Obtener los datos
library(readxl)
datCarr <- read_excel("./datos/VCarranza.xlsx", sheet = "Calculos_rendimiento_maiz")
names(datCarr)## [1] "Parcela" "Labranza" "Num_Trat" "Num_Rep"
## [5] "AnchoArea" "LongitudArea" "PGrano" "PHumedo"
## [9] "PSeco" "P200G" "Area" "%Humedad"
## [13] "Rend_Seco" "Rend_14% H2O" "Mil" "granos/m2"
Algunas medidas para vectores
summary(datCarr$`Rend_14% H2O`)## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 4713 5393 5745 5727 6126 6501
mean(datCarr$`Rend_14% H2O`)## [1] 5727.167
min(datCarr$`Rend_14% H2O`)## [1] 4712.799
max(datCarr$`Rend_14% H2O`)## [1] 6501.389
median(datCarr$`Rend_14% H2O`) ## [1] 5745.163
# sum(), length(), mean(x), median(x), min(x), max(x), quantile(x) ,sd(X),
# t.test(X), Student's t-test(X) ,var(X) Algunas medidas por grupos
# La función agrégate nos permite resumir por grupos
meanLab <- aggregate(`Rend_14% H2O` ~ Labranza, data = datCarr, FUN = mean)
meanLab## Labranza Rend_14% H2O
## 1 camas 5712.624
## 2 convencional 5763.525
meanTrat <- aggregate(`Rend_14% H2O` ~ Num_Trat, data = datCarr, FUN = mean)
meanTrat## Num_Trat Rend_14% H2O
## 1 1 6076.958
## 2 2 5450.093
## 3 3 5631.945
## 4 4 5899.283
## 5 5 5739.697
## 6 6 5399.637
## 7 7 5892.559
library(readxl)
datos <- read_excel("./datos/renUtiOax.xlsx", sheet = "datosRendimiento")
names(datos)## [1] "ID.de.la.bitácora"
## [2] "ID.de.tipo.de.bitácora..clave.foránea."
## [3] "Tipo.de.parcela..testigo.o.innovación."
## [4] "Nombre.del.cultivo.cosechado"
## [5] "Nombre.del.producto.de.interés.económico.obtenido"
## [6] "Unidad.de.medida.de.rendimiento.para.el.producto.de.interés.económico.obtenido"
## [7] "Uso.que.le.da.al.producto.de.interés.económico.obtenido"
## [8] "Rendimiento..t.ha."
## [9] "tipoProduccion"
## [10] "ID.de.la.parcela"
## [11] "Año"
## [12] "Ciclo.agronómico"
## [13] "Estado"
## [14] "Municipio"
## [15] "Nombre.del.Hub"
## [16] "costos"
## [17] "Ingresos"
## [18] "utilidad"
## [19] "Region"
plot(datos$Rendimiento..t.ha., datos$utilidad, main = "Scatterplot Example", xlab = "Rendimiento (t/ha) ",
ylab = "Utilidad ($/ha)", pch = 10)
# Agregar lineas de ajuste
abline(lm(datos$utilidad ~ datos$Rendimiento..t.ha.), col = "red") # Línea de regresión (y~x)
lines(lowess(datos$Rendimiento..t.ha., datos$utilidad), col="blue") # Línea de regresión local (x,y)library(lattice)
xyplot(datos$Rendimiento..t.ha. ~ datos$utilidad | datos$Tipo.de.parcela..testigo.o.innovación.,
main = "Scatterplot Example", xlab = "Rendimiento (t/ha) ", ylab = "Utilidad ($/ha)")library(ggplot2)## Warning: package 'ggplot2' was built under R version 3.3.3
grafica <- qplot(datos$Rendimiento..t.ha., datos$utilidad, main = "Scatterplot Example", xlab = "Rendimiento (t/ha) ",
ylab = "Utilidad ($/ha)")
grafica <- grafica + theme_bw()
graficaCon el sistema base
library(readxl)
datCarr <- read_excel("./datos/VCarranza.xlsx", sheet = "Calculos_rendimiento_maiz")
names(datCarr)## [1] "Parcela" "Labranza" "Num_Trat" "Num_Rep"
## [5] "AnchoArea" "LongitudArea" "PGrano" "PHumedo"
## [9] "PSeco" "P200G" "Area" "%Humedad"
## [13] "Rend_Seco" "Rend_14% H2O" "Mil" "granos/m2"
boxplot(datCarr$`Rend_14% H2O`, xlab = "Rendimiento", ylab = "t ha-1")boxplot(datCarr$`Rend_14% H2O` ~ datCarr$Labranza, xlab = "Tratamiento", ylab = "Rendimiento 14% H2O(t ha-1)")boxplot(datCarr$`Rend_14% H2O` ~ datCarr$Num_Trat, xlab = "Tratamiento", ylab = "Rendimiento 14% H2O(t ha-1)")Mas parametros del sistema base
Con el sistema ggplot2
library(ggplot2)
library(plyr)
names(datCarr)## [1] "Parcela" "Labranza" "Num_Trat" "Num_Rep"
## [5] "AnchoArea" "LongitudArea" "PGrano" "PHumedo"
## [9] "PSeco" "P200G" "Area" "%Humedad"
## [13] "Rend_Seco" "Rend_14% H2O" "Mil" "granos/m2"
ggplot(datCarr, aes(x = factor(Num_Trat), y = `Rend_14% H2O`, colour = Labranza)) +
geom_boxplot() +
theme_bw() +
labs(x = "Tratamientos", y = "Rendimiento 14% H2O(t ha-1)")Exploratory Data Analysis: Principles of Graphics
Graphical heuristics: Data-ink ratio (Edward Tufte)
Edward Tufte (2006). Beautiful Evidence, Graphics Press LLC. www.edwardtufte.com