MENARIK DAN DATA EKSPLORASI

Dengan jumlah item 28 dan responden untuk peinilaian pribadi 136 orang

library(psych)
DATA<-read.csv("~/Desktop/PU-NIN.csv")
DATA<-DATA[1:28]
describe(DATA)
##        vars   n  mean    sd median trimmed   mad min max range  skew
## i1OP      1 136 80.55 21.38   85.0   85.00 14.83   0  95    95 -2.42
## i2OP      2 136 78.64 17.98   85.0   81.91 14.83   0  95    95 -2.59
## i3OP      3 136 70.74 17.05   67.5   71.50 25.95   0  95    95 -0.92
## i4OP      4 136 78.31 16.12   75.0   80.41  0.00   0  95    95 -1.76
## i5INT     5 136 82.17 14.97   85.0   84.64 14.83   0  95    95 -2.78
## i6INT     6 136 79.78 14.40   85.0   81.77 14.83   0  95    95 -2.74
## i7INT     7 136 87.21  7.09   85.0   88.00  0.00  50  95    45 -1.42
## i8INT     8 136 79.56 12.42   75.0   80.14 14.83  50  95    45 -0.31
## i9INT     9 136 81.47 12.08   75.0   82.73 14.83  50  95    45 -0.51
## i10INT   10 136 89.19 11.44   95.0   92.05  0.00  50  95    45 -1.89
## i11KOM   11 136 82.79 13.45   85.0   84.23 14.83  50  95    45 -0.87
## i12KOM   12 136 85.74 11.39   90.0   87.64  7.41  50  95    45 -1.06
## i13KOM   13 136 84.41  8.65   85.0   85.36  0.00  50  95    45 -1.68
## i14KJ    14 136 82.61 13.32   85.0   83.91 14.83  50  95    45 -0.66
## i15KJ    15 136 80.51 11.31   85.0   81.86 14.83  50  95    45 -1.07
## i16KJ    16 136 81.95 11.91   85.0   83.36 14.83  50  95    45 -0.60
## i17KP    17 136 84.23 10.24   85.0   85.00 14.83  50  95    45 -0.84
## i18KP    18 136 81.03 12.67   85.0   82.23 14.83  50  95    45 -0.75
## i19KP    19 136 81.88 12.49   85.0   82.91 14.83   0  95    95 -2.28
## i20KP    20 136 84.45 12.29   85.0   86.55 14.83  50  95    45 -1.30
## i21KP    21 136 84.63 11.75   85.0   86.41 14.83  50  95    45 -0.88
## i22KP    22 136 72.68 14.72   60.0   71.64  0.00  50  95    45  0.48
## i23KP    23 136 84.23  6.83   85.0   85.00  0.00  50  95    45 -2.63
## i24KP    24 136 86.32 11.32   85.0   88.68 14.83  50  95    45 -1.59
## i25DIS   25 136 87.87  9.46   90.0   89.73  7.41  50  95    45 -1.73
## i26DIS   26 136 70.15 13.04   60.0   69.05 14.83  50  95    45  0.54
## i27DIS   27 136 75.15 14.86   75.0   75.77 22.24  50  95    45 -0.21
## i28DIS   28 136 82.98 14.04   85.0   84.73 14.83  50  95    45 -0.93
##        kurtosis   se
## i1OP       6.21 1.83
## i2OP       8.38 1.54
## i3OP       2.17 1.46
## i4OP       6.29 1.38
## i5INT     11.42 1.28
## i6INT     11.88 1.23
## i7INT      5.31 0.61
## i8INT     -0.99 1.06
## i9INT     -0.20 1.04
## i10INT     2.24 0.98
## i11KOM    -0.63 1.15
## i12KOM     0.19 0.98
## i13KOM     4.57 0.74
## i14KJ     -0.93 1.14
## i15KJ      0.91 0.97
## i16KJ     -0.17 1.02
## i17KP      0.88 0.88
## i18KP     -0.41 1.09
## i19KP     12.14 1.07
## i20KP      0.91 1.05
## i21KP     -0.22 1.01
## i22KP     -1.45 1.26
## i23KP      9.21 0.59
## i24KP      1.91 0.97
## i25DIS     3.13 0.81
## i26DIS    -0.88 1.12
## i27DIS    -1.17 1.27
## i28DIS    -0.48 1.20

METODE PRINCIPAL KOMPONEN ANALISIS

p3p <-principal(DATA,6,n.obs = 136,rotate="Promax")
p3p
## Principal Components Analysis
## Call: principal(r = DATA, nfactors = 6, rotate = "Promax", n.obs = 136)
## Standardized loadings (pattern matrix) based upon correlation matrix
##          RC1   RC2   RC4   RC5   RC3   RC6   h2   u2 com
## i1OP   -0.32  0.88  0.06  0.07 -0.09 -0.02 0.58 0.42 1.3
## i2OP   -0.17  0.83  0.20 -0.28 -0.10  0.07 0.64 0.36 1.5
## i3OP   -0.06  0.44 -0.03  0.15  0.16  0.53 0.62 0.38 2.4
## i4OP    0.15  0.67 -0.05  0.16 -0.16 -0.08 0.56 0.44 1.4
## i5INT   0.29  0.68 -0.08  0.06 -0.16  0.15 0.74 0.26 1.6
## i6INT   0.14  0.63 -0.10  0.10  0.17  0.10 0.65 0.35 1.4
## i7INT  -0.05  0.04 -0.34  0.93  0.34  0.02 0.68 0.32 1.6
## i8INT  -0.10 -0.03  0.37  0.40  0.15  0.35 0.52 0.48 3.4
## i9INT   0.32  0.45 -0.06  0.21 -0.08 -0.13 0.50 0.50 2.6
## i10INT  0.44  0.14 -0.18 -0.24  0.28  0.23 0.51 0.49 3.7
## i11KOM -0.09  0.02  0.79 -0.07  0.36  0.03 0.72 0.28 1.5
## i12KOM  0.62  0.01  0.36 -0.35  0.06  0.13 0.64 0.36 2.4
## i13KOM  0.17  0.16 -0.04  0.34 -0.20  0.32 0.42 0.58 3.6
## i14KJ   0.02  0.22  0.32  0.32  0.13 -0.13 0.45 0.55 3.5
## i15KJ   0.57  0.17  0.10 -0.14  0.08 -0.02 0.50 0.50 1.4
## i16KJ   0.69  0.06 -0.13  0.10 -0.13  0.03 0.50 0.50 1.2
## i17KP   0.18 -0.11  0.31  0.40  0.04  0.13 0.50 0.50 2.8
## i18KP   0.13  0.24  0.06  0.05  0.38 -0.17 0.37 0.63 2.5
## i19KP   0.45 -0.22  0.09  0.15  0.07 -0.03 0.27 0.73 1.9
## i20KP   0.69  0.05  0.11 -0.08 -0.09  0.06 0.55 0.45 1.1
## i21KP   0.49 -0.15  0.27  0.10 -0.19 -0.10 0.41 0.59 2.3
## i22KP   0.03  0.04  0.85 -0.29 -0.13 -0.09 0.60 0.40 1.3
## i23KP   0.62  0.00 -0.03  0.28 -0.14 -0.12 0.54 0.46 1.6
## i24KP   0.91 -0.16 -0.16 -0.04  0.00 -0.05 0.58 0.42 1.1
## i25DIS  0.30 -0.14 -0.17  0.12 -0.01  0.53 0.40 0.60 2.1
## i26DIS -0.25 -0.25  0.01  0.41  0.93  0.01 0.71 0.29 1.7
## i27DIS  0.35 -0.04 -0.08  0.13  0.22 -0.60 0.47 0.53 2.1
## i28DIS  0.09  0.05  0.30  0.06  0.61 -0.10 0.59 0.41 1.6
## 
##                        RC1  RC2  RC4  RC5  RC3  RC6
## SS loadings           4.26 3.58 2.16 1.97 1.82 1.44
## Proportion Var        0.15 0.13 0.08 0.07 0.07 0.05
## Cumulative Var        0.15 0.28 0.36 0.43 0.49 0.54
## Proportion Explained  0.28 0.23 0.14 0.13 0.12 0.09
## Cumulative Proportion 0.28 0.51 0.66 0.79 0.91 1.00
## 
##  With component correlations of 
##      RC1  RC2  RC4   RC5   RC3  RC6
## RC1 1.00 0.52 0.45  0.41  0.27 0.23
## RC2 0.52 1.00 0.30  0.17  0.32 0.17
## RC4 0.45 0.30 1.00  0.43  0.10 0.11
## RC5 0.41 0.17 0.43  1.00 -0.15 0.06
## RC3 0.27 0.32 0.10 -0.15  1.00 0.08
## RC6 0.23 0.17 0.11  0.06  0.08 1.00
## 
## Mean item complexity =  2
## Test of the hypothesis that 6 components are sufficient.
## 
## The root mean square of the residuals (RMSR) is  0.06 
##  with the empirical chi square  416.1  with prob <  1.5e-13 
## 
## Fit based upon off diagonal values = 0.94
print(p3p,cut=0.3,digits=3)
## Principal Components Analysis
## Call: principal(r = DATA, nfactors = 6, rotate = "Promax", n.obs = 136)
## Standardized loadings (pattern matrix) based upon correlation matrix
##           RC1    RC2    RC4    RC5    RC3    RC6    h2    u2  com
## i1OP   -0.319  0.876                             0.578 0.422 1.31
## i2OP           0.830                             0.643 0.357 1.49
## i3OP           0.438                       0.534 0.625 0.375 2.36
## i4OP           0.666                             0.564 0.436 1.40
## i5INT          0.681                             0.741 0.259 1.64
## i6INT          0.630                             0.648 0.352 1.44
## i7INT                -0.341  0.927  0.342        0.683 0.317 1.57
## i8INT                 0.366  0.402         0.351 0.521 0.479 3.44
## i9INT   0.322  0.450                             0.496 0.504 2.63
## i10INT  0.442                                    0.512 0.488 3.68
## i11KOM                0.788         0.362        0.720 0.280 1.46
## i12KOM  0.617         0.357 -0.348               0.639 0.361 2.39
## i13KOM                       0.344         0.322 0.424 0.576 3.65
## i14KJ                 0.318  0.325               0.455 0.545 3.46
## i15KJ   0.569                                    0.502 0.498 1.42
## i16KJ   0.691                                    0.497 0.503 1.21
## i17KP                 0.306  0.404               0.502 0.498 2.79
## i18KP                               0.384        0.369 0.631 2.53
## i19KP   0.453                                    0.269 0.731 1.88
## i20KP   0.692                                    0.546 0.454 1.14
## i21KP   0.491                                    0.414 0.586 2.35
## i22KP                 0.845                      0.597 0.403 1.31
## i23KP   0.617                                    0.540 0.460 1.61
## i24KP   0.914                                    0.585 0.415 1.13
## i25DIS                                     0.531 0.398 0.602 2.12
## i26DIS                       0.414  0.926        0.707 0.293 1.72
## i27DIS  0.348                             -0.602 0.465 0.535 2.09
## i28DIS                              0.606        0.593 0.407 1.62
## 
##                         RC1   RC2   RC4   RC5   RC3   RC6
## SS loadings           4.257 3.577 2.163 1.970 1.821 1.442
## Proportion Var        0.152 0.128 0.077 0.070 0.065 0.052
## Cumulative Var        0.152 0.280 0.357 0.427 0.492 0.544
## Proportion Explained  0.280 0.235 0.142 0.129 0.120 0.095
## Cumulative Proportion 0.280 0.514 0.656 0.786 0.905 1.000
## 
##  With component correlations of 
##       RC1   RC2   RC4    RC5    RC3   RC6
## RC1 1.000 0.518 0.449  0.411  0.274 0.226
## RC2 0.518 1.000 0.302  0.173  0.322 0.174
## RC4 0.449 0.302 1.000  0.434  0.097 0.109
## RC5 0.411 0.173 0.434  1.000 -0.152 0.058
## RC3 0.274 0.322 0.097 -0.152  1.000 0.080
## RC6 0.226 0.174 0.109  0.058  0.080 1.000
## 
## Mean item complexity =  2
## Test of the hypothesis that 6 components are sufficient.
## 
## The root mean square of the residuals (RMSR) is  0.064 
##  with the empirical chi square  416.096  with prob <  1.51e-13 
## 
## Fit based upon off diagonal values = 0.94

METODA FACTOR ANALYSIS

f3t <- fa(DATA,6,n.obs=136)
## Loading required namespace: GPArotation
print(f3t,cut=0.3,digits=3)
## Factor Analysis using method =  minres
## Call: fa(r = DATA, nfactors = 6, n.obs = 136)
## Standardized loadings (pattern matrix) based upon correlation matrix
##           MR1    MR2    MR3    MR6    MR4    MR5     h2    u2  com
## i1OP           0.707                             0.4992 0.501 1.06
## i2OP           0.693                             0.6021 0.398 1.24
## i3OP                         0.439               0.4030 0.597 1.89
## i4OP           0.338                             0.4366 0.563 3.15
## i5INT          0.355         0.502               0.7550 0.245 2.57
## i6INT                        0.631               0.6734 0.327 1.38
## i7INT                                      0.576 0.4506 0.549 1.51
## i8INT                 0.474                0.362 0.4334 0.567 2.56
## i9INT   0.342                                    0.3953 0.605 2.77
## i10INT                       0.427               0.2951 0.705 1.95
## i11KOM                0.807                      0.7287 0.271 1.09
## i12KOM  0.436         0.359                      0.5704 0.430 3.20
## i13KOM                                           0.2630 0.737 3.03
## i14KJ                                            0.3543 0.646 4.81
## i15KJ   0.422                                    0.4511 0.549 2.24
## i16KJ   0.467                0.305               0.4495 0.551 2.11
## i17KP                 0.318                0.344 0.3881 0.612 2.90
## i18KP                                            0.2479 0.752 3.00
## i19KP   0.327                                    0.1873 0.813 1.86
## i20KP   0.608                                    0.5027 0.497 1.12
## i21KP   0.507                                    0.3509 0.649 1.99
## i22KP                 0.539                      0.3146 0.685 1.34
## i23KP   0.575                                    0.4607 0.539 1.40
## i24KP   0.699                                    0.4867 0.513 1.19
## i25DIS                                           0.0960 0.904 2.52
## i26DIS                              0.654        0.5042 0.496 1.43
## i27DIS                                           0.0891 0.911 2.10
## i28DIS                              0.583        0.6217 0.378 2.02
## 
##                         MR1   MR2   MR3   MR6   MR4   MR5
## SS loadings           3.422 2.015 1.980 2.111 1.192 1.290
## Proportion Var        0.122 0.072 0.071 0.075 0.043 0.046
## Cumulative Var        0.122 0.194 0.265 0.340 0.383 0.429
## Proportion Explained  0.285 0.168 0.165 0.176 0.099 0.107
## Cumulative Proportion 0.285 0.453 0.618 0.793 0.893 1.000
## 
##  With factor correlations of 
##       MR1   MR2   MR3   MR6   MR4   MR5
## MR1 1.000 0.286 0.387 0.379 0.098 0.271
## MR2 0.286 1.000 0.268 0.389 0.055 0.052
## MR3 0.387 0.268 1.000 0.266 0.278 0.128
## MR6 0.379 0.389 0.266 1.000 0.072 0.190
## MR4 0.098 0.055 0.278 0.072 1.000 0.066
## MR5 0.271 0.052 0.128 0.190 0.066 1.000
## 
## Mean item complexity =  2.1
## Test of the hypothesis that 6 factors are sufficient.
## 
## The degrees of freedom for the null model are  378  and the objective function was  11.232 with Chi Square of  1402.114
## The degrees of freedom for the model are 225  and the objective function was  2.577 
## 
## The root mean square of the residuals (RMSR) is  0.043 
## The df corrected root mean square of the residuals is  0.056 
## 
## The harmonic number of observations is  136 with the empirical chi square  189.491  with prob <  0.959 
## The total number of observations was  136  with Likelihood Chi Square =  311.427  with prob <  0.000119 
## 
## Tucker Lewis Index of factoring reliability =  0.8517
## RMSEA index =  0.0636  and the 90 % confidence intervals are  0.0381 0.0671
## BIC =  -793.92
## Fit based upon off diagonal values = 0.973
## Measures of factor score adequacy             
##                                                  MR1   MR2   MR3   MR6
## Correlation of scores with factors             0.917 0.888 0.904 0.892
## Multiple R square of scores with factors       0.841 0.789 0.817 0.796
## Minimum correlation of possible factor scores  0.682 0.579 0.635 0.592
##                                                  MR4   MR5
## Correlation of scores with factors             0.848 0.814
## Multiple R square of scores with factors       0.718 0.662
## Minimum correlation of possible factor scores  0.437 0.324
fa.diagram(f3t)

METODA FACTOR ANALYSIS DENGAN PRINCIPAL AXIS (PA)

f3 <- fa(DATA,6,n.obs = 136,fm="pa")
f3o <- target.rot(f3)
print(f3o,cut=0.3,digits=3)
## 
## Call: NULL
## Standardized loadings (pattern matrix) based upon correlation matrix
##           PA1    PA2    PA3    PA6    PA4    PA5     h2    u2
## i1OP           0.721                             0.5199 0.480
## i2OP           0.695                             0.5414 0.459
## i3OP                         0.458               0.2751 0.725
## i4OP           0.330                             0.2516 0.748
## i5INT          0.338         0.501               0.4567 0.543
## i6INT                        0.642               0.4612 0.539
## i7INT                                      0.587 0.4077 0.592
## i8INT                 0.563                0.388 0.4265 0.573
## i9INT   0.300                                    0.2340 0.766
## i10INT                       0.422               0.2604 0.740
## i11KOM                0.799                      0.6739 0.326
## i12KOM  0.482                                    0.4436 0.556
## i13KOM                                           0.1780 0.822
## i14KJ                                            0.2304 0.770
## i15KJ   0.441                                    0.2899 0.710
## i16KJ   0.481                                    0.3445 0.655
## i17KP                 0.381                0.377 0.2848 0.715
## i18KP                                            0.1554 0.845
## i19KP   0.331                                    0.1502 0.850
## i20KP   0.608                                    0.3915 0.608
## i21KP   0.486               -0.317               0.3792 0.621
## i22KP                 0.545                      0.3389 0.661
## i23KP   0.556                                    0.3989 0.601
## i24KP   0.739                                    0.5351 0.465
## i25DIS                                           0.0741 0.926
## i26DIS                              0.630        0.5199 0.480
## i27DIS                                           0.0982 0.902
## i28DIS                              0.616        0.4970 0.503
## 
##                         PA1   PA2   PA3   PA6   PA4   PA5
## SS loadings           2.812 1.596 1.566 1.599 1.147 1.097
## Proportion Var        0.100 0.057 0.056 0.057 0.041 0.039
## Cumulative Var        0.100 0.157 0.213 0.271 0.311 0.351
## Proportion Explained  0.286 0.163 0.160 0.163 0.117 0.112
## Cumulative Proportion 0.286 0.449 0.609 0.771 0.888 1.000
##       PA1    PA2    PA3    PA6    PA4    PA5
## PA1 1.000  0.193  0.170  0.113  0.026  0.066
## PA2 0.193  1.000 -0.008 -0.013 -0.003  0.032
## PA3 0.170 -0.008  1.000  0.155  0.043 -0.257
## PA6 0.113 -0.013  0.155  1.000  0.016  0.036
## PA4 0.026 -0.003  0.043  0.016  1.000  0.032
## PA5 0.066  0.032 -0.257  0.036  0.032  1.000
fa.diagram(f3o)

METODA FACTOR ANALYSIS DENGAN WLS (WLS)

f3w <- fa(DATA,6,n.obs = 136,fm="wls")
print(f3w,cut=0.3,digits=3)
## Factor Analysis using method =  wls
## Call: fa(r = DATA, nfactors = 6, n.obs = 136, fm = "wls")
## Standardized loadings (pattern matrix) based upon correlation matrix
##          WLS1   WLS6   WLS3   WLS2   WLS4   WLS5     h2    u2  com
## i1OP                         0.593               0.4834 0.517 1.45
## i2OP                         0.665               0.6327 0.367 1.34
## i3OP           0.525                             0.3717 0.628 1.18
## i4OP           0.450                             0.4562 0.544 2.10
## i5INT          0.719                             0.7950 0.205 1.35
## i6INT          0.764                             0.6964 0.304 1.17
## i7INT   0.308                             -0.309 0.3575 0.643 4.53
## i8INT          0.314  0.460                      0.3906 0.609 2.63
## i9INT   0.365                                    0.3918 0.608 2.36
## i10INT         0.388                             0.2904 0.710 2.34
## i11KOM                0.781                      0.7198 0.280 1.13
## i12KOM                                     0.545 0.6902 0.310 2.17
## i13KOM  0.349                                    0.2496 0.750 2.17
## i14KJ   0.351                                    0.3747 0.625 3.32
## i15KJ                                            0.4385 0.562 3.60
## i16KJ   0.391  0.396                             0.4598 0.540 2.66
## i17KP   0.367         0.338                      0.3964 0.604 3.06
## i18KP                               0.300        0.2522 0.748 2.63
## i19KP   0.332                                    0.1904 0.810 1.75
## i20KP   0.576                                    0.5221 0.478 1.37
## i21KP   0.615                                    0.3604 0.640 1.33
## i22KP                 0.543                      0.3262 0.674 1.39
## i23KP   0.632                                    0.4497 0.550 1.03
## i24KP   0.563                                    0.4522 0.548 1.68
## i25DIS                                           0.1000 0.900 1.85
## i26DIS                              0.644        0.4710 0.529 1.36
## i27DIS                                           0.0877 0.912 2.55
## i28DIS                              0.591        0.6083 0.392 1.94
## 
##                        WLS1  WLS6  WLS3  WLS2  WLS4  WLS5
## SS loadings           3.319 3.184 1.857 1.446 1.285 0.924
## Proportion Var        0.119 0.114 0.066 0.052 0.046 0.033
## Cumulative Var        0.119 0.232 0.299 0.350 0.396 0.429
## Proportion Explained  0.276 0.265 0.155 0.120 0.107 0.077
## Cumulative Proportion 0.276 0.541 0.696 0.816 0.923 1.000
## 
##  With factor correlations of 
##       WLS1  WLS6  WLS3  WLS2  WLS4  WLS5
## WLS1 1.000 0.464 0.362 0.097 0.141 0.176
## WLS6 0.464 1.000 0.299 0.314 0.147 0.168
## WLS3 0.362 0.299 1.000 0.174 0.320 0.190
## WLS2 0.097 0.314 0.174 1.000 0.041 0.163
## WLS4 0.141 0.147 0.320 0.041 1.000 0.077
## WLS5 0.176 0.168 0.190 0.163 0.077 1.000
## 
## Mean item complexity =  2.1
## Test of the hypothesis that 6 factors are sufficient.
## 
## The degrees of freedom for the null model are  378  and the objective function was  11.232 with Chi Square of  1402.114
## The degrees of freedom for the model are 225  and the objective function was  2.563 
## 
## The root mean square of the residuals (RMSR) is  0.043 
## The df corrected root mean square of the residuals is  0.056 
## 
## The harmonic number of observations is  136 with the empirical chi square  191.623  with prob <  0.948 
## The total number of observations was  136  with Likelihood Chi Square =  309.693  with prob <  0.000153 
## 
## Tucker Lewis Index of factoring reliability =  0.8547
## RMSEA index =  0.0631  and the 90 % confidence intervals are  0.0374 0.0667
## BIC =  -795.655
## Fit based upon off diagonal values = 0.972
## Measures of factor score adequacy             
##                                                 WLS1  WLS6  WLS3  WLS2
## Correlation of scores with factors             0.914 0.942 0.897 0.865
## Multiple R square of scores with factors       0.835 0.888 0.804 0.748
## Minimum correlation of possible factor scores  0.671 0.775 0.608 0.496
##                                                 WLS4  WLS5
## Correlation of scores with factors             0.846 0.811
## Multiple R square of scores with factors       0.716 0.658
## Minimum correlation of possible factor scores  0.433 0.317
fa.diagram(f3w)

METODE CLUSTER ANALYSIS

ic <- iclust(DATA)

summary(ic)
## ICLUST (Item Cluster Analysis)Call: iclust(r.mat = DATA)
## ICLUST 
## 
## Purified Alpha:
## [1] 0.89
## 
##  Guttman Lambda6* 
## [1] 0.93
## 
## Original Beta:
## [1] 0.31
## 
## Cluster size:
## [1] 28
## 
## Purified scale intercorrelations
##  reliabilities on diagonal
##  correlations corrected for attenuation above diagonal: 
##      [,1]
## [1,] 0.89

KONGRUENSI FACTOR ANALYSIS DAN CLUSTER

round(factor.congruence(list(p3p,f3t,f3o,f3w)),2)
##        RC1   RC2   RC4   RC5   RC3   RC6   MR1   MR2  MR3   MR6   MR4
## RC1   1.00  0.02  0.01  0.01 -0.09 -0.02  0.95 -0.02 0.15  0.35  0.00
## RC2   0.02  1.00  0.03  0.03 -0.11  0.13  0.11  0.92 0.10  0.61 -0.04
## RC4   0.01  0.03  1.00 -0.19  0.14 -0.03  0.12  0.16 0.92 -0.16  0.07
## RC5   0.01  0.03 -0.19  1.00  0.33  0.10  0.17 -0.01 0.02  0.10  0.29
## RC3  -0.09 -0.11  0.14  0.33  1.00 -0.03 -0.04 -0.10 0.27  0.18  0.94
## RC6  -0.02  0.13 -0.03  0.10 -0.03  1.00 -0.05  0.06 0.13  0.47 -0.21
## MR1   0.95  0.11  0.12  0.17 -0.04 -0.05  1.00  0.14 0.23  0.27  0.09
## MR2  -0.02  0.92  0.16 -0.01 -0.10  0.06  0.14  1.00 0.12  0.33  0.04
## MR3   0.15  0.10  0.92  0.02  0.27  0.13  0.23  0.12 1.00  0.13  0.13
## MR6   0.35  0.61 -0.16  0.10  0.18  0.47  0.27  0.33 0.13  1.00  0.07
## MR4   0.00 -0.04  0.07  0.29  0.94 -0.21  0.09  0.04 0.13  0.07  1.00
## MR5   0.13  0.12 -0.06  0.95  0.12  0.24  0.29  0.08 0.15  0.17  0.07
## PA1   0.98  0.02  0.10  0.10 -0.06 -0.08  0.99  0.04 0.20  0.24  0.07
## PA2  -0.13  0.91  0.13 -0.04 -0.18  0.06  0.02  0.99 0.06  0.26 -0.05
## PA3  -0.04  0.06  0.89  0.16  0.21  0.15  0.08  0.10 0.96  0.00  0.05
## PA6   0.23  0.66 -0.19  0.07  0.19  0.47  0.15  0.39 0.08  0.99  0.09
## PA4   0.01  0.03  0.14  0.26  0.91 -0.23  0.12  0.14 0.17  0.06  0.99
## PA5   0.15  0.05 -0.03  0.94  0.11  0.22  0.31  0.02 0.17  0.11  0.06
## WLS1  0.83  0.11  0.13  0.40 -0.07 -0.04  0.95  0.18 0.23  0.14  0.07
## WLS6  0.36  0.72 -0.12  0.30  0.10  0.45  0.35  0.48 0.17  0.95  0.03
## WLS3  0.08  0.11  0.91  0.09  0.26  0.12  0.19  0.13 0.99  0.09  0.12
## WLS2 -0.11  0.82  0.21 -0.26 -0.13 -0.06  0.03  0.95 0.07  0.15  0.04
## WLS4  0.07  0.00  0.07  0.35  0.93 -0.17  0.17  0.08 0.16  0.13  0.99
## WLS5  0.58  0.01  0.20 -0.67  0.03 -0.01  0.43 -0.03 0.21  0.34  0.06
##        MR5   PA1   PA2   PA3   PA6   PA4   PA5  WLS1  WLS6 WLS3  WLS2
## RC1   0.13  0.98 -0.13 -0.04  0.23  0.01  0.15  0.83  0.36 0.08 -0.11
## RC2   0.12  0.02  0.91  0.06  0.66  0.03  0.05  0.11  0.72 0.11  0.82
## RC4  -0.06  0.10  0.13  0.89 -0.19  0.14 -0.03  0.13 -0.12 0.91  0.21
## RC5   0.95  0.10 -0.04  0.16  0.07  0.26  0.94  0.40  0.30 0.09 -0.26
## RC3   0.12 -0.06 -0.18  0.21  0.19  0.91  0.11 -0.07  0.10 0.26 -0.13
## RC6   0.24 -0.08  0.06  0.15  0.47 -0.23  0.22 -0.04  0.45 0.12 -0.06
## MR1   0.29  0.99  0.02  0.08  0.15  0.12  0.31  0.95  0.35 0.19  0.03
## MR2   0.08  0.04  0.99  0.10  0.39  0.14  0.02  0.18  0.48 0.13  0.95
## MR3   0.15  0.20  0.06  0.96  0.08  0.17  0.17  0.23  0.17 0.99  0.07
## MR6   0.17  0.24  0.26  0.00  0.99  0.06  0.11  0.14  0.95 0.09  0.15
## MR4   0.07  0.07 -0.05  0.05  0.09  0.99  0.06  0.07  0.03 0.12  0.04
## MR5   1.00  0.21  0.06  0.28  0.12  0.06  1.00  0.52  0.41 0.21 -0.19
## PA1   0.21  1.00 -0.08  0.03  0.11  0.09  0.23  0.91  0.29 0.15 -0.05
## PA2   0.06 -0.08  1.00  0.07  0.33  0.05  0.00  0.08  0.41 0.08  0.96
## PA3   0.28  0.03  0.07  1.00 -0.04  0.09  0.32  0.16  0.09 0.98  0.04
## PA6   0.12  0.11  0.33 -0.04  1.00  0.08  0.05  0.02  0.93 0.04  0.23
## PA4   0.06  0.09  0.05  0.09  0.08  1.00  0.04  0.10  0.04 0.16  0.14
## PA5   1.00  0.23  0.00  0.32  0.05  0.04  1.00  0.55  0.35 0.24 -0.24
## WLS1  0.52  0.91  0.08  0.16  0.02  0.10  0.55  1.00  0.30 0.21  0.03
## WLS6  0.41  0.29  0.41  0.09  0.93  0.04  0.35  0.30  1.00 0.15  0.25
## WLS3  0.21  0.15  0.08  0.98  0.04  0.16  0.24  0.21  0.15 1.00  0.07
## WLS2 -0.19 -0.05  0.96  0.04  0.23  0.14 -0.24  0.03  0.25 0.07  1.00
## WLS4  0.14  0.14 -0.02  0.08  0.14  0.99  0.13  0.15  0.11 0.15  0.04
## WLS5 -0.63  0.50 -0.12 -0.05  0.29  0.07 -0.62  0.14  0.13 0.11  0.07
##       WLS4  WLS5
## RC1   0.07  0.58
## RC2   0.00  0.01
## RC4   0.07  0.20
## RC5   0.35 -0.67
## RC3   0.93  0.03
## RC6  -0.17 -0.01
## MR1   0.17  0.43
## MR2   0.08 -0.03
## MR3   0.16  0.21
## MR6   0.13  0.34
## MR4   0.99  0.06
## MR5   0.14 -0.63
## PA1   0.14  0.50
## PA2  -0.02 -0.12
## PA3   0.08 -0.05
## PA6   0.14  0.29
## PA4   0.99  0.07
## PA5   0.13 -0.62
## WLS1  0.15  0.14
## WLS6  0.11  0.13
## WLS3  0.15  0.11
## WLS2  0.04  0.07
## WLS4  1.00  0.05
## WLS5  0.05  1.00
f3 <- fa(DATA,6,fm="pa")
factor.congruence(f3,ic)
##     [,1]
## PA1 0.77
## PA2 0.52
## PA3 0.54
## PA6 0.61
## PA4 0.26
## PA5 0.44

Analisa Omega

omegaSem(DATA,n.obs=138,6)
## Loading required namespace: lavaan
## Warning in lav_object_post_check(object): lavaan WARNING: some estimated ov
## variances are negative

##  
## Call: omegaSem(m = DATA, nfactors = 6, n.obs = 138)
## Omega 
## Call: omega(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip, 
##     digits = digits, title = title, sl = sl, labels = labels, 
##     plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option)
## Alpha:                 0.89 
## G.6:                   0.93 
## Omega Hierarchical:    0.62 
## Omega H asymptotic:    0.68 
## Omega Total            0.92 
## 
## Schmid Leiman Factor loadings greater than  0.2 
##            g   F1*   F2*   F3*   F4*   F5*   F6*   h2   u2   p2
## i1OP    0.33        0.62                         0.50 0.50 0.22
## i2OP    0.38        0.61                         0.60 0.40 0.24
## i3OP    0.45              0.35                   0.40 0.60 0.50
## i4OP    0.49        0.30  0.22                   0.44 0.56 0.55
## i5INT   0.63        0.31  0.41                   0.76 0.24 0.52
## i6INT   0.58        0.20  0.51                   0.67 0.33 0.51
## i7INT   0.27                          0.22  0.55 0.45 0.55 0.16
## i8INT   0.38                    0.39        0.35 0.43 0.57 0.33
## i9INT   0.49  0.26  0.23                         0.40 0.60 0.60
## i10INT  0.36              0.34                   0.30 0.70 0.44
## i11KOM  0.46                    0.67             0.73 0.27 0.29
## i12KOM  0.55  0.33        0.21  0.30       -0.21 0.57 0.43 0.54
## i13KOM  0.34                                0.27 0.26 0.74 0.44
## i14KJ   0.43                                0.22 0.35 0.65 0.53
## i15KJ   0.53  0.32        0.22                   0.45 0.55 0.63
## i16KJ   0.47  0.35        0.25                   0.45 0.55 0.50
## i17KP   0.40                    0.26        0.33 0.39 0.61 0.42
## i18KP   0.36                          0.27       0.25 0.75 0.52
## i19KP   0.29  0.25                               0.19 0.81 0.44
## i20KP   0.53  0.46                               0.50 0.50 0.56
## i21KP   0.33  0.38       -0.22                   0.35 0.65 0.31
## i22KP   0.29                    0.45             0.31 0.69 0.27
## i23KP   0.44  0.43                          0.23 0.46 0.54 0.43
## i24KP   0.44  0.52                               0.49 0.51 0.40
## i25DIS  0.20                                     0.10 0.90 0.41
## i26DIS                                0.64       0.50 0.50 0.03
## i27DIS                                           0.09 0.91 0.24
## i28DIS  0.43        0.21              0.57       0.62 0.38 0.30
## 
## With eigenvalues of:
##    g  F1*  F2*  F3*  F4*  F5*  F6* 
## 4.85 1.56 1.27 1.03 1.11 1.06 0.99 
## 
## general/max  3.1   max/min =   1.59
## mean percent general =  0.4    with sd =  0.15 and cv of  0.36 
## Explained Common Variance of the general factor =  0.41 
## 
## The degrees of freedom are 225  and the fit is  2.58 
## The number of observations was  136  with Chi Square =  311.43  with prob <  0.00012
## The root mean square of the residuals is  0.04 
## The df corrected root mean square of the residuals is  0.06
## RMSEA index =  0.064  and the 10 % confidence intervals are  0.038 0.067
## BIC =  -793.92
## 
## Compare this with the adequacy of just a general factor and no group factors
## The degrees of freedom for just the general factor are 350  and the fit is  5.52 
## The number of observations was  136  with Chi Square =  685.14  with prob <  5.9e-24
## The root mean square of the residuals is  0.11 
## The df corrected root mean square of the residuals is  0.12 
## 
## RMSEA index =  0.091  and the 10 % confidence intervals are  0.075 0.094
## BIC =  -1034.29 
## 
## Measures of factor score adequacy             
##                                                  g  F1*  F2*  F3*  F4*
## Correlation of scores with factors            0.80 0.73 0.79 0.74 0.80
## Multiple R square of scores with factors      0.65 0.54 0.63 0.54 0.63
## Minimum correlation of factor score estimates 0.29 0.08 0.26 0.09 0.27
##                                                F5*  F6*
## Correlation of scores with factors            0.83 0.77
## Multiple R square of scores with factors      0.69 0.60
## Minimum correlation of factor score estimates 0.37 0.20
## 
##  Total, General and Subset omega for each subset
##                                                  g  F1*  F2*  F3*  F4*
## Omega total for total scores and subscales    0.92 0.80 0.68 0.71 0.70
## Omega general for total scores and subscales  0.62 0.48 0.26 0.44 0.25
## Omega group for total scores and subscales    0.12 0.31 0.42 0.28 0.45
##                                                F5*  F6*
## Omega total for total scores and subscales    0.57 0.56
## Omega general for total scores and subscales  0.16 0.29
## Omega group for total scores and subscales    0.41 0.27
## 
##  The following analyses were done using the  lavaan  package 
## 
##  Omega Hierarchical from a confirmatory model using sem =  0.79
##  Omega Total  from a confirmatory model using sem =  0.92 
## With loadings of 
##           g  F1*  F2*  F3*  F4*  F5*  F6*   h2    u2   p2
## i1OP   0.42      1.11                     1.42 -0.42 0.12
## i2OP   0.47      0.34                     0.34  0.66 0.65
## i3OP   0.56           0.20                0.35  0.65 0.90
## i4OP   0.65                               0.43  0.57 0.98
## i5INT  0.78           0.22                0.67  0.33 0.91
## i6INT  0.70           0.54                0.77  0.23 0.64
## i7INT  0.29                          0.57 0.40  0.60 0.21
## i8INT  0.42                0.28           0.25  0.75 0.71
## i9INT  0.62                               0.39  0.61 0.99
## i10INT 0.40           0.25                0.22  0.78 0.73
## i11KOM 0.45                0.62           0.59  0.41 0.34
## i12KOM 0.57 0.31                          0.42  0.58 0.77
## i13KOM 0.41                          0.26 0.24  0.76 0.70
## i14KJ  0.51                               0.28  0.72 0.93
## i15KJ  0.60 0.25                          0.42  0.58 0.86
## i16KJ  0.53 0.34                          0.40  0.60 0.70
## i17KP  0.44                          0.29 0.28  0.72 0.69
## i18KP  0.41                     0.30      0.26  0.74 0.65
## i19KP  0.27 0.36                          0.20  0.80 0.36
## i20KP  0.58 0.37                          0.48  0.52 0.70
## i21KP  0.34 0.36                          0.24  0.76 0.48
## i22KP  0.30                0.45           0.29  0.71 0.31
## i23KP  0.46 0.46                          0.43  0.57 0.49
## i24KP  0.46 0.43                          0.40  0.60 0.53
## i25DIS 0.23                               0.07  0.93 0.76
## i26DIS                          0.52      0.27  0.73 0.01
## i27DIS                                    0.06  0.94 0.43
## i28DIS 0.45                     0.70      0.69  0.31 0.29
## 
## With eigenvalues of:
##    g  F1*  F2*  F3*  F4*  F5*  F6* 
## 6.32 1.09 1.36 0.44 0.67 0.88 0.49 
## 
## The degrees of freedom of the confimatory model are  322  and the fit is  540.8577  with p =  2.470246e-13
## general/max  4.64   max/min =   3.11
## mean percent general =  0.6    with sd =  0.26 and cv of  0.44 
## Explained Common Variance of the general factor =  0.56 
## 
## Measures of factor score adequacy             
##                                                  g  F1*  F2*  F3*  F4*
## Correlation of scores with factors            0.93 0.83 1.34 0.86 0.97
## Multiple R square of scores with factors      0.87 0.70 1.80 0.74 0.94
## Minimum correlation of factor score estimates 0.73 0.39 2.60 0.49 0.88
##                                                F5*  F6*
## Correlation of scores with factors            0.94 0.79
## Multiple R square of scores with factors      0.89 0.63
## Minimum correlation of factor score estimates 0.78 0.26
## 
##  Total, General and Subset omega for each subset
##                                                  g  F1*  F2*  F3*  F4*
## Omega total for total scores and subscales    0.92 0.83 0.85 0.79 0.63
## Omega general for total scores and subscales  0.79 0.57 0.43 0.63 0.27
## Omega group for total scores and subscales    0.10 0.25 0.42 0.15 0.36
##                                                F5*  F6*
## Omega total for total scores and subscales    0.59 0.60
## Omega general for total scores and subscales  0.17 0.38
## Omega group for total scores and subscales    0.42 0.22
## 
## To get the standard sem fit statistics, ask for summary on the fitted object

Analisa Reliabilitas Split Half

splitHalf(DATA)
## Split half reliabilities  
## Call: splitHalf(r = DATA)
## 
## Maximum split half reliability (lambda 4) =  0.94
## Guttman lambda 6                          =  0.93
## Average split half reliability            =  0.89
## Guttman lambda 3 (alpha)                  =  0.89
## Minimum split half reliability  (beta)    =  0.8

Very Simple Structure Analysis (VSS)

my.vss <- vss(DATA,title="Very Simple Structure of inventory",n=6,rotate="varimax",diagonal=FALSE)

print(my.vss,digits =2) 
## 
## Very Simple Structure of  Very Simple Structure of inventory 
## Call: vss(x = DATA, n = 6, rotate = "varimax", diagonal = FALSE, title = "Very Simple Structure of inventory")
## VSS complexity 1 achieves a maximimum of 0.72  with  1  factors
## VSS complexity 2 achieves a maximimum of 0.77  with  2  factors
## 
## The Velicer MAP achieves a minimum of 0.01  with  2  factors 
## BIC achieves a minimum of  -1066.12  with  1  factors
## Sample Size adjusted BIC achieves a minimum of  -82.14  with  6  factors
## 
## Statistics by number of factors 
##   vss1 vss2   map dof chisq    prob sqresid  fit RMSEA   BIC SABIC complex
## 1 0.72 0.00 0.016 350   653 1.3e-20      22 0.72 0.087 -1066    41     1.0
## 2 0.50 0.77 0.015 323   530 2.7e-12      18 0.77 0.077 -1056   -35     1.5
## 3 0.45 0.74 0.015 297   441 1.0e-07      15 0.81 0.068 -1018   -78     1.7
## 4 0.45 0.72 0.017 272   394 1.8e-06      14 0.83 0.067  -942   -82     1.9
## 5 0.39 0.67 0.018 248   354 1.1e-05      12 0.84 0.066  -864   -80     2.1
## 6 0.34 0.61 0.021 225   311 1.2e-04      11 0.86 0.064  -794   -82     2.4
##   eChisq  SRMR eCRMS  eBIC
## 1    757 0.086 0.089  -962
## 2    507 0.070 0.076 -1080
## 3    347 0.058 0.066 -1112
## 4    281 0.052 0.062 -1055
## 5    231 0.047 0.059  -987
## 6    189 0.043 0.056  -916
VSS.plot(my.vss)

VSS.scree(cor(DATA), main ="scree plot")

#now, some simulated data with two factors
VSS(sim.circ(nvar=24),fm="pa" ,title="VSS of 24 circumplex variables")

## 
## Very Simple Structure of  VSS of 24 circumplex variables 
## Call: vss(x = x, n = n, rotate = rotate, diagonal = diagonal, fm = fm, 
##     n.obs = n.obs, plot = plot, title = title, use = use, cor = cor)
## VSS complexity 1 achieves a maximimum of 0.6  with  2  factors
## VSS complexity 2 achieves a maximimum of 0.84  with  2  factors
## 
## The Velicer MAP achieves a minimum of 0.01  with  2  factors 
## BIC achieves a minimum of  -1207.23  with  2  factors
## Sample Size adjusted BIC achieves a minimum of  -480.37  with  2  factors
## 
## Statistics by number of factors 
##   vss1 vss2    map dof chisq     prob sqresid  fit RMSEA   BIC SABIC
## 1 0.44 0.00 0.0451 252  2031 4.3e-275    34.4 0.44  0.12   465  1265
## 2 0.60 0.84 0.0058 229   216  7.2e-01     9.8 0.84  0.00 -1207  -480
## 3 0.59 0.83 0.0081 207   186  8.6e-01     9.4 0.85  0.00 -1101  -444
## 4 0.58 0.82 0.0107 186   156  9.5e-01     8.9 0.86  0.00 -1000  -410
## 5 0.58 0.82 0.0133 166   132  9.8e-01     8.5 0.86  0.00  -900  -373
## 6 0.57 0.79 0.0163 147   111  9.9e-01     8.3 0.87  0.00  -803  -336
## 7 0.57 0.80 0.0199 129    95  9.9e-01     8.0 0.87  0.00  -707  -297
## 8 0.55 0.78 0.0239 112    73  1.0e+00     7.5 0.88  0.00  -623  -268
##   complex eChisq  SRMR eCRMS  eBIC
## 1     1.0   9066 0.181 0.190  7500
## 2     1.4    170 0.025 0.027 -1253
## 3     1.5    142 0.023 0.026 -1145
## 4     1.5    117 0.021 0.025 -1039
## 5     1.6     96 0.019 0.024  -936
## 6     1.8     78 0.017 0.023  -836
## 7     1.9     65 0.015 0.022  -737
## 8     2.0     49 0.013 0.021  -647
VSS(sim.item(nvar=28),fm="pa" ,title="VSS of 28 simple structure variables")

## 
## Very Simple Structure of  VSS of 28 simple structure variables 
## Call: vss(x = x, n = n, rotate = rotate, diagonal = diagonal, fm = fm, 
##     n.obs = n.obs, plot = plot, title = title, use = use, cor = cor)
## VSS complexity 1 achieves a maximimum of 0.85  with  6  factors
## VSS complexity 2 achieves a maximimum of 0.87  with  8  factors
## 
## The Velicer MAP achieves a minimum of 0  with  2  factors 
## BIC achieves a minimum of  -1693.92  with  2  factors
## Sample Size adjusted BIC achieves a minimum of  -668.7  with  2  factors
## 
## Statistics by number of factors 
##   vss1 vss2    map dof chisq     prob sqresid  fit RMSEA   BIC SABIC
## 1 0.44 0.00 0.0515 350  2428 5.8e-307    44.4 0.44  0.11   252  1363
## 2 0.85 0.86 0.0048 323   313  6.4e-01    11.5 0.86  0.00 -1694  -669
## 3 0.85 0.86 0.0063 297   273  8.3e-01    11.0 0.86  0.00 -1572  -630
## 4 0.85 0.86 0.0080 272   235  9.5e-01    10.5 0.87  0.00 -1455  -592
## 5 0.85 0.86 0.0099 248   205  9.8e-01    10.1 0.87  0.00 -1337  -550
## 6 0.85 0.87 0.0119 225   179  9.9e-01     9.8 0.88  0.00 -1219  -505
## 7 0.85 0.87 0.0144 203   152  1.0e+00     9.3 0.88  0.00 -1109  -465
## 8 0.81 0.87 0.0168 182   131  1.0e+00     8.9 0.89  0.00 -1000  -423
##   complex eChisq  SRMR eCRMS  eBIC
## 1     1.0  12601 0.183 0.190 10426
## 2     1.0    247 0.026 0.028 -1760
## 3     1.1    207 0.023 0.026 -1639
## 4     1.1    172 0.021 0.025 -1519
## 5     1.2    143 0.019 0.024 -1398
## 6     1.2    122 0.018 0.023 -1276
## 7     1.3    103 0.016 0.022 -1159
## 8     1.3     85 0.015 0.022 -1046