setwd("~/Documents/Dropbox/Research/Adrian")
d<-read.csv ("AI_conservatism_risk_new_study_1.csv", header=T, sep=",")

table(d$Q34)
## 
##             attention         23         24         26         27 
##          1          1          1          3          1          4 
##         28         29         30         32         33         34 
##          1          2          1          1          1          1 
##         35         37         39         40  attention  Attention 
##          2          2          1          1        257          3 
##  ATTENTION attention  
##          2         14
#d<-subset(d, Q34=="attention" | Q34=="Attention" | Q34=="attention " | Q34 == " attention" | Q34 == "ATTENTION")

STUDY 1

d$socialconservatism<-d$Q16_2

cor.test(d$socialconservatism, d$comfort_society_1)
## 
##  Pearson's product-moment correlation
## 
## data:  d$socialconservatism and d$comfort_society_1
## t = 1.1037, df = 99, p-value = 0.2724
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.08706052  0.29924582
## sample estimates:
##       cor 
## 0.1102547
cor.test(d$socialconservatism, d$comfort_self_1)
## 
##  Pearson's product-moment correlation
## 
## data:  d$socialconservatism and d$comfort_self_1
## t = 1.2334, df = 99, p-value = 0.2204
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.07420591  0.31097999
## sample estimates:
##       cor 
## 0.1230174
cor.test(d$socialconservatism, d$gen_risk_1)
## 
##  Pearson's product-moment correlation
## 
## data:  d$socialconservatism and d$gen_risk_1
## t = -0.60615, df = 99, p-value = 0.5458
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.2532376  0.1362506
## sample estimates:
##         cor 
## -0.06080789
cor.test(d$socialconservatism, d$threat_lives_1)
## 
##  Pearson's product-moment correlation
## 
## data:  d$socialconservatism and d$threat_lives_1
## t = -0.064244, df = 99, p-value = 0.9489
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.2016414  0.1892214
## sample estimates:
##         cor 
## -0.00645662
cor.test(d$socialconservatism, d$threat_jobs_1)
## 
##  Pearson's product-moment correlation
## 
## data:  d$socialconservatism and d$threat_jobs_1
## t = 1.177, df = 99, p-value = 0.242
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.07979473  0.30589269
## sample estimates:
##       cor 
## 0.1174766
d$conservatism<-d$Q16_1

cor.test(d$conservatism, d$comfort_society_1)
## 
##  Pearson's product-moment correlation
## 
## data:  d$conservatism and d$comfort_society_1
## t = 0.77874, df = 99, p-value = 0.438
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.1192300  0.2693591
## sample estimates:
##        cor 
## 0.07802749
cor.test(d$conservatism, d$comfort_self_1)
## 
##  Pearson's product-moment correlation
## 
## data:  d$conservatism and d$comfort_self_1
## t = 0.94454, df = 99, p-value = 0.3472
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.1028341  0.2846857
## sample estimates:
##        cor 
## 0.09450453
cor.test(d$conservatism, d$gen_risk_1)
## 
##  Pearson's product-moment correlation
## 
## data:  d$conservatism and d$gen_risk_1
## t = -0.72617, df = 99, p-value = 0.4694
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.2644661  0.1244202
## sample estimates:
##         cor 
## -0.07278907
cor.test(d$conservatism, d$threat_lives_1)
## 
##  Pearson's product-moment correlation
## 
## data:  d$conservatism and d$threat_lives_1
## t = -0.18544, df = 99, p-value = 0.8533
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.2132971  0.1774509
## sample estimates:
##         cor 
## -0.01863467
cor.test(d$conservatism, d$threat_jobs_1)
## 
##  Pearson's product-moment correlation
## 
## data:  d$conservatism and d$threat_jobs_1
## t = 1.1724, df = 99, p-value = 0.2438
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.08025213  0.30547536
## sample estimates:
##       cor 
## 0.1170226

STUDY 3

names(d)
##  [1] "v1"                  "V2"                  "V3"                 
##  [4] "V4"                  "V5"                  "V6"                 
##  [7] "V7"                  "V8"                  "V9"                 
## [10] "V10"                 "Q26"                 "Q28"                
## [13] "Q30"                 "Q34"                 "Description_general"
## [16] "comfort_society_1"   "comfort_self_1"      "gen_risk_1"         
## [19] "threat_lives_1"      "threat_jobs_1"       "joke_trust_1"       
## [22] "joke_risk_1"         "car_trust_1"         "car_risk_1"         
## [25] "Q8"                  "Q10"                 "Q12"                
## [28] "Q14"                 "Q16_1"               "Q16_2"              
## [31] "Q16_3"               "LocationLatitude"    "LocationLongitude"  
## [34] "LocationAccuracy"    "socialconservatism"  "conservatism"
cor.test(d$socialconservatism, d$joke_trust_1)
## 
##  Pearson's product-moment correlation
## 
## data:  d$socialconservatism and d$joke_trust_1
## t = -1.7599, df = 97, p-value = 0.08158
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.36078684  0.02228209
## sample estimates:
##        cor 
## -0.1759035
cor.test(d$socialconservatism, d$joke_risk_1)
## 
##  Pearson's product-moment correlation
## 
## data:  d$socialconservatism and d$joke_risk_1
## t = -0.72857, df = 97, p-value = 0.468
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.2672926  0.1254655
## sample estimates:
##         cor 
## -0.07377359
cor.test(d$socialconservatism, d$car_trust_1)
## 
##  Pearson's product-moment correlation
## 
## data:  d$socialconservatism and d$car_trust_1
## t = 2.1012, df = 97, p-value = 0.03821
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.01172093 0.38999780
## sample estimates:
##     cor 
## 0.20865
cor.test(d$socialconservatism, d$car_risk_1)
## 
##  Pearson's product-moment correlation
## 
## data:  d$socialconservatism and d$car_risk_1
## t = -2.3557, df = 97, p-value = 0.0205
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.41115001 -0.03690167
## sample estimates:
##        cor 
## -0.2326189