# Install.pakages("readxl")
library(readxl)
datos <- read_excel("./datos/datos.xlsx", sheet = "Calculos_rendimiento_trigo")
str(datos)
## Classes 'tbl_df', 'tbl' and 'data.frame': 14 obs. of 40 variables:
## $ Bloque : num 1 1 1 1 1 1 1 2 2 2 ...
## $ Parc : num 5 7 8 10 11 12 14 16 17 19 ...
## $ Trt : num 1 11 7 13 5 9 3 7 1 5 ...
## $ Wdry50S : num 96.8 106.9 129.9 107.3 128.3 ...
## $ Wgrain50S : num 38.1 38.4 52.5 38.6 53.5 ...
## $ WidthArea : num 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 ...
## $ LengthArea : num 9 9 9 9 9 9 9 9 9 9 ...
## $ WGrain : num 2370 2670 1732 3556 4277 ...
## $ WHumid : num 200 201 200 200 200 ...
## $ WDry : num 180 182 182 182 182 ...
## $ W200g : num 6.99 7.19 7.19 6.87 7.78 6.97 7.77 7.11 7.25 7.68 ...
## $ Area : num 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 ...
## $ AreaCount : num 0.187 0.187 0.187 0.187 0.125 0.187 0.187 0.187 0.187 0.125 ...
## $ Count : num 26.7 25.8 23.5 22.8 20.7 21.7 24.5 17.3 19.5 22.3 ...
## $ Tasseling : num 56 53 53 54 53 53 55 53 56 54 ...
## $ Lodging : num 0 0 0 0 0 0 0 0 0 0 ...
## $ Flowering : num 60 56 57 57 57 56 59 57 59 57 ...
## $ Maturity : num 107 106 107 108 107 106 107 106 106 107 ...
## $ Height : num 78.5 74.7 64.3 88.3 86.5 69.3 78 64.8 77.8 88.8 ...
## $ HI : num 39.4 35.9 40.5 36 41.7 ...
## $ %Humidity : num 0.0981 0.0937 0.0925 0.0944 0.0939 ...
## $ H2O_Grain : num 232 250 160 336 401 ...
## $ Yield_Dry : num 1583 1792 1164 2385 2871 ...
## $ Yield_12_H2O: num 1799 2037 1323 2711 3262 ...
## $ Biomass : num 4019 4990 2878 6629 6888 ...
## $ Straw : num 2435 3198 1714 4244 4018 ...
## $ Spikes/m2 : num 208 233 111 309 268 ...
## $ Thou : num 35 36 36 34.4 38.9 ...
## $ Grains/m² : num 4530 4986 3239 6945 7380 ...
## $ Grains/spike: num 21.8 21.4 29.2 22.5 27.5 ...
## $ WStem : num 1.94 2.14 2.6 2.15 2.57 ...
## $ WGrain/spike: num 0.763 0.768 1.051 0.772 1.069 ...
## $ Plants/m² : num 143 138 126 122 166 ...
## $ DaysGrain : num 47 50 50 51 50 50 48 49 47 50 ...
## $ BioRate : num 37.6 47.1 26.9 61.4 64.4 ...
## $ GrainRateA : num 16.8 19.2 12.4 25.1 30.5 ...
## $ GrainRateB : num 38.3 40.7 26.5 53.2 65.2 ...
## $ VegRate : num 40.6 57.1 30.1 74.5 70.5 ...
## $ KernelRate : num 0.744 0.719 0.719 0.674 0.778 ...
## $ P.H. : num 728 711 726 709 729 ...
datos <- transform(datos, Trt = factor(Trt))
datos <- transform(datos, Bloque = factor(Bloque))
str(datos)
## 'data.frame': 14 obs. of 40 variables:
## $ Bloque : Factor w/ 2 levels "1","2": 1 1 1 1 1 1 1 2 2 2 ...
## $ Parc : num 5 7 8 10 11 12 14 16 17 19 ...
## $ Trt : Factor w/ 7 levels "1","3","5","7",..: 1 6 4 7 3 5 2 4 1 3 ...
## $ Wdry50S : num 96.8 106.9 129.9 107.3 128.3 ...
## $ Wgrain50S : num 38.1 38.4 52.5 38.6 53.5 ...
## $ WidthArea : num 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 ...
## $ LengthArea : num 9 9 9 9 9 9 9 9 9 9 ...
## $ WGrain : num 2370 2670 1732 3556 4277 ...
## $ WHumid : num 200 201 200 200 200 ...
## $ WDry : num 180 182 182 182 182 ...
## $ W200g : num 6.99 7.19 7.19 6.87 7.78 6.97 7.77 7.11 7.25 7.68 ...
## $ Area : num 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 ...
## $ AreaCount : num 0.187 0.187 0.187 0.187 0.125 0.187 0.187 0.187 0.187 0.125 ...
## $ Count : num 26.7 25.8 23.5 22.8 20.7 21.7 24.5 17.3 19.5 22.3 ...
## $ Tasseling : num 56 53 53 54 53 53 55 53 56 54 ...
## $ Lodging : num 0 0 0 0 0 0 0 0 0 0 ...
## $ Flowering : num 60 56 57 57 57 56 59 57 59 57 ...
## $ Maturity : num 107 106 107 108 107 106 107 106 106 107 ...
## $ Height : num 78.5 74.7 64.3 88.3 86.5 69.3 78 64.8 77.8 88.8 ...
## $ HI : num 39.4 35.9 40.5 36 41.7 ...
## $ X.Humidity : num 0.0981 0.0937 0.0925 0.0944 0.0939 ...
## $ H2O_Grain : num 232 250 160 336 401 ...
## $ Yield_Dry : num 1583 1792 1164 2385 2871 ...
## $ Yield_12_H2O: num 1799 2037 1323 2711 3262 ...
## $ Biomass : num 4019 4990 2878 6629 6888 ...
## $ Straw : num 2435 3198 1714 4244 4018 ...
## $ Spikes.m2 : num 208 233 111 309 268 ...
## $ Thou : num 35 36 36 34.4 38.9 ...
## $ Grains.m² : num 4530 4986 3239 6945 7380 ...
## $ Grains.spike: num 21.8 21.4 29.2 22.5 27.5 ...
## $ WStem : num 1.94 2.14 2.6 2.15 2.57 ...
## $ WGrain.spike: num 0.763 0.768 1.051 0.772 1.069 ...
## $ Plants.m² : num 143 138 126 122 166 ...
## $ DaysGrain : num 47 50 50 51 50 50 48 49 47 50 ...
## $ BioRate : num 37.6 47.1 26.9 61.4 64.4 ...
## $ GrainRateA : num 16.8 19.2 12.4 25.1 30.5 ...
## $ GrainRateB : num 38.3 40.7 26.5 53.2 65.2 ...
## $ VegRate : num 40.6 57.1 30.1 74.5 70.5 ...
## $ KernelRate : num 0.744 0.719 0.719 0.674 0.778 ...
## $ P.H. : num 728 711 726 709 729 ...
names(datos)
## [1] "Bloque" "Parc" "Trt" "Wdry50S"
## [5] "Wgrain50S" "WidthArea" "LengthArea" "WGrain"
## [9] "WHumid" "WDry" "W200g" "Area"
## [13] "AreaCount" "Count" "Tasseling" "Lodging"
## [17] "Flowering" "Maturity" "Height" "HI"
## [21] "X.Humidity" "H2O_Grain" "Yield_Dry" "Yield_12_H2O"
## [25] "Biomass" "Straw" "Spikes.m2" "Thou"
## [29] "Grains.m²" "Grains.spike" "WStem" "WGrain.spike"
## [33] "Plants.m²" "DaysGrain" "BioRate" "GrainRateA"
## [37] "GrainRateB" "VegRate" "KernelRate" "P.H."
aggregate(Yield_12_H2O ~ Trt, data = datos, FUN = mean)
## Trt Yield_12_H2O
## 1 1 1750.456
## 2 3 2874.998
## 3 5 3364.312
## 4 7 1037.812
## 5 9 1681.568
## 6 11 2309.546
## 7 13 2693.390
Utilizar la función boxplot para construir un diagrama
boxplot(datos$Yield_12_H2O ~ datos$Trt, xlab="Tratamiento", ylab="Rendimiento 12% H2O (kg ha-1)")
Construir un diagrama de interacción
interaction.plot(datos$Trt, datos$Bloque, datos$Yield_12_H2O, xlab="Tratamiento",ylab="Rendimiento 12% H2O (kg ha-1)")
interaction.plot(datos$Bloque, datos$Trt, datos$Yield_12_H2O, xlab="Bloque",ylab="Rendimiento 12% H2O (kg ha-1)")
ajuste <- lm(datos$Yield_12_H2O ~ datos$Bloque + datos$Trt)
anova(ajuste)
## Analysis of Variance Table
##
## Response: datos$Yield_12_H2O
## Df Sum Sq Mean Sq F value Pr(>F)
## datos$Bloque 1 0 0 0.000 0.9995682
## datos$Trt 6 7748613 1291436 22.192 0.0007507 ***
## Residuals 6 349161 58193
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#install.packages("agricolae")
library(agricolae)
comparaciones <- HSD.test(ajuste, "datos$Trt")
comparaciones
## $statistics
## Mean CV MSerror HSD
## 2244.583 10.74735 58193.47 1005.608
##
## $parameters
## Df ntr StudentizedRange alpha test name.t
## 6 7 5.895309 0.05 Tukey datos$Trt
##
## $means
## datos$Yield_12_H2O std r Min Max
## 1 1750.456 69.06707 2 1701.6183 1799.294
## 11 2309.546 385.56019 2 2036.9138 2582.178
## 13 2693.390 24.61455 2 2675.9849 2710.795
## 3 2874.998 58.10076 2 2833.9146 2916.081
## 5 3364.312 144.38696 2 3262.2146 3466.409
## 7 1037.812 403.34192 2 752.6061 1323.018
## 9 1681.568 90.66437 2 1617.4590 1745.678
##
## $comparison
## NULL
##
## $groups
## trt means M
## 1 5 3364.312 a
## 2 3 2874.998 ab
## 3 13 2693.390 abc
## 4 11 2309.546 bcd
## 5 1 1750.456 cde
## 6 9 1681.568 de
## 7 7 1037.812 e