Model 1 - Picewise Effect of testosterone across time

P.Model1 <- lme(fixed=Test.l~Sex_1+P.time1*InterventionC+P.time2*InterventionC+InterventionC*RinseC,
                random=list(ID=pdDiag(~P.time1+P.time2),Session=pdDiag(~P.time1+P.time2)),
                correlation = corAR1(),
                data=T_DF.NA,
                method="ML")
Linear mixed-effects model fit by maximum likelihood
 Data: T_DF.NA 
      AIC      BIC  logLik
  111.998 170.3713 -38.999

Random effects:
 Formula: ~P.time1 + P.time2 | ID
 Structure: Diagonal
        (Intercept)    P.time1    P.time2
StdDev:   0.2140401 0.07067603 0.08691495

 Formula: ~P.time1 + P.time2 | Session %in% ID
 Structure: Diagonal
         (Intercept)    P.time1    P.time2  Residual
StdDev: 1.357778e-05 0.08649717 0.09082493 0.2355644

Correlation Structure: AR(1)
 Formula: ~1 | ID/Session 
 Parameter estimate(s):
      Phi 
0.1817981 
Fixed effects: Test.l ~ Sex_1 + P.time1 * InterventionC + P.time2 * InterventionC +      InterventionC * RinseC 
                                          Value  Std.Error  DF  t-value p-value
(Intercept)                            4.601876 0.11252488 179 40.89652  0.0000
Sex_1Male                              0.348336 0.13800896  10  2.52401  0.0302
P.time1                                0.082122 0.06990500 179  1.17477  0.2416
InterventionCTestosterone             -0.133148 0.08676743  31 -1.53454  0.1350
P.time2                               -0.022732 0.04017463 179 -0.56582  0.5722
RinseCRinse                           -0.136550 0.06958717  31 -1.96228  0.0588
P.time1:InterventionCTestosterone      1.996552 0.09171052 179 21.77015  0.0000
InterventionCTestosterone:P.time2     -0.361670 0.04283781 179 -8.44277  0.0000
InterventionCTestosterone:RinseCRinse  0.060602 0.09725234  31  0.62314  0.5377
 Correlation: 
                                      (Intr) Sx_1Ml P.tim1 IntrCT P.tim2 RnsCRn P.1:IC ICT:P.
Sex_1Male                             -0.617                                                 
P.time1                               -0.289 -0.008                                          
InterventionCTestosterone             -0.419  0.031  0.381                                   
P.time2                               -0.034 -0.001 -0.244  0.045                            
RinseCRinse                           -0.316  0.036 -0.022  0.402  0.000                     
P.time1:InterventionCTestosterone      0.222  0.003 -0.695 -0.547  0.186  0.017              
InterventionCTestosterone:P.time2      0.035 -0.004  0.229 -0.080 -0.556  0.000 -0.334       
InterventionCTestosterone:RinseCRinse  0.242 -0.046  0.016 -0.558 -0.001 -0.735 -0.013  0.000

Standardized Within-Group Residuals:
        Min          Q1         Med          Q3         Max 
-2.32992834 -0.65035630 -0.06395292  0.53513715  2.67551469 

Number of Observations: 229
Number of Groups: 
             ID Session %in% ID 
             12              46 
                      numDF denDF  F-value p-value
(Intercept)               1   179 5528.158  <.0001
Sex_1                     1    10    6.017  0.0341
P.time1                   1   179  466.654  <.0001
InterventionC             1    31  368.228  <.0001
P.time2                   1   179   40.071  <.0001
RinseC                    1    31    6.087  0.0193
P.time1:InterventionC     1   179  404.625  <.0001
InterventionC:P.time2     1   179   71.275  <.0001
InterventionC:RinseC      1    31    0.388  0.5377

Model 2 - Picewise Simple Slopes only looking at testosterone and sex

P.Model2 <- lme(fixed=Test.l~Sex_1+P.time1*Sex_1+P.time2*Sex_1,
                random=list(ID=pdDiag(~P.time1+P.time2),Session=pdDiag(~P.time1+P.time2)),
                correlation = corAR1(),
                data=subset(T_DF.NA,InterventionC=="Testosterone"),
                method="ML")
Linear mixed-effects model fit by maximum likelihood
 Data: subset(T_DF.NA, InterventionC == "Testosterone") 
       AIC      BIC    logLik
  57.31685 96.34174 -14.65843

Random effects:
 Formula: ~P.time1 + P.time2 | ID
 Structure: Diagonal
        (Intercept)      P.time1   P.time2
StdDev:   0.1231745 1.427718e-06 0.1656147

 Formula: ~P.time1 + P.time2 | Session %in% ID
 Structure: Diagonal
         (Intercept)      P.time1    P.time2  Residual
StdDev: 5.323992e-06 6.745817e-06 0.09616876 0.2071279

Correlation Structure: AR(1)
 Formula: ~1 | ID/Session 
 Parameter estimate(s):
        Phi 
-0.02620728 
Fixed effects: Test.l ~ Sex_1 + P.time1 * Sex_1 + P.time2 * Sex_1 
                      Value  Std.Error DF  t-value p-value
(Intercept)        4.415080 0.07846658 92 56.26702  0.0000
Sex_1Male          0.376273 0.11391719 10  3.30304  0.0080
P.time1            2.283573 0.07729339 92 29.54422  0.0000
P.time2           -0.513190 0.07917641 92 -6.48160  0.0000
Sex_1Male:P.time1 -0.406867 0.11416991 92 -3.56370  0.0006
Sex_1Male:P.time2  0.259593 0.11330705 92  2.29106  0.0242
 Correlation: 
                  (Intr) Sx_1Ml P.tim1 P.tim2 S_1M:P.1
Sex_1Male         -0.689                              
P.time1           -0.583  0.402                       
P.time2            0.003 -0.002 -0.172                
Sex_1Male:P.time1  0.395 -0.593 -0.677  0.117         
Sex_1Male:P.time2 -0.002  0.003  0.120 -0.699 -0.178  

Standardized Within-Group Residuals:
        Min          Q1         Med          Q3         Max 
-2.53349101 -0.50623943  0.06975269  0.42895700  2.06232323 

Number of Observations: 120
Number of Groups: 
             ID Session %in% ID 
             12              24 
              numDF denDF   F-value p-value
(Intercept)       1    92 16459.724  <.0001
Sex_1             1    10     2.916  0.1185
P.time1           1    92  1312.070  <.0001
P.time2           1    92    47.032  <.0001
Sex_1:P.time1     1    92    10.287  0.0018
Sex_1:P.time2     1    92     5.249  0.0242

Total Aggression

Linear mixed-effects model fit by maximum likelihood
 Data: T_DF.NA2 
       AIC    BIC    logLik
  605.5606 633.18 -291.7803

Random effects:
 Formula: ~1 | ID
        (Intercept)
StdDev:    7.621099

 Formula: ~1 | Session %in% ID
        (Intercept) Residual
StdDev:    1.338002 4.768877

Fixed effects: Total.Aggression ~ Pre.Post * Sex * Intervention 
                                                  Value Std.Error DF   t-value p-value
(Intercept)                                   23.541610  3.617005 41  6.508593  0.0000
Pre.PostPost                                   1.818182  2.129200 41  0.853927  0.3981
SexMale                                        7.810447  5.142191 10  1.518895  0.1598
InterventionTestosterone                       1.461643  2.144077 32  0.681712  0.5003
Pre.PostPost:SexMale                          -2.579198  3.055619 41 -0.844084  0.4035
Pre.PostPost:InterventionTestosterone          3.874126  2.893013 41  1.339132  0.1879
SexMale:InterventionTestosterone               0.140978  3.123660 32  0.045132  0.9643
Pre.PostPost:SexMale:InterventionTestosterone -5.385837  4.207889 41 -1.279938  0.2078
 Correlation: 
                                              (Intr) Pr.PsP SexMal IntrvT Pr.PP:SM P.PP:I SxM:IT
Pre.PostPost                                  -0.294                                            
SexMale                                       -0.703  0.207                                     
InterventionTestosterone                      -0.321  0.497  0.226                              
Pre.PostPost:SexMale                           0.205 -0.697 -0.305 -0.346                       
Pre.PostPost:InterventionTestosterone          0.217 -0.736 -0.152 -0.675  0.513                
SexMale:InterventionTestosterone               0.220 -0.341 -0.324 -0.686  0.503    0.463       
Pre.PostPost:SexMale:InterventionTestosterone -0.149  0.506  0.222  0.464 -0.726   -0.688 -0.684

Standardized Within-Group Residuals:
       Min         Q1        Med         Q3        Max 
-2.4851087 -0.5981793  0.0109560  0.5627690  2.1926572 

Number of Observations: 91
Number of Groups: 
             ID Session %in% ID 
             12              46 
                          numDF denDF   F-value p-value
(Intercept)                   1    41 147.52444  <.0001
Pre.Post                      1    41   1.63232  0.2086
Sex                           1    10   1.14769  0.3092
Intervention                  1    32   3.72055  0.0627
Pre.Post:Sex                  1    41   6.66959  0.0135
Pre.Post:Intervention         1    41   0.38093  0.5405
Sex:Intervention              1    32   1.29430  0.2637
Pre.Post:Sex:Intervention     1    41   1.63824  0.2078
$lsmeans
Sex = Female, Intervention = Placebo:
 Pre.Post   lsmean       SE df lower.CL upper.CL
 Pre      23.54161 3.617005 11 15.58064 31.50258
 Post     25.35979 3.617005 11 17.39882 33.32077

Sex = Male, Intervention = Placebo:
 Pre.Post   lsmean       SE df lower.CL upper.CL
 Pre      31.35206 3.655052 10 23.20810 39.49602
 Post     30.59104 3.619360 10 22.52661 38.65548

Sex = Female, Intervention = Testosterone:
 Pre.Post   lsmean       SE df lower.CL upper.CL
 Pre      25.00325 3.563655 11 17.15970 32.84680
 Post     30.69556 3.563655 11 22.85201 38.53911

Sex = Male, Intervention = Testosterone:
 Pre.Post   lsmean       SE df lower.CL upper.CL
 Pre      32.95468 3.619360 10 24.89024 41.01911
 Post     30.68195 3.619360 10 22.61751 38.74639

Confidence level used: 0.95 

$contrasts
Sex = Female, Intervention = Placebo:
 contrast    estimate       SE df t.ratio p.value
 Pre - Post -1.818182 2.129200 41  -0.854  0.3981

Sex = Male, Intervention = Placebo:
 contrast    estimate       SE df t.ratio p.value
 Pre - Post  0.761016 2.191647 41   0.347  0.7302

Sex = Female, Intervention = Testosterone:
 contrast    estimate       SE df t.ratio p.value
 Pre - Post -5.692308 1.958579 41  -2.906  0.0059

Sex = Male, Intervention = Testosterone:
 contrast    estimate       SE df t.ratio p.value
 Pre - Post  2.272727 2.129200 41   1.067  0.2920

TableGrob (1 x 2) "arrange": 2 grobs
  z     cells    name           grob
1 1 (1-1,1-1) arrange gtable[layout]
2 2 (1-1,2-2) arrange gtable[layout]

Physical Aggression

Linear mixed-effects model fit by maximum likelihood
 Data: T_DF.NA2 
       AIC      BIC    logLik
  397.0568 424.6762 -187.5284

Random effects:
 Formula: ~1 | ID
        (Intercept)
StdDev:    2.490678

 Formula: ~1 | Session %in% ID
        (Intercept) Residual
StdDev:     0.56272 1.475714

Fixed effects: Physical.Aggression ~ Pre.Post * Sex * Intervention 
                                                  Value Std.Error DF   t-value p-value
(Intercept)                                    4.251836 1.1767679 41  3.613147  0.0008
Pre.PostPost                                   0.272727 0.6588743 41  0.413929  0.6811
SexMale                                        4.760393 1.6725227 10  2.846235  0.0174
InterventionTestosterone                       0.150457 0.6839883 32  0.219970  0.8273
Pre.PostPost:SexMale                          -0.545731 0.9461480 41 -0.576793  0.5672
Pre.PostPost:InterventionTestosterone          1.342657 0.8952339 41  1.499784  0.1413
SexMale:InterventionTestosterone              -1.241643 0.9960137 32 -1.246612  0.2216
Pre.PostPost:SexMale:InterventionTestosterone -1.342381 1.3025512 41 -1.030578  0.3088
 Correlation: 
                                              (Intr) Pr.PsP SexMal IntrvT Pr.PP:SM P.PP:I SxM:IT
Pre.PostPost                                  -0.280                                            
SexMale                                       -0.704  0.197                                     
InterventionTestosterone                      -0.315  0.482  0.222                              
Pre.PostPost:SexMale                           0.195 -0.696 -0.291 -0.335                       
Pre.PostPost:InterventionTestosterone          0.206 -0.736 -0.145 -0.654  0.513                
SexMale:InterventionTestosterone               0.216 -0.331 -0.317 -0.687  0.489    0.449       
Pre.PostPost:SexMale:InterventionTestosterone -0.142  0.506  0.211  0.450 -0.726   -0.687 -0.664

Standardized Within-Group Residuals:
        Min          Q1         Med          Q3         Max 
-2.31287462 -0.62168809  0.04883832  0.60603591  2.23693095 

Number of Observations: 91
Number of Groups: 
             ID Session %in% ID 
             12              46 
                          numDF denDF  F-value p-value
(Intercept)                   1    41 71.64327  <.0001
Pre.Post                      1    41  1.62987  0.2089
Sex                           1    10  5.02133  0.0489
Intervention                  1    32  0.06129  0.8060
Pre.Post:Sex                  1    41  3.70007  0.0614
Pre.Post:Intervention         1    41  1.11454  0.2973
Sex:Intervention              1    32  6.67490  0.0146
Pre.Post:Sex:Intervention     1    41  1.06209  0.3088
$lsmeans
Sex = Female, Intervention = Placebo:
 Pre.Post   lsmean       SE df lower.CL  upper.CL
 Pre      4.251836 1.176768 11 1.661787  6.841884
 Post     4.524563 1.176768 11 1.934514  7.114612

Sex = Male, Intervention = Placebo:
 Pre.Post   lsmean       SE df lower.CL  upper.CL
 Pre      9.012229 1.188507 10 6.364070 11.660388
 Post     8.739225 1.177541 10 6.115501 11.362949

Sex = Female, Intervention = Testosterone:
 Pre.Post   lsmean       SE df lower.CL  upper.CL
 Pre      4.402293 1.160085 11 1.848964  6.955622
 Post     6.017677 1.160085 11 3.464349  8.571006

Sex = Male, Intervention = Testosterone:
 Pre.Post   lsmean       SE df lower.CL  upper.CL
 Pre      7.921043 1.177541 10 5.297319 10.544767
 Post     7.648316 1.177541 10 5.024592 10.272040

Confidence level used: 0.95 

$contrasts
Sex = Female, Intervention = Placebo:
 contrast     estimate        SE df t.ratio p.value
 Pre - Post -0.2727273 0.6588743 41  -0.414  0.6811

Sex = Male, Intervention = Placebo:
 contrast     estimate        SE df t.ratio p.value
 Pre - Post  0.2730041 0.6790292 41   0.402  0.6897

Sex = Female, Intervention = Testosterone:
 contrast     estimate        SE df t.ratio p.value
 Pre - Post -1.6153846 0.6060762 41  -2.665  0.0110

Sex = Male, Intervention = Testosterone:
 contrast     estimate        SE df t.ratio p.value
 Pre - Post  0.2727273 0.6588743 41   0.414  0.6811

TableGrob (1 x 2) "arrange": 2 grobs
  z     cells    name           grob
1 1 (1-1,1-1) arrange gtable[layout]
2 2 (1-1,2-2) arrange gtable[layout]

Verbal Aggression

Linear mixed-effects model fit by maximum likelihood
 Data: T_DF.NA2 
       AIC      BIC    logLik
  401.3351 428.9545 -189.6675

Random effects:
 Formula: ~1 | ID
        (Intercept)
StdDev:    2.181625

 Formula: ~1 | Session %in% ID
        (Intercept) Residual
StdDev:   0.7481456 1.494487

Fixed effects: Verbal.Aggression ~ Pre.Post * Sex * Intervention 
                                                  Value Std.Error DF   t-value p-value
(Intercept)                                    7.346714 1.0729000 41  6.847529  0.0000
Pre.PostPost                                   0.545455 0.6672558 41  0.817459  0.4184
SexMale                                        1.624848 1.5271905 10  1.063946  0.3124
InterventionTestosterone                      -0.486241 0.7240290 32 -0.671577  0.5067
Pre.PostPost:SexMale                          -1.230903 0.9589514 41 -1.283592  0.2065
Pre.PostPost:InterventionTestosterone          1.762238 0.9066222 41  1.943740  0.0588
SexMale:InterventionTestosterone               1.346247 1.0536375 32  1.277714  0.2105
Pre.PostPost:SexMale:InterventionTestosterone -1.985881 1.3196786 41 -1.504821  0.1400
 Correlation: 
                                              (Intr) Pr.PsP SexMal IntrvT Pr.PP:SM P.PP:I SxM:IT
Pre.PostPost                                  -0.311                                            
SexMale                                       -0.703  0.218                                     
InterventionTestosterone                      -0.366  0.461  0.257                              
Pre.PostPost:SexMale                           0.216 -0.696 -0.324 -0.321                       
Pre.PostPost:InterventionTestosterone          0.229 -0.736 -0.161 -0.626  0.512                
SexMale:InterventionTestosterone               0.251 -0.317 -0.367 -0.687  0.469    0.430       
Pre.PostPost:SexMale:InterventionTestosterone -0.157  0.506  0.235  0.430 -0.727   -0.687 -0.637

Standardized Within-Group Residuals:
        Min          Q1         Med          Q3         Max 
-2.43919401 -0.38927298  0.09737046  0.58049346  2.07676605 

Number of Observations: 91
Number of Groups: 
             ID Session %in% ID 
             12              46 
                          numDF denDF   F-value p-value
(Intercept)                   1    41 148.53731  <.0001
Pre.Post                      1    41   1.56236  0.2184
Sex                           1    10   0.70752  0.4199
Intervention                  1    32   2.05492  0.1614
Pre.Post:Sex                  1    41  12.24693  0.0011
Pre.Post:Intervention         1    41   1.58165  0.2156
Sex:Intervention              1    32   0.17175  0.6813
Pre.Post:Sex:Intervention     1    41   2.26449  0.1400
$lsmeans
Sex = Female, Intervention = Placebo:
 Pre.Post   lsmean       SE df lower.CL  upper.CL
 Pre      7.346714 1.072900 11 4.985277  9.708151
 Post     7.892168 1.072900 11 5.530731 10.253605

Sex = Male, Intervention = Placebo:
 Pre.Post   lsmean       SE df lower.CL  upper.CL
 Pre      8.971562 1.086829 10 6.549957 11.393167
 Post     8.286114 1.073832 10 5.893468 10.678760

Sex = Female, Intervention = Testosterone:
 Pre.Post   lsmean       SE df lower.CL  upper.CL
 Pre      6.860473 1.052345 11 4.544278  9.176668
 Post     9.168165 1.052345 11 6.851970 11.484361

Sex = Male, Intervention = Testosterone:
 Pre.Post   lsmean       SE df lower.CL  upper.CL
 Pre      9.831569 1.073832 10 7.438923 12.224214
 Post     8.922478 1.073832 10 6.529832 11.315123

Confidence level used: 0.95 

$contrasts
Sex = Female, Intervention = Placebo:
 contrast     estimate        SE df t.ratio p.value
 Pre - Post -0.5454545 0.6672558 41  -0.817  0.4184

Sex = Male, Intervention = Placebo:
 contrast     estimate        SE df t.ratio p.value
 Pre - Post  0.6854481 0.6887362 41   0.995  0.3255

Sex = Female, Intervention = Testosterone:
 contrast     estimate        SE df t.ratio p.value
 Pre - Post -2.3076923 0.6137861 41  -3.760  0.0005

Sex = Male, Intervention = Testosterone:
 contrast     estimate        SE df t.ratio p.value
 Pre - Post  0.9090909 0.6672558 41   1.362  0.1805

TableGrob (1 x 2) "arrange": 2 grobs
  z     cells    name           grob
1 1 (1-1,1-1) arrange gtable[layout]
2 2 (1-1,2-2) arrange gtable[layout]

Anger

Linear mixed-effects model fit by maximum likelihood
 Data: T_DF.NA2 
       AIC      BIC    logLik
  418.0813 445.7008 -198.0407

Random effects:
 Formula: ~1 | ID
        (Intercept)
StdDev:    2.319354

 Formula: ~1 | Session %in% ID
        (Intercept) Residual
StdDev:   0.6210482 1.707768

Fixed effects: Anger ~ Pre.Post * Sex * Intervention 
                                 Value Std.Error DF   t-value p-value
(Intercept)                   6.701245 0.7331684 41  9.140117  0.0000
Pre.Post1                    -0.060202 0.1884060 41 -0.319535  0.7509
Sex1                         -0.255319 0.7331684 10 -0.348241  0.7349
Intervention1                -0.414366 0.2131753 32 -1.943779  0.0608
Pre.Post1:Sex1               -0.175812 0.1884060 41 -0.933153  0.3562
Pre.Post1:Intervention1      -0.210552 0.1884060 41 -1.117544  0.2703
Sex1:Intervention1            0.015480 0.2131753 32  0.072615  0.9426
Pre.Post1:Sex1:Intervention1  0.128384 0.1884060 41  0.681423  0.4994
 Correlation: 
                             (Intr) Pr.Ps1 Sex1   Intrv1 Pr.P1:S1 P.P1:I Sx1:I1
Pre.Post1                     0.004                                            
Sex1                         -0.007 -0.004                                     
Intervention1                 0.015  0.014  0.008                              
Pre.Post1:Sex1               -0.004 -0.055  0.004 -0.014                       
Pre.Post1:Intervention1       0.004  0.055 -0.004  0.014  0.024                
Sex1:Intervention1            0.008 -0.014  0.015 -0.036  0.014   -0.014       
Pre.Post1:Sex1:Intervention1 -0.004  0.024  0.004 -0.014  0.055   -0.055  0.014

Standardized Within-Group Residuals:
        Min          Q1         Med          Q3         Max 
-2.28620697 -0.45611486 -0.09021087  0.54395482  2.06876022 

Number of Observations: 91
Number of Groups: 
             ID Session %in% ID 
             12              46 
                          numDF denDF  F-value p-value
(Intercept)                   1    41 84.13264  <.0001
Pre.Post                      1    41  0.09429  0.7603
Sex                           1    10  0.11202  0.7448
Intervention                  1    32  3.73411  0.0622
Pre.Post:Sex                  1    41  0.89173  0.3505
Pre.Post:Intervention         1    41  1.16835  0.2861
Sex:Intervention              1    32  0.00399  0.9500
Pre.Post:Sex:Intervention     1    41  0.46434  0.4994
$lsmeans
Sex = Female, Intervention = Placebo:
 Pre.Post   lsmean       SE df lower.CL  upper.CL
 Pre      5.728858 1.146921 10 3.173359  8.284358
 Post     6.365222 1.146921 10 3.809722  8.920722

Sex = Male, Intervention = Placebo:
 Pre.Post   lsmean       SE df lower.CL  upper.CL
 Pre      6.303392 1.162792 10 3.712530  8.894254
 Post     6.750046 1.147886 10 4.192396  9.307695

Sex = Female, Intervention = Testosterone:
 Pre.Post   lsmean       SE df lower.CL  upper.CL
 Pre      6.690966 1.124212 10 4.186066  9.195866
 Post     6.998658 1.124212 10 4.493759  9.503558

Sex = Male, Intervention = Testosterone:
 Pre.Post   lsmean       SE df lower.CL  upper.CL
 Pre      7.840955 1.147886 10 5.283305 10.398604
 Post     6.931864 1.147886 10 4.374215  9.489513

Confidence level used: 0.95 

$contrasts
Sex = Female, Intervention = Placebo:
 contrast     estimate        SE df t.ratio p.value
 Pre - Post -0.6363636 0.7624811 41  -0.835  0.4088

Sex = Male, Intervention = Placebo:
 contrast     estimate        SE df t.ratio p.value
 Pre - Post -0.4466539 0.7855616 41  -0.569  0.5727

Sex = Female, Intervention = Testosterone:
 contrast     estimate        SE df t.ratio p.value
 Pre - Post -0.3076923 0.7013806 41  -0.439  0.6632

Sex = Male, Intervention = Testosterone:
 contrast     estimate        SE df t.ratio p.value
 Pre - Post  0.9090909 0.7624811 41   1.192  0.2400

TableGrob (1 x 2) "arrange": 2 grobs
  z     cells    name           grob
1 1 (1-1,1-1) arrange gtable[layout]
2 2 (1-1,2-2) arrange gtable[layout]

Hostility

Linear mixed-effects model fit by maximum likelihood
 Data: T_DF.NA2 
       AIC      BIC    logLik
  383.4122 411.0317 -180.7061

Random effects:
 Formula: ~1 | ID
        (Intercept)
StdDev:    2.149448

 Formula: ~1 | Session %in% ID
        (Intercept) Residual
StdDev:    1.046028 1.195227

Fixed effects: Hostility ~ Pre.Post * Sex * Intervention 
                                 Value Std.Error DF   t-value p-value
(Intercept)                   7.100458 0.6834277 41 10.389479  0.0000
Pre.Post1                    -0.174749 0.1321078 41 -1.322779  0.1932
Sex1                         -0.012620 0.6834277 10 -0.018465  0.9856
Intervention1                -0.430935 0.2106004 32 -2.046222  0.0490
Pre.Post1:Sex1               -0.281544 0.1321078 41 -2.131172  0.0391
Pre.Post1:Intervention1       0.145181 0.1321078 41  1.098956  0.2782
Sex1:Intervention1           -0.265003 0.2106004 32 -1.258320  0.2174
Pre.Post1:Sex1:Intervention1  0.129295 0.1321078 41  0.978707  0.3335
 Correlation: 
                             (Intr) Pr.Ps1 Sex1   Intrv1 Pr.P1:S1 P.P1:I Sx1:I1
Pre.Post1                     0.003                                            
Sex1                         -0.007 -0.003                                     
Intervention1                 0.015  0.012  0.010                              
Pre.Post1:Sex1               -0.003 -0.059  0.003 -0.012                       
Pre.Post1:Intervention1       0.003  0.059 -0.003  0.012  0.020                
Sex1:Intervention1            0.010 -0.012  0.015 -0.031  0.012   -0.012       
Pre.Post1:Sex1:Intervention1 -0.003  0.020  0.003 -0.012  0.059   -0.059  0.012

Standardized Within-Group Residuals:
        Min          Q1         Med          Q3         Max 
-2.51342419 -0.43631181  0.01467211  0.43841887  2.12039068 

Number of Observations: 91
Number of Groups: 
             ID Session %in% ID 
             12              46 
                          numDF denDF   F-value p-value
(Intercept)                   1    41 108.84685  <.0001
Pre.Post                      1    41   2.38619  0.1301
Sex                           1    10   0.00091  0.9765
Intervention                  1    32   4.46537  0.0425
Pre.Post:Sex                  1    41   4.86353  0.0331
Pre.Post:Intervention         1    41   1.30833  0.2593
Sex:Intervention              1    32   1.61373  0.2131
Pre.Post:Sex:Intervention     1    41   0.95787  0.3335
$lsmeans
Sex = Female, Intervention = Placebo:
 Pre.Post   lsmean       SE df lower.CL  upper.CL
 Pre      6.210083 1.048283 10 3.874363  8.545803
 Post     6.573719 1.048283 10 4.237999  8.909439

Sex = Male, Intervention = Placebo:
 Pre.Post   lsmean       SE df lower.CL  upper.CL
 Pre      7.069826 1.059199 10 4.709783  9.429869
 Post     6.824465 1.049285 10 4.486512  9.162417

Sex = Female, Intervention = Testosterone:
 Pre.Post   lsmean       SE df lower.CL  upper.CL
 Pre      7.053007 1.029223 10 4.759754  9.346260
 Post     8.514545 1.029223 10 6.221293 10.807798

Sex = Male, Intervention = Testosterone:
 Pre.Post   lsmean       SE df lower.CL  upper.CL
 Pre      7.369919 1.049285 10 5.031967  9.707871
 Post     7.188101 1.049285 10 4.850149  9.526053

Confidence level used: 0.95 

$contrasts
Sex = Female, Intervention = Placebo:
 contrast     estimate        SE df t.ratio p.value
 Pre - Post -0.3636364 0.5336429 41  -0.681  0.4994

Sex = Male, Intervention = Placebo:
 contrast     estimate        SE df t.ratio p.value
 Pre - Post  0.2453615 0.5535745 41   0.443  0.6599

Sex = Female, Intervention = Testosterone:
 contrast     estimate        SE df t.ratio p.value
 Pre - Post -1.4615385 0.4908801 41  -2.977  0.0049

Sex = Male, Intervention = Testosterone:
 contrast     estimate        SE df t.ratio p.value
 Pre - Post  0.1818182 0.5336429 41   0.341  0.7351

TableGrob (1 x 2) "arrange": 2 grobs
  z     cells    name           grob
1 1 (1-1,1-1) arrange gtable[layout]
2 2 (1-1,2-2) arrange gtable[layout]

Total Risk

Linear mixed-effects model fit by maximum likelihood
 Data: T_DF.NA2 
       AIC      BIC    logLik
  735.8626 763.4821 -356.9313

Random effects:
 Formula: ~1 | ID
        (Intercept)
StdDev:    16.18329

 Formula: ~1 | Session %in% ID
        (Intercept) Residual
StdDev:   0.8562673 9.984673

Fixed effects: Total.Risk ~ Pre.Post * Sex * Intervention 
                                 Value Std.Error DF   t-value p-value
(Intercept)                  122.88101  5.019526 41 24.480602  0.0000
Pre.Post1                     -1.19823  1.100821 41 -1.088486  0.2827
Sex1                          -8.37550  5.019526 10 -1.668585  0.1262
Intervention1                 -0.40468  1.117786 32 -0.362041  0.7197
Pre.Post1:Sex1                -3.32275  1.100821 41 -3.018430  0.0044
Pre.Post1:Intervention1        1.50457  1.100821 41  1.366770  0.1791
Sex1:Intervention1            -1.02921  1.117786 32 -0.920755  0.3641
Pre.Post1:Sex1:Intervention1   0.74368  1.100821 41  0.675571  0.5031
 Correlation: 
                             (Intr) Pr.Ps1 Sex1   Intrv1 Pr.P1:S1 P.P1:I Sx1:I1
Pre.Post1                     0.003                                            
Sex1                         -0.004 -0.003                                     
Intervention1                 0.012  0.014  0.006                              
Pre.Post1:Sex1               -0.003 -0.054  0.003 -0.014                       
Pre.Post1:Intervention1       0.003  0.054 -0.003  0.014  0.025                
Sex1:Intervention1            0.006 -0.014  0.012 -0.037  0.014   -0.014       
Pre.Post1:Sex1:Intervention1 -0.003  0.025  0.003 -0.014  0.054   -0.054  0.014

Standardized Within-Group Residuals:
        Min          Q1         Med          Q3         Max 
-2.58275535 -0.54790763  0.06764513  0.42338187  3.94295963 

Number of Observations: 91
Number of Groups: 
             ID Session %in% ID 
             12              46 
                          numDF denDF  F-value p-value
(Intercept)                   1    41 599.2693  <.0001
Pre.Post                      1    41   1.8888  0.1768
Sex                           1    10   2.7057  0.1310
Intervention                  1    32   0.1991  0.6585
Pre.Post:Sex                  1    41   9.5322  0.0036
Pre.Post:Intervention         1    41   1.9399  0.1712
Sex:Intervention              1    32   0.8658  0.3591
Pre.Post:Sex:Intervention     1    41   0.4564  0.5031
$lsmeans
Sex = Female, Intervention = Placebo:
 Pre.Post   lsmean       SE df  lower.CL upper.CL
 Pre      110.7989 7.613207 10  93.83561 127.7622
 Post     115.3443 7.613207 10  98.38106 132.3076

Sex = Male, Intervention = Placebo:
 Pre.Post   lsmean       SE df  lower.CL upper.CL
 Pre      134.7664 7.687990 10 117.63654 151.8964
 Post     128.9956 7.617606 10 112.02255 145.9687

Sex = Female, Intervention = Testosterone:
 Pre.Post   lsmean       SE df  lower.CL upper.CL
 Pre      109.1702 7.509607 10  92.43772 125.9026
 Post     122.7086 7.509607 10 105.97618 139.4411

Sex = Male, Intervention = Testosterone:
 Pre.Post   lsmean       SE df  lower.CL upper.CL
 Pre      131.9956 7.617606 10 115.02255 148.9687
 Post     129.2684 7.617606 10 112.29527 146.2414

Confidence level used: 0.95 

$contrasts
Sex = Female, Intervention = Placebo:
 contrast     estimate       SE df t.ratio p.value
 Pre - Post  -4.545455 4.457939 41  -1.020  0.3139

Sex = Male, Intervention = Placebo:
 contrast     estimate       SE df t.ratio p.value
 Pre - Post   5.770820 4.581853 41   1.259  0.2150

Sex = Female, Intervention = Testosterone:
 contrast     estimate       SE df t.ratio p.value
 Pre - Post -13.538462 4.100708 41  -3.301  0.0020

Sex = Male, Intervention = Testosterone:
 contrast     estimate       SE df t.ratio p.value
 Pre - Post   2.727273 4.457939 41   0.612  0.5441

TableGrob (1 x 2) "arrange": 2 grobs
  z     cells    name           grob
1 1 (1-1,1-1) arrange gtable[layout]
2 2 (1-1,2-2) arrange gtable[layout]

Financial Risk

Linear mixed-effects model fit by maximum likelihood
 Data: T_DF.NA2 
      AIC      BIC    logLik
  503.375 530.9945 -240.6875

Random effects:
 Formula: ~1 | ID
        (Intercept)
StdDev:    3.597261

 Formula: ~1 | Session %in% ID
        (Intercept) Residual
StdDev:    1.220844 2.672917

Fixed effects: Finacial.Risk ~ Pre.Post * Sex * Intervention 
                                 Value Std.Error DF   t-value p-value
(Intercept)                  17.847788 1.1439204 41 15.602299  0.0000
Pre.Post1                     0.117701 0.2949821 41  0.399009  0.6920
Sex1                         -2.883152 1.1439204 10 -2.520413  0.0304
Intervention1                -0.466859 0.3530446 32 -1.322380  0.1954
Pre.Post1:Sex1               -0.463854 0.2949821 41 -1.572483  0.1235
Pre.Post1:Intervention1       0.259309 0.2949821 41  0.879067  0.3845
Sex1:Intervention1           -0.457505 0.3530446 32 -1.295884  0.2043
Pre.Post1:Sex1:Intervention1  0.086845 0.2949821 41  0.294408  0.7699
 Correlation: 
                             (Intr) Pr.Ps1 Sex1   Intrv1 Pr.P1:S1 P.P1:I Sx1:I1
Pre.Post1                     0.004                                            
Sex1                         -0.007 -0.004                                     
Intervention1                 0.016  0.014  0.009                              
Pre.Post1:Sex1               -0.004 -0.056  0.004 -0.014                       
Pre.Post1:Intervention1       0.004  0.056 -0.004  0.014  0.023                
Sex1:Intervention1            0.009 -0.014  0.016 -0.035  0.014   -0.014       
Pre.Post1:Sex1:Intervention1 -0.004  0.023  0.004 -0.014  0.056   -0.056  0.014

Standardized Within-Group Residuals:
       Min         Q1        Med         Q3        Max 
-2.7551738 -0.3660375 -0.1168382  0.3643547  3.9662413 

Number of Observations: 91
Number of Groups: 
             ID Session %in% ID 
             12              46 
                          numDF denDF   F-value p-value
(Intercept)                   1    41 243.71657  <.0001
Pre.Post                      1    41   0.05741  0.8118
Sex                           1    10   6.14615  0.0326
Intervention                  1    32   1.94968  0.1722
Pre.Post:Sex                  1    41   2.55483  0.1176
Pre.Post:Intervention         1    41   0.77459  0.3839
Sex:Intervention              1    32   1.69009  0.2029
Pre.Post:Sex:Intervention     1    41   0.08668  0.7699
$lsmeans
Sex = Female, Intervention = Placebo:
 Pre.Post   lsmean       SE df lower.CL upper.CL
 Pre      14.04027 1.798399 10 10.03319 18.04736
 Post     14.04027 1.798399 10 10.03319 18.04736

Sex = Male, Intervention = Placebo:
 Pre.Post   lsmean       SE df lower.CL upper.CL
 Pre      21.47560 1.824318 10 17.41077 25.54044
 Post     19.96757 1.800037 10 15.95683 23.97830

Sex = Female, Intervention = Testosterone:
 Pre.Post   lsmean       SE df lower.CL upper.CL
 Pre      15.19669 1.760476 10 11.27411 19.11928
 Post     16.58131 1.760476 10 12.65872 20.50389

Sex = Male, Intervention = Testosterone:
 Pre.Post   lsmean       SE df lower.CL upper.CL
 Pre      21.14938 1.800037 10 17.13865 25.16012
 Post     20.33120 1.800037 10 16.32047 24.34194

Confidence level used: 0.95 

$contrasts
Sex = Female, Intervention = Placebo:
 contrast        estimate       SE df t.ratio p.value
 Pre - Post  2.109424e-15 1.193399 41   0.000  1.0000

Sex = Male, Intervention = Placebo:
 contrast        estimate       SE df t.ratio p.value
 Pre - Post  1.508038e+00 1.231027 41   1.225  0.2276

Sex = Female, Intervention = Testosterone:
 contrast        estimate       SE df t.ratio p.value
 Pre - Post -1.384615e+00 1.097768 41  -1.261  0.2143

Sex = Male, Intervention = Testosterone:
 contrast        estimate       SE df t.ratio p.value
 Pre - Post  8.181818e-01 1.193399 41   0.686  0.4968

TableGrob (1 x 2) "arrange": 2 grobs
  z     cells    name           grob
1 1 (1-1,1-1) arrange gtable[layout]
2 2 (1-1,2-2) arrange gtable[layout]

Ethical Risk

Linear mixed-effects model fit by maximum likelihood
 Data: T_DF.NA2 
       AIC      BIC    logLik
  517.5502 545.1696 -247.7751

Random effects:
 Formula: ~1 | ID
        (Intercept)
StdDev:    3.955385

 Formula: ~1 | Session %in% ID
         (Intercept) Residual
StdDev: 0.0003743873 3.108673

Fixed effects: Ethical.Risk ~ Pre.Post * Sex * Intervention 
                                 Value Std.Error DF   t-value p-value
(Intercept)                  19.427060 1.2451138 41 15.602637  0.0000
Pre.Post1                    -0.479160 0.3427107 41 -1.398149  0.1696
Sex1                         -1.460429 1.2451138 10 -1.172928  0.2680
Intervention1                -0.263292 0.3454198 32 -0.762237  0.4515
Pre.Post1:Sex1               -0.648462 0.3427107 41 -1.892156  0.0655
Pre.Post1:Intervention1       0.603007 0.3427107 41  1.759523  0.0859
Sex1:Intervention1           -0.387139 0.3454198 32 -1.120778  0.2707
Pre.Post1:Sex1:Intervention1  0.115524 0.3427107 41  0.337089  0.7378
 Correlation: 
                             (Intr) Pr.Ps1 Sex1   Intrv1 Pr.P1:S1 P.P1:I Sx1:I1
Pre.Post1                     0.004                                            
Sex1                         -0.006 -0.004                                     
Intervention1                 0.015  0.014  0.008                              
Pre.Post1:Sex1               -0.004 -0.054  0.004 -0.014                       
Pre.Post1:Intervention1       0.004  0.054 -0.004  0.014  0.025                
Sex1:Intervention1            0.008 -0.014  0.015 -0.037  0.014   -0.014       
Pre.Post1:Sex1:Intervention1 -0.004  0.025  0.004 -0.014  0.054   -0.054  0.014

Standardized Within-Group Residuals:
       Min         Q1        Med         Q3        Max 
-2.5973768 -0.4497526 -0.1082360  0.4969251  3.0938972 

Number of Observations: 91
Number of Groups: 
             ID Session %in% ID 
             12              46 
                          numDF denDF   F-value p-value
(Intercept)                   1    41 243.74789  <.0001
Pre.Post                      1    41   2.65428  0.1109
Sex                           1    10   1.29627  0.2814
Intervention                  1    32   0.72052  0.4023
Pre.Post:Sex                  1    41   3.79764  0.0582
Pre.Post:Intervention         1    41   3.11602  0.0850
Sex:Intervention              1    32   1.26715  0.2687
Pre.Post:Sex:Intervention     1    41   0.11363  0.7378
$lsmeans
Sex = Female, Intervention = Placebo:
 Pre.Post   lsmean       SE df lower.CL upper.CL
 Pre      16.90711 1.957243 10 12.54610 21.26812
 Post     17.72529 1.957243 10 13.36428 22.08630

Sex = Male, Intervention = Placebo:
 Pre.Post   lsmean       SE df lower.CL upper.CL
 Pre      21.66812 1.985030 10 17.24520 26.09104
 Post     20.35455 1.958758 10 15.99017 24.71894

Sex = Female, Intervention = Testosterone:
 Pre.Post   lsmean       SE df lower.CL upper.CL
 Pre      16.77091 1.918366 10 12.49652 21.04529
 Post     20.46322 1.918366 10 16.18883 24.73760

Sex = Male, Intervention = Testosterone:
 Pre.Post   lsmean       SE df lower.CL upper.CL
 Pre      20.44546 1.958758 10 16.08108 24.80984
 Post     21.08182 1.958758 10 16.71744 25.44621

Confidence level used: 0.95 

$contrasts
Sex = Female, Intervention = Placebo:
 contrast     estimate       SE df t.ratio p.value
 Pre - Post -0.8181818 1.387955 41  -0.589  0.5588

Sex = Male, Intervention = Placebo:
 contrast     estimate       SE df t.ratio p.value
 Pre - Post  1.3135695 1.426168 41   0.921  0.3624

Sex = Female, Intervention = Testosterone:
 contrast     estimate       SE df t.ratio p.value
 Pre - Post -3.6923077 1.276733 41  -2.892  0.0061

Sex = Male, Intervention = Testosterone:
 contrast     estimate       SE df t.ratio p.value
 Pre - Post -0.6363636 1.387955 41  -0.458  0.6490

TableGrob (1 x 2) "arrange": 2 grobs
  z     cells    name           grob
1 1 (1-1,1-1) arrange gtable[layout]
2 2 (1-1,2-2) arrange gtable[layout]

Health Safety risk

Linear mixed-effects model fit by maximum likelihood
 Data: T_DF.NA2 
       AIC      BIC    logLik
  486.8408 514.4603 -232.4204

Random effects:
 Formula: ~1 | ID
        (Intercept)
StdDev:    4.324106

 Formula: ~1 | Session %in% ID
        (Intercept) Residual
StdDev:   0.8125637  2.42408

Fixed effects: Health_Safety.Risk ~ Pre.Post * Sex * Intervention 
                                 Value Std.Error DF   t-value p-value
(Intercept)                  22.366692 1.3410361 41 16.678665  0.0000
Pre.Post1                    -0.337761 0.2674136 41 -1.263066  0.2137
Sex1                         -0.392460 1.3410361 10 -0.292654  0.7758
Intervention1                 0.046093 0.2979223 32  0.154716  0.8780
Pre.Post1:Sex1               -0.489162 0.2674136 41 -1.829235  0.0746
Pre.Post1:Intervention1       0.125526 0.2674136 41  0.469407  0.6413
Sex1:Intervention1           -0.105308 0.2979223 32 -0.353475  0.7261
Pre.Post1:Sex1:Intervention1  0.201397 0.2674136 41  0.753130  0.4557
 Correlation: 
                             (Intr) Pr.Ps1 Sex1   Intrv1 Pr.P1:S1 P.P1:I Sx1:I1
Pre.Post1                     0.003                                            
Sex1                         -0.004 -0.003                                     
Intervention1                 0.012  0.014  0.006                              
Pre.Post1:Sex1               -0.003 -0.055  0.003 -0.014                       
Pre.Post1:Intervention1       0.003  0.055 -0.003  0.014  0.024                
Sex1:Intervention1            0.006 -0.014  0.012 -0.035  0.014   -0.014       
Pre.Post1:Sex1:Intervention1 -0.003  0.024  0.003 -0.014  0.055   -0.055  0.014

Standardized Within-Group Residuals:
        Min          Q1         Med          Q3         Max 
-2.69178992 -0.42644215 -0.01037085  0.48637162  3.67093205 

Number of Observations: 91
Number of Groups: 
             ID Session %in% ID 
             12              46 
                          numDF denDF   F-value p-value
(Intercept)                   1    41 278.19743  <.0001
Pre.Post                      1    41   2.04751  0.1600
Sex                           1    10   0.08136  0.7813
Intervention                  1    32   0.01473  0.9042
Pre.Post:Sex                  1    41   3.54650  0.0668
Pre.Post:Intervention         1    41   0.25685  0.6150
Sex:Intervention              1    32   0.13253  0.7182
Pre.Post:Sex:Intervention     1    41   0.56721  0.4557
$lsmeans
Sex = Female, Intervention = Placebo:
 Pre.Post   lsmean       SE df lower.CL upper.CL
 Pre      21.41502 2.018634 10 16.91722 25.91281
 Post     22.41502 2.018634 10 17.91722 26.91281

Sex = Male, Intervention = Placebo:
 Pre.Post   lsmean       SE df lower.CL upper.CL
 Pre      22.98608 2.036733 10 18.44796 27.52421
 Post     22.83502 2.019814 10 18.33460 27.33545

Sex = Female, Intervention = Testosterone:
 Pre.Post   lsmean       SE df lower.CL upper.CL
 Pre      20.87960 1.993176 10 16.43853 25.32067
 Post     23.18729 1.993176 10 18.74622 27.62836

Sex = Male, Intervention = Testosterone:
 Pre.Post   lsmean       SE df lower.CL upper.CL
 Pre      22.83502 2.019814 10 18.33460 27.33545
 Post     22.38048 2.019814 10 17.88005 26.88090

Confidence level used: 0.95 

$contrasts
Sex = Female, Intervention = Placebo:
 contrast     estimate        SE df t.ratio p.value
 Pre - Post -1.0000000 1.0822992 41  -0.924  0.3609

Sex = Male, Intervention = Placebo:
 contrast     estimate        SE df t.ratio p.value
 Pre - Post  0.1510600 1.1147811 41   0.136  0.8929

Sex = Female, Intervention = Testosterone:
 contrast     estimate        SE df t.ratio p.value
 Pre - Post -2.3076923 0.9955705 41  -2.318  0.0255

Sex = Male, Intervention = Testosterone:
 contrast     estimate        SE df t.ratio p.value
 Pre - Post  0.4545455 1.0822992 41   0.420  0.6767

TableGrob (1 x 2) "arrange": 2 grobs
  z     cells    name           grob
1 1 (1-1,1-1) arrange gtable[layout]
2 2 (1-1,2-2) arrange gtable[layout]

Recreational Risk

Linear mixed-effects model fit by maximum likelihood
 Data: T_DF.NA2 
      AIC      BIC   logLik
  513.192 540.8115 -245.596

Random effects:
 Formula: ~1 | ID
        (Intercept)
StdDev:    6.473518

 Formula: ~1 | Session %in% ID
        (Intercept) Residual
StdDev:    1.682729 2.442329

Fixed effects: Recreational.Risk ~ Pre.Post * Sex * Intervention 
                                Value Std.Error DF   t-value p-value
(Intercept)                  32.88364 1.9934830 41 16.495572  0.0000
Pre.Post1                    -0.16713 0.2697859 41 -0.619484  0.5390
Sex1                         -1.75055 1.9934830 10 -0.878137  0.4005
Intervention1                 0.19961 0.3781087 32  0.527904  0.6012
Pre.Post1:Sex1               -0.87833 0.2697859 41 -3.255643  0.0023
Pre.Post1:Intervention1       0.21924 0.2697859 41  0.812628  0.4211
Sex1:Intervention1           -0.10250 0.3781087 32 -0.271093  0.7881
Pre.Post1:Sex1:Intervention1  0.23531 0.2697859 41  0.872209  0.3882
 Correlation: 
                             (Intr) Pr.Ps1 Sex1   Intrv1 Pr.P1:S1 P.P1:I Sx1:I1
Pre.Post1                     0.002                                            
Sex1                         -0.003 -0.002                                     
Intervention1                 0.009  0.013  0.006                              
Pre.Post1:Sex1               -0.002 -0.057  0.002 -0.013                       
Pre.Post1:Intervention1       0.002  0.057 -0.002  0.013  0.021                
Sex1:Intervention1            0.006 -0.013  0.009 -0.032  0.013   -0.013       
Pre.Post1:Sex1:Intervention1 -0.002  0.021  0.002 -0.013  0.057   -0.057  0.013

Standardized Within-Group Residuals:
         Min           Q1          Med           Q3          Max 
-2.365962669 -0.552012559  0.006438086  0.498206336  2.643651873 

Number of Observations: 91
Number of Groups: 
             ID Session %in% ID 
             12              46 
                          numDF denDF   F-value p-value
(Intercept)                   1    41 271.78081  <.0001
Pre.Post                      1    41   0.81537  0.3718
Sex                           1    10   0.76032  0.4037
Intervention                  1    32   0.23026  0.6346
Pre.Post:Sex                  1    41  11.09037  0.0018
Pre.Post:Intervention         1    41   0.74097  0.3944
Sex:Intervention              1    32   0.07978  0.7794
Pre.Post:Sex:Intervention     1    41   0.76075  0.3882
$lsmeans
Sex = Female, Intervention = Placebo:
 Pre.Post   lsmean       SE df lower.CL upper.CL
 Pre      30.63929 2.923242 10 24.12590 37.15267
 Post     31.82110 2.923242 10 25.30771 38.33449

Sex = Male, Intervention = Placebo:
 Pre.Post   lsmean       SE df lower.CL upper.CL
 Pre      35.63143 2.938509 10 29.08402 42.17883
 Post     34.24118 2.924605 10 27.72475 40.75760

Sex = Female, Intervention = Testosterone:
 Pre.Post   lsmean       SE df lower.CL upper.CL
 Pre      29.53599 2.899541 10 23.07541 35.99657
 Post     32.53599 2.899541 10 26.07541 38.99657

Sex = Male, Intervention = Testosterone:
 Pre.Post   lsmean       SE df lower.CL upper.CL
 Pre      35.05936 2.924605 10 28.54293 41.57579
 Post     33.60481 2.924605 10 27.08839 40.12124

Confidence level used: 0.95 

$contrasts
Sex = Female, Intervention = Placebo:
 contrast    estimate       SE df t.ratio p.value
 Pre - Post -1.181818 1.090447 41  -1.084  0.2848

Sex = Male, Intervention = Placebo:
 contrast    estimate       SE df t.ratio p.value
 Pre - Post  1.390249 1.128679 41   1.232  0.2251

Sex = Female, Intervention = Testosterone:
 contrast    estimate       SE df t.ratio p.value
 Pre - Post -3.000000 1.003065 41  -2.991  0.0047

Sex = Male, Intervention = Testosterone:
 contrast    estimate       SE df t.ratio p.value
 Pre - Post  1.454545 1.090447 41   1.334  0.1896

TableGrob (1 x 2) "arrange": 2 grobs
  z     cells    name           grob
1 1 (1-1,1-1) arrange gtable[layout]
2 2 (1-1,2-2) arrange gtable[layout]

Social Risk

Linear mixed-effects model fit by maximum likelihood
 Data: T_DF.NA2 
       AIC      BIC    logLik
  468.0657 495.6851 -223.0328

Random effects:
 Formula: ~1 | ID
        (Intercept)
StdDev:    3.935943

 Formula: ~1 | Session %in% ID
        (Intercept) Residual
StdDev:    1.574873 1.890705

Fixed effects: Social ~ Pre.Post * Sex * Intervention 
                                 Value Std.Error DF   t-value p-value
(Intercept)                  30.365879 1.2335552 41 24.616555  0.0000
Pre.Post1                    -0.320071 0.2089532 41 -1.531782  0.1333
Sex1                         -1.902173 1.2335552 10 -1.542025  0.1541
Intervention1                 0.072304 0.3236451 32  0.223404  0.8246
Pre.Post1:Sex1               -0.854754 0.2089532 41 -4.090649  0.0002
Pre.Post1:Intervention1       0.309300 0.2089532 41  1.480235  0.1465
Sex1:Intervention1           -0.007834 0.3236451 32 -0.024207  0.9808
Pre.Post1:Sex1:Intervention1  0.092798 0.2089532 41  0.444110  0.6593
 Correlation: 
                             (Intr) Pr.Ps1 Sex1   Intrv1 Pr.P1:S1 P.P1:I Sx1:I1
Pre.Post1                     0.003                                            
Sex1                         -0.005 -0.003                                     
Intervention1                 0.013  0.012  0.009                              
Pre.Post1:Sex1               -0.003 -0.058  0.003 -0.012                       
Pre.Post1:Intervention1       0.003  0.058 -0.003  0.012  0.020                
Sex1:Intervention1            0.009 -0.012  0.013 -0.031  0.012   -0.012       
Pre.Post1:Sex1:Intervention1 -0.003  0.020  0.003 -0.012  0.058   -0.058  0.012

Standardized Within-Group Residuals:
        Min          Q1         Med          Q3         Max 
-1.43182407 -0.51978560 -0.02934255  0.57896508  1.94272833 

Number of Observations: 91
Number of Groups: 
             ID Session %in% ID 
             12              46 
                          numDF denDF  F-value p-value
(Intercept)                   1    41 605.1353  <.0001
Pre.Post                      1    41   3.6020  0.0648
Sex                           1    10   2.3383  0.1572
Intervention                  1    32   0.0265  0.8717
Pre.Post:Sex                  1    41  17.3096  0.0002
Pre.Post:Intervention         1    41   2.2756  0.1391
Sex:Intervention              1    32   0.0009  0.9765
Pre.Post:Sex:Intervention     1    41   0.1972  0.6593
$lsmeans
Sex = Female, Intervention = Placebo:
 Pre.Post   lsmean       SE df lower.CL upper.CL
 Pre      27.75545 1.855291 10 23.62160 31.88929
 Post     29.30090 1.855291 10 25.16706 33.43475

Sex = Male, Intervention = Placebo:
 Pre.Post   lsmean       SE df lower.CL upper.CL
 Pre      33.09938 1.870565 10 28.93150 37.26725
 Post     31.59701 1.856729 10 27.45995 35.73406

Sex = Female, Intervention = Testosterone:
 Pre.Post   lsmean       SE df lower.CL upper.CL
 Pre      26.82231 1.829493 10 22.74595 30.89868
 Post     29.97616 1.829493 10 25.89980 34.05252

Sex = Male, Intervention = Testosterone:
 Pre.Post   lsmean       SE df lower.CL upper.CL
 Pre      32.50610 1.856729 10 28.36905 36.64315
 Post     31.86973 1.856729 10 27.73268 36.00678

Confidence level used: 0.95 

$contrasts
Sex = Female, Intervention = Placebo:
 contrast     estimate        SE df t.ratio p.value
 Pre - Post -1.5454545 0.8441587 41  -1.831  0.0744

Sex = Male, Intervention = Placebo:
 contrast     estimate        SE df t.ratio p.value
 Pre - Post  1.5023703 0.8753013 41   1.716  0.0936

Sex = Female, Intervention = Testosterone:
 contrast     estimate        SE df t.ratio p.value
 Pre - Post -3.1538462 0.7765130 41  -4.062  0.0002

Sex = Male, Intervention = Testosterone:
 contrast     estimate        SE df t.ratio p.value
 Pre - Post  0.6363636 0.8441587 41   0.754  0.4553

TableGrob (1 x 2) "arrange": 2 grobs
  z     cells    name           grob
1 1 (1-1,1-1) arrange gtable[layout]
2 2 (1-1,2-2) arrange gtable[layout]

Empathy

Linear mixed-effects model fit by maximum likelihood
 Data: T_DF.NA2 
       AIC      BIC    logLik
  569.3296 596.9491 -273.6648

Random effects:
 Formula: ~1 | ID
        (Intercept)
StdDev:    12.22933

 Formula: ~1 | Session %in% ID
        (Intercept) Residual
StdDev:    2.996947 2.844551

Fixed effects: Empathy ~ Pre.Post * Sex * Intervention 
                                Value Std.Error DF   t-value p-value
(Intercept)                  37.22673  3.740190 41  9.953166  0.0000
Pre.Post1                     0.92165  0.314583 41  2.929748  0.0055
Sex1                          4.21454  3.740190 10  1.126826  0.2861
Intervention1                -0.14401  0.565215 32 -0.254789  0.8005
Pre.Post1:Sex1                0.14129  0.314583 41  0.449127  0.6557
Pre.Post1:Intervention1       0.42689  0.314583 41  1.357015  0.1822
Sex1:Intervention1           -0.56074  0.565215 32 -0.992075  0.3286
Pre.Post1:Sex1:Intervention1  0.32835  0.314583 41  1.043765  0.3027
 Correlation: 
                             (Intr) Pr.Ps1 Sex1   Intrv1 Pr.P1:S1 P.P1:I Sx1:I1
Pre.Post1                     0.002                                            
Sex1                         -0.002 -0.002                                     
Intervention1                 0.007  0.011  0.005                              
Pre.Post1:Sex1               -0.002 -0.060  0.002 -0.011                       
Pre.Post1:Intervention1       0.002  0.060 -0.002  0.011  0.019                
Sex1:Intervention1            0.005 -0.011  0.007 -0.029  0.011   -0.011       
Pre.Post1:Sex1:Intervention1 -0.002  0.019  0.002 -0.011  0.060   -0.060  0.011

Standardized Within-Group Residuals:
          Min            Q1           Med            Q3           Max 
-2.0199431135 -0.5239276876  0.0003454661  0.4477106080  2.3362976142 

Number of Observations: 91
Number of Groups: 
             ID Session %in% ID 
             12              46 
                          numDF denDF  F-value p-value
(Intercept)                   1    41 99.18199  <.0001
Pre.Post                      1    41  8.13204  0.0068
Sex                           1    10  1.28879  0.2827
Intervention                  1    32  0.07990  0.7793
Pre.Post:Sex                  1    41  0.13452  0.7157
Pre.Post:Intervention         1    41  1.99129  0.1657
Sex:Intervention              1    32  1.00812  0.3229
Pre.Post:Sex:Intervention     1    41  1.08944  0.3027
$lsmeans
Sex = Female, Intervention = Placebo:
 Pre.Post   lsmean       SE df lower.CL upper.CL
 Pre      42.55471 5.390290 10 30.54439 54.56502
 Post     38.91834 5.390290 10 26.90803 50.92866

Sex = Male, Intervention = Placebo:
 Pre.Post   lsmean       SE df lower.CL upper.CL
 Pre      34.30782 5.403550 10 22.26796 46.34768
 Post     32.55001 5.392004 10 20.53587 44.56414

Sex = Female, Intervention = Testosterone:
 Pre.Post   lsmean       SE df lower.CL upper.CL
 Pre      42.45371 5.365291 10 30.49910 54.40832
 Post     41.83832 5.365291 10 29.88371 53.79294

Sex = Male, Intervention = Testosterone:
 Pre.Post   lsmean       SE df lower.CL upper.CL
 Pre      33.27728 5.392004 10 21.26315 45.29142
 Post     31.91364 5.392004 10 19.89951 43.92778

Confidence level used: 0.95 

$contrasts
Sex = Female, Intervention = Placebo:
 contrast    estimate       SE df t.ratio p.value
 Pre - Post 3.6363636 1.270030 41   2.863  0.0066

Sex = Male, Intervention = Placebo:
 contrast    estimate       SE df t.ratio p.value
 Pre - Post 1.7578093 1.320161 41   1.332  0.1904

Sex = Female, Intervention = Testosterone:
 contrast    estimate       SE df t.ratio p.value
 Pre - Post 0.6153846 1.168258 41   0.527  0.6012

Sex = Male, Intervention = Testosterone:
 contrast    estimate       SE df t.ratio p.value
 Pre - Post 1.3636364 1.270030 41   1.074  0.2892

TableGrob (1 x 2) "arrange": 2 grobs
  z     cells    name           grob
1 1 (1-1,1-1) arrange gtable[layout]
2 2 (1-1,2-2) arrange gtable[layout]

Plots Across Time (log)

Only Looking in the Testosterone Condition (log)

#Total Aggression
  
  #All data
  p3 <- ggplot(subset(T_DF.NA2,InterventionC=="Testosterone"),aes(y=Test.l,x=Total.Aggression)) + geom_point(size=2) + geom_smooth(method="lm",se=TRUE)
  p3


  #Seperated by ID
  p3 <- ggplot(subset(T_DF.NA2,InterventionC=="Testosterone"),aes(y=Test.l,x=Total.Aggression,color=ID)) + geom_point(size=2) + geom_smooth(method="lm",se=FALSE)
  p3
  
    p3 <- ggplot(subset(T_DF.NA2,Sex_1=="Male" & InterventionC=="Testosterone"),aes(y=Test.l,x=Total.Aggression,color=ID)) + geom_point(size=2) + geom_smooth(method="lm",se=FALSE)
  p3

  #Seperate Plots for each individual
    uni <- unique(T_DF.NA2$ID)

    for (i in 1:length(uni)) {
        p3 <- ggplot(subset(T_DF.NA2,InterventionC=="Testosterone" & ID==uni[i]),aes(y=Test.l,x=Total.Aggression,color=ID,linetype=Session)) + geom_point(size=2) + geom_smooth(method="lm",se=FALSE); print(p3)
    }

2017-08-18