This file contains an R code for creating a plot of your raw data + estimate of the effect as predicted by the model.
library(ggplot2)
library(effects)
library (lme4)
## Loading required package: Matrix
library (plyr)
load(file="d_test.RData")
model<- lmer(variable ~ #run your mixed effects regression model
target_effect*condition+
(1+target_effect|random_effect),
data=d_test, REML=F)
summary(model)
## Linear mixed model fit by maximum likelihood ['lmerMod']
## Formula:
## variable ~ target_effect * condition + (1 + target_effect | random_effect)
## Data: d_test
##
## AIC BIC logLik deviance df.resid
## -280.7 -252.6 148.3 -296.7 240
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.41259 -0.63572 0.01945 0.66080 2.06649
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## random_effect (Intercept) 2.678e-03 0.051749
## target_effect 3.051e-05 0.005523 -0.48
## Residual 1.626e-02 0.127501
## Number of obs: 248, groups: random_effect, 23
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 0.756361 0.034709 21.791
## target_effect -0.058751 0.005723 -10.266
## condition2 -0.195569 0.043770 -4.468
## target_effect:condition2 0.042088 0.007605 5.534
##
## Correlation of Fixed Effects:
## (Intr) trgt_f cndtn2
## target_ffct -0.899
## condition2 -0.631 0.617
## trgt_ffct:2 0.586 -0.664 -0.929
d1 <- effect("target_effect:condition", model) # save the estimates for your target effect
d1 <-as.data.frame(d1)
d2 <- ddply(d_test, .(target_effect,condition), summarise, mean_variable = mean(variable,na.rm=TRUE))
ggplot()+
geom_line(data=d2,aes(x = target_effect, y = mean_variable, color=condition),lwd=1.4)+
geom_point(data=d2,aes(x = target_effect, y = mean_variable, color=condition),size=4)+
geom_line(data=d1,aes(target_effect, fit, color=condition),lwd=1, linetype="dotted")+
geom_point(data=d1,aes(target_effect, fit, color=condition),size=2)+
geom_errorbar(data=d1,aes(x=target_effect, ymin=lower, ymax=upper, color=condition))+
scale_x_continuous("Target Effect", breaks = c(1:8))+
scale_y_continuous("Mean Variable")+
ggtitle("Variable by Target Effect and Condition")+
theme_bw()+
theme(text = element_text(size = 14), axis.text.x = element_text(size=14), legend.text = element_text(size = 14))