6 months"), tau2=round(c(mc3s1$tau^2, mc3s2$tau^2), 4))
##      duration   tau2
## 1 <= 6 months 0.1226
## 2  > 6 months 0.1482
round((mc3s1$Q - (mc3s1$k-1))/mc3s1$C, 4)
## [1] 0.1226
# Subgroup treatment effects (random effects model)
TE.duration.r <- c(mc3s1$TE.random, mc3s2$TE.random)
# Corresponding standard errors (random effects model)
seTE.duration.r <- c(mc3s1$seTE.random, mc3s2$seTE.random)
# Do meta-analysis of subgroup estimates
mh1.r <- metagen(TE.duration.r, seTE.duration.r, sm="MD", 
                 studlab=c("<= 6 months", " > 6 months"), comb.random=FALSE)
print(mh1.r, digits=2)
##                MD         95%-CI %W(fixed)
## <= 6 months -0.52 [-0.89; -0.16]      21.9
##  > 6 months -0.14 [-0.34;  0.05]      78.1
## 
## Number of studies combined: k = 2
## 
##                       MD         95%-CI     z  p-value
## Fixed effect model -0.23 [-0.40; -0.06] -2.63   0.0085
## 
## Quantifying heterogeneity:
##  tau^2 = 0.0505; H = 1.82; I^2 = 69.9% [0.0%; 93.2%]
## 
## Test of heterogeneity:
##     Q d.f.  p-value
##  3.32    1   0.0686
## 
## Details on meta-analytical method:
## - Inverse variance method
# Q-statistic within subgroups
Q.g <- c(mc3s1$Q, mc3s2$Q)
# Degrees of freedom within subgroups
df.Q.g <- c(mc3s1$k-1, mc3s2$k-1)
# Scaling factor within subgroups
C.g <- c(mc3s1$C, mc3s2$C)

# Calculate common estimate of tau-squared
tau2.common <- (sum(Q.g) - sum(df.Q.g)) / sum(C.g)
# Set negative value of tau.common to zero
tau2.common <- ifelse(tau2.common < 0, 0, tau2.common)
# Print common between-study variance
round(tau2.common, 4)
## [1] 0.1465
mc3s.p <- metacont(Ne, Me, Se, Nc, Mc, Sc, data=data3, studlab=paste(author, year), 
                   byvar=duration, print.byvar=FALSE, tau.preset=sqrt(tau2.common))
## Warning in metacont(Ne, Me, Se, Nc, Mc, Sc, data = data3, studlab =
## paste(author, : Argument 'tau.common' set to TRUE as argument tau.preset is
## not NULL.
print(summary(mc3s.p), digits=2)
## Number of studies combined: k = 23
## 
##                         MD         95%-CI      z  p-value
## Fixed effect model   -0.36 [-0.39; -0.34] -29.13 < 0.0001
## Random effects model -0.22 [-0.39; -0.05]  -2.50   0.0125
## 
## Quantifying heterogeneity:
##  tau^2 = 0.1465; H = 5.85 [5.25; 6.51]; I^2 = 97.1% [96.4%; 97.6%]
## 
## Test of heterogeneity:
##       Q d.f.  p-value
##  752.43   22 < 0.0001
## 
## Results for subgroups (fixed effect model):
##               k    MD         95%-CI      Q    tau^2   I^2
## <= 6 months   5 -0.45 [-0.53; -0.36]  45.30   0.1465 91.2%
## > 6 months   18 -0.35 [-0.38; -0.33] 702.80   0.1465 97.6%
## 
## Test for subgroup differences (fixed effect model):
##                     Q d.f.  p-value
## Between groups   4.32    1   0.0376
## Within groups  748.10   21 < 0.0001
## 
## Results for subgroups (random effects model):
##               k    MD         95%-CI      Q    tau^2   I^2
## <= 6 months   5 -0.53 [-0.92; -0.14]  45.30   0.1465 91.2%
## > 6 months   18 -0.14 [-0.33;  0.05] 702.80   0.1465 97.6%
## 
## Test for subgroup differences (random effects model):
##                     Q d.f.  p-value
## Between groups   3.05    1   0.0809
## 
## Details on meta-analytical method:
## - Inverse variance method
## - Preset between-study variance: tau^2 = 0.1465
mc3s.c <- metacont(Ne, Me, Se, Nc, Mc, Sc, data=data3, studlab=paste(author, year), 
                   byvar=duration, print.byvar=FALSE, tau.common=TRUE, comb.fixed=FALSE)
print(summary(mc3s.c), digits=2)
## Number of studies combined: k = 23
## 
##                         MD         95%-CI     z  p-value
## Random effects model -0.22 [-0.38; -0.05] -2.55   0.0108
## 
## Quantifying heterogeneity:
##  tau^2 = 0.1389; H = 5.85 [5.25; 6.51]; I^2 = 97.1% [96.4%; 97.6%]
## 
## Test of heterogeneity:
##       Q d.f.  p-value
##  752.43   22 < 0.0001
## 
## Results for subgroups (random effects model):
##               k    MD         95%-CI      Q    tau^2   I^2
## <= 6 months   5 -0.53 [-0.92; -0.14]  45.30   0.1465 91.2%
## > 6 months   18 -0.14 [-0.33;  0.05] 702.80   0.1465 97.6%
## 
## Test for subgroup differences (random effects model):
##                     Q d.f.  p-value
## Between groups   3.05    1   0.0809
## Within groups  748.10   21 < 0.0001
## 
## Details on meta-analytical method:
## - Inverse variance method
## - DerSimonian-Laird estimator for tau^2 (assuming common tau^2 in subgroups)
mc3s.mr <- metareg(mc3s.c, duration)
print(mc3s.mr, digits=2)
## 
## Mixed-Effects Model (k = 23; tau^2 estimator: DL)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.15 (SE = 0.08)
## tau (square root of estimated tau^2 value):             0.38
## I^2 (residual heterogeneity / unaccounted variability): 97.19%
## H^2 (unaccounted variability / sampling variability):   35.62
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity: 
## QE(df = 21) = 748.10, p-val < .01
## 
## Test of Moderators (coefficient(s) 2): 
## QM(df = 1) = 3.05, p-val = 0.08
## 
## Model Results:
## 
##                     estimate    se   zval  pval  ci.lb  ci.ub    
## intrcpt                -0.53  0.20  -2.66  <.01  -0.92  -0.14  **
## duration> 6 months      0.39  0.22   1.75  0.08  -0.05   0.82   .
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Variance-covariance matrix
varcov <- vcov(mc3s.mr)
# Estimated treatment effect in studies with longer duration
TE.s2 <- sum(coef(mc3s.mr))
# Standard error of treatment effect
seTE.s2 <- sqrt(sum(diag(varcov)) + 2*varcov[1,2])

print(metagen(TE.s2, seTE.s2, sm="MD"), digits=2)
##     MD        95%-CI     z  p-value
##  -0.14 [-0.33; 0.05] -1.48   0.1387
## 
## Details:
## - Inverse variance method
mb3s.c <- metabin(Ee, Ne, Ec, Nc, sm="RR", method="I", data=data9, studlab=study, byvar=blind, print.byvar=FALSE, tau.common=TRUE)
print(summary(mb3s.c), digits=2)
## Number of studies combined: k = 10
## 
##                        RR       95%-CI     z  p-value
## Fixed effect model   0.64 [0.53; 0.76] -4.83 < 0.0001
## Random effects model 0.59 [0.44; 0.80] -3.44   0.0006
## 
## Quantifying heterogeneity:
##  tau^2 = 0.1162; H = 1.51 [1.06; 2.14]; I^2 = 55.9% [10.3%; 78.3%]
## 
## Test of heterogeneity:
##      Q d.f.  p-value
##  20.39    9   0.0157
## 
## Results for subgroups (fixed effect model):
##           k   RR       95%-CI     Q    tau^2   I^2
## Blinded   3 0.80 [0.60; 1.06]  4.32   0.1044 53.7%
## No        7 0.54 [0.43; 0.69] 11.95   0.1044 49.8%
## 
## Test for subgroup differences (fixed effect model):
##                    Q d.f.  p-value
## Between groups  4.12    1   0.0425
## Within groups  16.27    8   0.0387
## 
## Results for subgroups (random effects model):
##           k   RR       95%-CI     Q    tau^2   I^2
## Blinded   3 0.78 [0.46; 1.31]  4.32   0.1044 53.7%
## No        7 0.53 [0.37; 0.75] 11.95   0.1044 49.8%
## 
## Test for subgroup differences (random effects model):
##                    Q d.f.  p-value
## Between groups  1.49    1   0.2215
## Within groups  16.27    8   0.0387
## 
## Details on meta-analytical method:
## - Inverse variance method
## - DerSimonian-Laird estimator for tau^2 (assuming common tau^2 in subgroups)
mb3s.mr <- metareg(mb3s.c)
print(mb3s.mr, digits=2)
## 
## Mixed-Effects Model (k = 10; tau^2 estimator: DL)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.10 (SE = 0.11)
## tau (square root of estimated tau^2 value):             0.32
## I^2 (residual heterogeneity / unaccounted variability): 50.83%
## H^2 (unaccounted variability / sampling variability):   2.03
## R^2 (amount of heterogeneity accounted for):            10.15%
## 
## Test for Residual Heterogeneity: 
## QE(df = 8) = 16.27, p-val = 0.04
## 
## Test of Moderators (coefficient(s) 2): 
## QM(df = 1) = 1.49, p-val = 0.22
## 
## Model Results:
## 
##           estimate    se   zval  pval  ci.lb  ci.ub   
## intrcpt      -0.25  0.26  -0.94  0.35  -0.77   0.27   
## .byvarNo     -0.39  0.32  -1.22  0.22  -1.01   0.23   
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Treatment effect in blinded trials
round(exp(coef(mb3s.mr)["intrcpt"]), 2)
## intrcpt 
##    0.78
# Treatment effect in trials without blinding employed
round(exp(sum(coef(mb3s.mr))), 2)
## [1] 0.53
data(dat.colditz1994, package="metafor")
data10 <- dat.colditz1994

mh2 <- metabin(tpos, tpos+tneg, cpos, cpos+cneg, data=data10, studlab=paste(author, year))
summary(mh2)
## Number of studies combined: k = 13
## 
##                          RR           95%-CI      z  p-value
## Fixed effect model   0.6353 [0.5881; 0.6862] -11.53 < 0.0001
## Random effects model 0.4896 [0.3448; 0.6952]  -3.99 < 0.0001
## 
## Quantifying heterogeneity:
##  tau^2 = 0.3095; H = 3.57 [2.93; 4.34]; I^2 = 92.1% [88.3%; 94.7%]
## 
## Test of heterogeneity:
##       Q d.f.  p-value
##  152.57   12 < 0.0001
## 
## Details on meta-analytical method:
## - Mantel-Haenszel method
## - DerSimonian-Laird estimator for tau^2
table(data10$ablat)
## 
## 13 18 19 27 33 42 44 52 55 
##  2  1  1  1  2  2  2  1  1
mh2.mr <- metareg(mh2, ablat)
print(mh2.mr, digits=2)
## 
## Mixed-Effects Model (k = 13; tau^2 estimator: DL)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.06 (SE = 0.05)
## tau (square root of estimated tau^2 value):             0.25
## I^2 (residual heterogeneity / unaccounted variability): 64.21%
## H^2 (unaccounted variability / sampling variability):   2.79
## R^2 (amount of heterogeneity accounted for):            79.50%
## 
## Test for Residual Heterogeneity: 
## QE(df = 11) = 30.73, p-val < .01
## 
## Test of Moderators (coefficient(s) 2): 
## QM(df = 1) = 18.85, p-val < .01
## 
## Model Results:
## 
##          estimate    se   zval  pval  ci.lb  ci.ub     
## intrcpt      0.26  0.23   1.12  0.26  -0.20   0.71     
## ablat       -0.03  0.01  -4.34  <.01  -0.04  -0.02  ***
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
bubble(mh2.mr)

mean(data10$ablat)
## [1] 33.46154
ablat.c <- with(data10, ablat - mean(ablat))
mh2.mr.c <- metareg(mh2, ablat.c)
print(mh2.mr.c, digits=2)
## 
## Mixed-Effects Model (k = 13; tau^2 estimator: DL)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.06 (SE = 0.05)
## tau (square root of estimated tau^2 value):             0.25
## I^2 (residual heterogeneity / unaccounted variability): 64.21%
## H^2 (unaccounted variability / sampling variability):   2.79
## R^2 (amount of heterogeneity accounted for):            79.50%
## 
## Test for Residual Heterogeneity: 
## QE(df = 11) = 30.73, p-val < .01
## 
## Test of Moderators (coefficient(s) 2): 
## QM(df = 1) = 18.85, p-val < .01
## 
## Model Results:
## 
##          estimate    se   zval  pval  ci.lb  ci.ub     
## intrcpt     -0.72  0.10  -7.09  <.01  -0.92  -0.52  ***
## ablat.c     -0.03  0.01  -4.34  <.01  -0.04  -0.02  ***
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
round(exp(coef(mh2.mr.c)["intrcpt"]), 2)
## intrcpt 
##    0.49
TE.33.5 <- coef(mh2.mr.c)["intrcpt"]
seTE.33.5 <- sqrt(vcov(mh2.mr.c)["intrcpt", "intrcpt"])
print(metagen(TE.33.5, seTE.33.5, sm="RR"), digits=2)
##    RR       95%-CI     z  p-value
##  0.49 [0.40; 0.59] -7.09 < 0.0001
## 
## Details:
## - Inverse variance method