This project is based on the real-life data from World Happiness Report, year 2015, 2016, and 2017. The World Happiness Report is a landmark survey of the state of global happiness. The first report was published in 2012 and made a huge impact worldwide. The most up-to-date report, World Happiness 2017, which ranks 155 countries by their happiness levels, was released at the United Nations at an event celebrating International Day of Happiness on March 20th. The report consistently gains global recognition as governments, organizations and civil society increasingly use happiness indicators to inform their policy-making decisions.
Data was found at Sustainable Development Solutions Network. Data is collected from people in over 150 countries. Each variable measured reveals a populated-weighted average score on a scale running from 0 to 10 that is tracked over time and compared against other countries. Variables in the data set include - GDP per capita, family, healthy life expectancy, freedom to make life choices, generosity, and perceptions of corruption.
I genuinely care about this topic because I want to develop my global mindset, especially from a humanity aspect. I consider myself living in a happy life, and I am very grateful. However, I was shocked to see my home country’s rank was below average, and the expert team of the report even include a chapter discussing the dropping happiness in China. This made me realized that my country may be fast in economic growth, building infrastructure, and gaining global recognition - I am proud of all the achievements - but did we go too fast? I believe some of us need to pause and take a look back. And I am doing this EDA (Exploratory Data Analysis) to deepen and reinforce my understanding.
To my audience, I hope this topic interests you and my analysis convey some insights you might find meaningful. This project is not just about data analysis, it aims to bring extra considerations to the table - globalization, economics, sociology, psychology, politics, ethics, religions, etc. I hope this is a good start for further exploration.
library(devtools)
library(DT)
library(tidyverse)
library(plotly)
library(formattable)
library(plyr)
library(corrplot)
library(rworldmap)
library(GGally)
devtools <- Include the session information
DT <- Interactive HTML display of data
tidyverse <- A set of packages includes readr, ggplot2, dplyr
readr <- Read rectangular text data
gglot2 <- Create elegant data visualizations using the grammar of graphics
dplyr <- A grammar of data manipulation
plotly <- Create interactive plots
formattable <- Apply formatting on vectors and data frames
plyr <- A split-apply-combine paradigm
corrplot <- Visualization of a correlation matrix
rworldmap <- For mapping global data
GGally <- Extend ggplot2 by adding several functions to reduce the complexity of combining geometric objects with transformed data
Source of data: Sustainable Development Solutions Network
This source contains three years of data, 2015, 2016, and 2017.
readr package allows us to read csv data. First, I imported three original data sets, and named them with Original.
Year2015_Original <- read_csv("2015.csv")
Year2016_Original <- read_csv("2016.csv")
Year2017_Original <- read_csv("2017.csv")
After importing the original data sets, we can read column names, number of observations and variables as following. We can see that each year has different format, so the next step is to clean each data set into tidy data.
colnames(Year2015_Original)
## [1] "Country" "Region"
## [3] "Happiness Rank" "Happiness Score"
## [5] "Standard Error" "Economy (GDP per Capita)"
## [7] "Family" "Health (Life Expectancy)"
## [9] "Freedom" "Trust (Government Corruption)"
## [11] "Generosity" "Dystopia Residual"
dim(Year2015_Original)
## [1] 158 12
colnames(Year2016_Original)
## [1] "Country" "Region"
## [3] "Happiness Rank" "Happiness Score"
## [5] "Lower Confidence Interval" "Upper Confidence Interval"
## [7] "Economy (GDP per Capita)" "Family"
## [9] "Health (Life Expectancy)" "Freedom"
## [11] "Trust (Government Corruption)" "Generosity"
## [13] "Dystopia Residual"
dim(Year2016_Original)
## [1] 157 13
colnames(Year2017_Original)
## [1] "Country" "Happiness.Rank"
## [3] "Happiness.Score" "Whisker.high"
## [5] "Whisker.low" "Economy..GDP.per.Capita."
## [7] "Family" "Health..Life.Expectancy."
## [9] "Freedom" "Generosity"
## [11] "Trust..Government.Corruption." "Dystopia.Residual"
dim(Year2017_Original)
## [1] 155 12
To make my data tidy, here are several things need to be addressed in the data cleaning process:
Firstly, select the Region column from year 2016, left_join to year 2017 by Country, and sort(select) columns to make the Region column next to the Country column.
region <- Year2016_Original %>%
select(Country, Region)
Year2017 <- Year2017_Original %>%
left_join(region, by = "Country") %>%
select(Country, Region, everything())
Secondly, deselect irrelevant variables in each data set.
Year2015 <-
select(Year2015_Original, -(`Standard Error`))
Year2016 <-
select(Year2016_Original, -(`Lower Confidence Interval`:`Upper Confidence Interval`))
Year2017 <-
select(Year2017, -(`Whisker.high`:`Whisker.low`))
Thirdly, rename the year2017 data set to make it consistent with other two data sets.
Year2017 <-
rename(Year2017, c("Happiness.Rank"="Happiness Rank",
"Happiness.Score"="Happiness Score",
"Economy..GDP.per.Capita."="Economy (GDP per Capita)",
"Health..Life.Expectancy."="Health (Life Expectancy)",
"Trust..Government.Corruption."="Trust (Government Corruption)",
"Dystopia.Residual"="Dystopia Residual"))
Last but not least, reorder(select) year 2017 data set.
Year2017 <-
select(Year2017, Country, Region, `Happiness Rank`, `Happiness Score`,
`Economy (GDP per Capita)`, `Family`, `Health (Life Expectancy)`,
`Freedom`, `Trust (Government Corruption)`, `Generosity`, `Dystopia Residual`)
At this point, all three data sets have 11 variables, with slightly different numbers of observations (because every year the report conducts surveys in different number of countries, but the difference is very minimal). Data frames are completely tidy now.
Year2015 %>%
arrange(desc(`Happiness Score`)) %>%
mutate_each(funs(round(., 2)), -c(Country, Region)) %>%
head(158) %>%
formattable(list(
'Happiness Score' = color_bar("lightpink"),
'Economy (GDP per Capita)' = color_bar("paleturquoise"),
'Family' = color_bar("powderblue"),
'Health (Life Expectancy)' = color_bar("palegreen"),
'Freedom' = color_bar("lightgreen"),
'Generosity' = color_bar("thistle"),
'Trust (Government Corruption)' = color_bar("lavender"),
'Generosity' = color_bar("thistle"),
'Dystopia Residual' = color_bar("navajowhite")
), align = "l")
| Country | Region | Happiness Rank | Happiness Score | Economy (GDP per Capita) | Family | Health (Life Expectancy) | Freedom | Trust (Government Corruption) | Generosity | Dystopia Residual |
|---|---|---|---|---|---|---|---|---|---|---|
| Switzerland | Western Europe | 1 | 7.59 | 1.40 | 1.35 | 0.94 | 0.67 | 0.42 | 0.30 | 2.52 |
| Iceland | Western Europe | 2 | 7.56 | 1.30 | 1.40 | 0.95 | 0.63 | 0.14 | 0.44 | 2.70 |
| Denmark | Western Europe | 3 | 7.53 | 1.33 | 1.36 | 0.87 | 0.65 | 0.48 | 0.34 | 2.49 |
| Norway | Western Europe | 4 | 7.52 | 1.46 | 1.33 | 0.89 | 0.67 | 0.37 | 0.35 | 2.47 |
| Canada | North America | 5 | 7.43 | 1.33 | 1.32 | 0.91 | 0.63 | 0.33 | 0.46 | 2.45 |
| Finland | Western Europe | 6 | 7.41 | 1.29 | 1.32 | 0.89 | 0.64 | 0.41 | 0.23 | 2.62 |
| Netherlands | Western Europe | 7 | 7.38 | 1.33 | 1.28 | 0.89 | 0.62 | 0.32 | 0.48 | 2.47 |
| Sweden | Western Europe | 8 | 7.36 | 1.33 | 1.29 | 0.91 | 0.66 | 0.44 | 0.36 | 2.37 |
| New Zealand | Australia and New Zealand | 9 | 7.29 | 1.25 | 1.32 | 0.91 | 0.64 | 0.43 | 0.48 | 2.26 |
| Australia | Australia and New Zealand | 10 | 7.28 | 1.33 | 1.31 | 0.93 | 0.65 | 0.36 | 0.44 | 2.27 |
| Israel | Middle East and Northern Africa | 11 | 7.28 | 1.23 | 1.22 | 0.91 | 0.41 | 0.08 | 0.33 | 3.09 |
| Costa Rica | Latin America and Caribbean | 12 | 7.23 | 0.96 | 1.24 | 0.86 | 0.63 | 0.11 | 0.25 | 3.18 |
| Austria | Western Europe | 13 | 7.20 | 1.34 | 1.30 | 0.89 | 0.62 | 0.19 | 0.33 | 2.53 |
| Mexico | Latin America and Caribbean | 14 | 7.19 | 1.02 | 0.91 | 0.81 | 0.48 | 0.21 | 0.14 | 3.60 |
| United States | North America | 15 | 7.12 | 1.39 | 1.25 | 0.86 | 0.55 | 0.16 | 0.40 | 2.51 |
| Brazil | Latin America and Caribbean | 16 | 6.98 | 0.98 | 1.23 | 0.70 | 0.49 | 0.18 | 0.15 | 3.26 |
| Luxembourg | Western Europe | 17 | 6.95 | 1.56 | 1.22 | 0.92 | 0.62 | 0.38 | 0.28 | 1.97 |
| Ireland | Western Europe | 18 | 6.94 | 1.34 | 1.37 | 0.90 | 0.62 | 0.29 | 0.46 | 1.98 |
| Belgium | Western Europe | 19 | 6.94 | 1.31 | 1.29 | 0.90 | 0.58 | 0.23 | 0.22 | 2.41 |
| United Arab Emirates | Middle East and Northern Africa | 20 | 6.90 | 1.43 | 1.13 | 0.81 | 0.64 | 0.39 | 0.26 | 2.25 |
| United Kingdom | Western Europe | 21 | 6.87 | 1.27 | 1.29 | 0.91 | 0.60 | 0.32 | 0.52 | 1.97 |
| Oman | Middle East and Northern Africa | 22 | 6.85 | 1.36 | 1.08 | 0.76 | 0.63 | 0.33 | 0.22 | 2.47 |
| Venezuela | Latin America and Caribbean | 23 | 6.81 | 1.04 | 1.26 | 0.72 | 0.43 | 0.11 | 0.06 | 3.19 |
| Singapore | Southeastern Asia | 24 | 6.80 | 1.52 | 1.02 | 1.03 | 0.54 | 0.49 | 0.31 | 1.89 |
| Panama | Latin America and Caribbean | 25 | 6.79 | 1.06 | 1.20 | 0.80 | 0.54 | 0.09 | 0.24 | 2.85 |
| Germany | Western Europe | 26 | 6.75 | 1.33 | 1.30 | 0.89 | 0.61 | 0.22 | 0.28 | 2.12 |
| Chile | Latin America and Caribbean | 27 | 6.67 | 1.11 | 1.12 | 0.86 | 0.44 | 0.13 | 0.33 | 2.68 |
| Qatar | Middle East and Northern Africa | 28 | 6.61 | 1.69 | 1.08 | 0.80 | 0.64 | 0.52 | 0.33 | 1.56 |
| France | Western Europe | 29 | 6.58 | 1.28 | 1.26 | 0.95 | 0.55 | 0.21 | 0.12 | 2.21 |
| Argentina | Latin America and Caribbean | 30 | 6.57 | 1.05 | 1.25 | 0.79 | 0.45 | 0.08 | 0.11 | 2.84 |
| Czech Republic | Central and Eastern Europe | 31 | 6.50 | 1.18 | 1.21 | 0.84 | 0.46 | 0.03 | 0.11 | 2.68 |
| Uruguay | Latin America and Caribbean | 32 | 6.49 | 1.06 | 1.21 | 0.81 | 0.60 | 0.25 | 0.23 | 2.32 |
| Colombia | Latin America and Caribbean | 33 | 6.48 | 0.92 | 1.24 | 0.69 | 0.53 | 0.05 | 0.18 | 2.86 |
| Thailand | Southeastern Asia | 34 | 6.46 | 0.97 | 1.27 | 0.74 | 0.56 | 0.03 | 0.58 | 2.32 |
| Saudi Arabia | Middle East and Northern Africa | 35 | 6.41 | 1.40 | 1.08 | 0.72 | 0.31 | 0.33 | 0.14 | 2.44 |
| Spain | Western Europe | 36 | 6.33 | 1.23 | 1.31 | 0.96 | 0.46 | 0.06 | 0.18 | 2.12 |
| Malta | Western Europe | 37 | 6.30 | 1.21 | 1.30 | 0.89 | 0.60 | 0.14 | 0.52 | 1.65 |
| Taiwan | Eastern Asia | 38 | 6.30 | 1.29 | 1.08 | 0.88 | 0.40 | 0.08 | 0.25 | 2.32 |
| Kuwait | Middle East and Northern Africa | 39 | 6.29 | 1.55 | 1.17 | 0.72 | 0.55 | 0.26 | 0.16 | 1.88 |
| Suriname | Latin America and Caribbean | 40 | 6.27 | 1.00 | 0.97 | 0.61 | 0.60 | 0.14 | 0.17 | 2.79 |
| Trinidad and Tobago | Latin America and Caribbean | 41 | 6.17 | 1.21 | 1.18 | 0.61 | 0.56 | 0.01 | 0.32 | 2.27 |
| El Salvador | Latin America and Caribbean | 42 | 6.13 | 0.76 | 1.03 | 0.68 | 0.40 | 0.12 | 0.11 | 3.04 |
| Guatemala | Latin America and Caribbean | 43 | 6.12 | 0.75 | 1.04 | 0.64 | 0.58 | 0.09 | 0.27 | 2.74 |
| Uzbekistan | Central and Eastern Europe | 44 | 6.00 | 0.63 | 1.34 | 0.60 | 0.66 | 0.31 | 0.23 | 2.24 |
| Slovakia | Central and Eastern Europe | 45 | 6.00 | 1.17 | 1.27 | 0.79 | 0.32 | 0.03 | 0.17 | 2.25 |
| Japan | Eastern Asia | 46 | 5.99 | 1.27 | 1.26 | 0.99 | 0.50 | 0.18 | 0.11 | 1.68 |
| South Korea | Eastern Asia | 47 | 5.98 | 1.24 | 0.96 | 0.97 | 0.33 | 0.08 | 0.19 | 2.22 |
| Ecuador | Latin America and Caribbean | 48 | 5.97 | 0.86 | 1.00 | 0.79 | 0.49 | 0.18 | 0.12 | 2.54 |
| Bahrain | Middle East and Northern Africa | 49 | 5.96 | 1.32 | 1.22 | 0.75 | 0.45 | 0.31 | 0.17 | 1.74 |
| Italy | Western Europe | 50 | 5.95 | 1.25 | 1.20 | 0.95 | 0.26 | 0.03 | 0.23 | 2.03 |
| Bolivia | Latin America and Caribbean | 51 | 5.89 | 0.68 | 0.98 | 0.54 | 0.57 | 0.09 | 0.21 | 2.82 |
| Moldova | Central and Eastern Europe | 52 | 5.89 | 0.59 | 1.02 | 0.62 | 0.33 | 0.02 | 0.21 | 3.11 |
| Paraguay | Latin America and Caribbean | 53 | 5.88 | 0.76 | 1.30 | 0.66 | 0.54 | 0.08 | 0.34 | 2.19 |
| Kazakhstan | Central and Eastern Europe | 54 | 5.86 | 1.12 | 1.12 | 0.64 | 0.52 | 0.08 | 0.12 | 2.25 |
| Slovenia | Central and Eastern Europe | 55 | 5.85 | 1.18 | 1.27 | 0.87 | 0.61 | 0.04 | 0.25 | 1.62 |
| Lithuania | Central and Eastern Europe | 56 | 5.83 | 1.15 | 1.26 | 0.73 | 0.21 | 0.01 | 0.03 | 2.45 |
| Nicaragua | Latin America and Caribbean | 57 | 5.83 | 0.59 | 1.14 | 0.74 | 0.55 | 0.19 | 0.28 | 2.32 |
| Peru | Latin America and Caribbean | 58 | 5.82 | 0.90 | 0.97 | 0.73 | 0.41 | 0.06 | 0.15 | 2.59 |
| Belarus | Central and Eastern Europe | 59 | 5.81 | 1.03 | 1.23 | 0.74 | 0.38 | 0.19 | 0.11 | 2.13 |
| Poland | Central and Eastern Europe | 60 | 5.79 | 1.13 | 1.28 | 0.78 | 0.53 | 0.04 | 0.17 | 1.87 |
| Malaysia | Southeastern Asia | 61 | 5.77 | 1.12 | 1.07 | 0.72 | 0.53 | 0.11 | 0.33 | 1.89 |
| Croatia | Central and Eastern Europe | 62 | 5.76 | 1.08 | 0.80 | 0.79 | 0.26 | 0.02 | 0.05 | 2.75 |
| Libya | Middle East and Northern Africa | 63 | 5.75 | 1.13 | 1.12 | 0.70 | 0.42 | 0.11 | 0.18 | 2.09 |
| Russia | Central and Eastern Europe | 64 | 5.72 | 1.14 | 1.24 | 0.67 | 0.37 | 0.03 | 0.00 | 2.27 |
| Jamaica | Latin America and Caribbean | 65 | 5.71 | 0.81 | 1.15 | 0.69 | 0.50 | 0.02 | 0.21 | 2.32 |
| North Cyprus | Western Europe | 66 | 5.70 | 1.21 | 1.07 | 0.92 | 0.49 | 0.14 | 0.26 | 1.60 |
| Cyprus | Western Europe | 67 | 5.69 | 1.21 | 0.89 | 0.92 | 0.41 | 0.06 | 0.31 | 1.89 |
| Algeria | Middle East and Northern Africa | 68 | 5.61 | 0.94 | 1.08 | 0.62 | 0.29 | 0.17 | 0.08 | 2.43 |
| Kosovo | Central and Eastern Europe | 69 | 5.59 | 0.80 | 0.81 | 0.63 | 0.25 | 0.05 | 0.28 | 2.77 |
| Turkmenistan | Central and Eastern Europe | 70 | 5.55 | 0.96 | 1.23 | 0.54 | 0.48 | 0.31 | 0.17 | 1.87 |
| Mauritius | Sub-Saharan Africa | 71 | 5.48 | 1.01 | 0.99 | 0.71 | 0.56 | 0.08 | 0.38 | 1.76 |
| Hong Kong | Eastern Asia | 72 | 5.47 | 1.39 | 1.06 | 1.01 | 0.60 | 0.37 | 0.39 | 0.65 |
| Estonia | Central and Eastern Europe | 73 | 5.43 | 1.15 | 1.23 | 0.77 | 0.45 | 0.15 | 0.09 | 1.59 |
| Indonesia | Southeastern Asia | 74 | 5.40 | 0.83 | 1.09 | 0.64 | 0.47 | 0.00 | 0.52 | 1.86 |
| Vietnam | Southeastern Asia | 75 | 5.36 | 0.63 | 0.91 | 0.75 | 0.59 | 0.10 | 0.17 | 2.20 |
| Turkey | Middle East and Northern Africa | 76 | 5.33 | 1.06 | 0.95 | 0.73 | 0.23 | 0.16 | 0.12 | 2.09 |
| Kyrgyzstan | Central and Eastern Europe | 77 | 5.29 | 0.47 | 1.15 | 0.65 | 0.43 | 0.04 | 0.30 | 2.23 |
| Nigeria | Sub-Saharan Africa | 78 | 5.27 | 0.65 | 0.90 | 0.16 | 0.34 | 0.04 | 0.27 | 2.89 |
| Bhutan | Southern Asia | 79 | 5.25 | 0.77 | 1.10 | 0.57 | 0.53 | 0.15 | 0.48 | 1.64 |
| Azerbaijan | Central and Eastern Europe | 80 | 5.21 | 1.02 | 0.94 | 0.64 | 0.37 | 0.16 | 0.08 | 2.00 |
| Pakistan | Southern Asia | 81 | 5.19 | 0.60 | 0.41 | 0.51 | 0.12 | 0.10 | 0.34 | 3.11 |
| Jordan | Middle East and Northern Africa | 82 | 5.19 | 0.90 | 1.05 | 0.70 | 0.41 | 0.14 | 0.11 | 1.88 |
| Montenegro | Central and Eastern Europe | 82 | 5.19 | 0.97 | 0.91 | 0.73 | 0.18 | 0.14 | 0.16 | 2.10 |
| China | Eastern Asia | 84 | 5.14 | 0.89 | 0.95 | 0.82 | 0.52 | 0.03 | 0.08 | 1.86 |
| Zambia | Sub-Saharan Africa | 85 | 5.13 | 0.47 | 0.92 | 0.30 | 0.49 | 0.12 | 0.20 | 2.63 |
| Romania | Central and Eastern Europe | 86 | 5.12 | 1.04 | 0.89 | 0.77 | 0.35 | 0.01 | 0.14 | 1.93 |
| Serbia | Central and Eastern Europe | 87 | 5.12 | 0.92 | 1.01 | 0.75 | 0.20 | 0.03 | 0.19 | 2.02 |
| Portugal | Western Europe | 88 | 5.10 | 1.16 | 1.14 | 0.88 | 0.51 | 0.01 | 0.14 | 1.26 |
| Latvia | Central and Eastern Europe | 89 | 5.10 | 1.11 | 1.10 | 0.72 | 0.30 | 0.06 | 0.18 | 1.62 |
| Philippines | Southeastern Asia | 90 | 5.07 | 0.71 | 1.04 | 0.58 | 0.63 | 0.12 | 0.25 | 1.75 |
| Somaliland region | Sub-Saharan Africa | 91 | 5.06 | 0.19 | 0.95 | 0.44 | 0.47 | 0.40 | 0.50 | 2.11 |
| Morocco | Middle East and Northern Africa | 92 | 5.01 | 0.73 | 0.64 | 0.61 | 0.42 | 0.09 | 0.07 | 2.45 |
| Macedonia | Central and Eastern Europe | 93 | 5.01 | 0.92 | 1.00 | 0.74 | 0.33 | 0.05 | 0.22 | 1.74 |
| Mozambique | Sub-Saharan Africa | 94 | 4.97 | 0.08 | 1.03 | 0.09 | 0.34 | 0.16 | 0.22 | 3.05 |
| Albania | Central and Eastern Europe | 95 | 4.96 | 0.88 | 0.80 | 0.81 | 0.36 | 0.06 | 0.14 | 1.90 |
| Bosnia and Herzegovina | Central and Eastern Europe | 96 | 4.95 | 0.83 | 0.92 | 0.79 | 0.09 | 0.00 | 0.25 | 2.06 |
| Lesotho | Sub-Saharan Africa | 97 | 4.90 | 0.38 | 1.04 | 0.08 | 0.32 | 0.13 | 0.16 | 2.80 |
| Dominican Republic | Latin America and Caribbean | 98 | 4.88 | 0.90 | 1.17 | 0.67 | 0.58 | 0.14 | 0.22 | 1.21 |
| Laos | Southeastern Asia | 99 | 4.88 | 0.59 | 0.74 | 0.55 | 0.60 | 0.24 | 0.42 | 1.74 |
| Mongolia | Eastern Asia | 100 | 4.87 | 0.83 | 1.30 | 0.60 | 0.44 | 0.03 | 0.33 | 1.35 |
| Swaziland | Sub-Saharan Africa | 101 | 4.87 | 0.71 | 1.07 | 0.08 | 0.31 | 0.03 | 0.18 | 2.49 |
| Greece | Western Europe | 102 | 4.86 | 1.15 | 0.93 | 0.88 | 0.08 | 0.01 | 0.00 | 1.80 |
| Lebanon | Middle East and Northern Africa | 103 | 4.84 | 1.03 | 0.80 | 0.84 | 0.34 | 0.05 | 0.22 | 1.57 |
| Hungary | Central and Eastern Europe | 104 | 4.80 | 1.12 | 1.20 | 0.76 | 0.32 | 0.03 | 0.13 | 1.24 |
| Honduras | Latin America and Caribbean | 105 | 4.79 | 0.60 | 0.95 | 0.70 | 0.40 | 0.07 | 0.23 | 1.84 |
| Tajikistan | Central and Eastern Europe | 106 | 4.79 | 0.39 | 0.86 | 0.57 | 0.47 | 0.15 | 0.23 | 2.11 |
| Tunisia | Middle East and Northern Africa | 107 | 4.74 | 0.88 | 0.60 | 0.74 | 0.26 | 0.06 | 0.06 | 2.12 |
| Palestinian Territories | Middle East and Northern Africa | 108 | 4.71 | 0.60 | 0.93 | 0.66 | 0.24 | 0.13 | 0.11 | 2.04 |
| Bangladesh | Southern Asia | 109 | 4.69 | 0.40 | 0.43 | 0.60 | 0.41 | 0.13 | 0.21 | 2.52 |
| Iran | Middle East and Northern Africa | 110 | 4.69 | 1.01 | 0.54 | 0.70 | 0.30 | 0.06 | 0.38 | 1.69 |
| Ukraine | Central and Eastern Europe | 111 | 4.68 | 0.80 | 1.20 | 0.67 | 0.25 | 0.03 | 0.15 | 1.57 |
| Iraq | Middle East and Northern Africa | 112 | 4.68 | 0.99 | 0.82 | 0.60 | 0.00 | 0.14 | 0.18 | 1.95 |
| South Africa | Sub-Saharan Africa | 113 | 4.64 | 0.92 | 1.18 | 0.28 | 0.33 | 0.09 | 0.12 | 1.72 |
| Ghana | Sub-Saharan Africa | 114 | 4.63 | 0.55 | 0.68 | 0.40 | 0.42 | 0.04 | 0.23 | 2.31 |
| Zimbabwe | Sub-Saharan Africa | 115 | 4.61 | 0.27 | 1.03 | 0.33 | 0.26 | 0.08 | 0.19 | 2.44 |
| Liberia | Sub-Saharan Africa | 116 | 4.57 | 0.07 | 0.79 | 0.34 | 0.29 | 0.06 | 0.24 | 2.78 |
| India | Southern Asia | 117 | 4.57 | 0.64 | 0.38 | 0.52 | 0.40 | 0.08 | 0.26 | 2.28 |
| Sudan | Sub-Saharan Africa | 118 | 4.55 | 0.52 | 1.01 | 0.37 | 0.10 | 0.15 | 0.19 | 2.21 |
| Haiti | Latin America and Caribbean | 119 | 4.52 | 0.27 | 0.74 | 0.39 | 0.24 | 0.17 | 0.46 | 2.24 |
| Congo (Kinshasa) | Sub-Saharan Africa | 120 | 4.52 | 0.00 | 1.00 | 0.10 | 0.23 | 0.08 | 0.25 | 2.87 |
| Nepal | Southern Asia | 121 | 4.51 | 0.36 | 0.86 | 0.57 | 0.38 | 0.06 | 0.32 | 1.96 |
| Ethiopia | Sub-Saharan Africa | 122 | 4.51 | 0.19 | 0.60 | 0.44 | 0.43 | 0.15 | 0.24 | 2.45 |
| Sierra Leone | Sub-Saharan Africa | 123 | 4.51 | 0.33 | 0.96 | 0.00 | 0.41 | 0.09 | 0.21 | 2.51 |
| Mauritania | Sub-Saharan Africa | 124 | 4.44 | 0.45 | 0.87 | 0.36 | 0.24 | 0.17 | 0.22 | 2.12 |
| Kenya | Sub-Saharan Africa | 125 | 4.42 | 0.36 | 1.00 | 0.41 | 0.42 | 0.06 | 0.38 | 1.79 |
| Djibouti | Sub-Saharan Africa | 126 | 4.37 | 0.44 | 0.59 | 0.36 | 0.46 | 0.28 | 0.18 | 2.05 |
| Armenia | Central and Eastern Europe | 127 | 4.35 | 0.77 | 0.78 | 0.73 | 0.20 | 0.04 | 0.08 | 1.76 |
| Botswana | Sub-Saharan Africa | 128 | 4.33 | 0.99 | 1.10 | 0.05 | 0.49 | 0.12 | 0.10 | 1.46 |
| Myanmar | Southeastern Asia | 129 | 4.31 | 0.27 | 0.71 | 0.48 | 0.44 | 0.19 | 0.80 | 1.42 |
| Georgia | Central and Eastern Europe | 130 | 4.30 | 0.74 | 0.39 | 0.73 | 0.41 | 0.38 | 0.06 | 1.60 |
| Malawi | Sub-Saharan Africa | 131 | 4.29 | 0.02 | 0.41 | 0.23 | 0.43 | 0.07 | 0.33 | 2.81 |
| Sri Lanka | Southern Asia | 132 | 4.27 | 0.84 | 1.02 | 0.71 | 0.54 | 0.09 | 0.41 | 0.67 |
| Cameroon | Sub-Saharan Africa | 133 | 4.25 | 0.42 | 0.89 | 0.23 | 0.49 | 0.06 | 0.21 | 1.95 |
| Bulgaria | Central and Eastern Europe | 134 | 4.22 | 1.01 | 1.11 | 0.77 | 0.31 | 0.01 | 0.12 | 0.90 |
| Egypt | Middle East and Northern Africa | 135 | 4.19 | 0.88 | 0.75 | 0.62 | 0.17 | 0.06 | 0.11 | 1.60 |
| Yemen | Middle East and Northern Africa | 136 | 4.08 | 0.55 | 0.68 | 0.40 | 0.36 | 0.08 | 0.09 | 1.92 |
| Angola | Sub-Saharan Africa | 137 | 4.03 | 0.76 | 0.86 | 0.17 | 0.10 | 0.07 | 0.12 | 1.95 |
| Mali | Sub-Saharan Africa | 138 | 4.00 | 0.26 | 1.04 | 0.21 | 0.39 | 0.12 | 0.19 | 1.79 |
| Congo (Brazzaville) | Sub-Saharan Africa | 139 | 3.99 | 0.68 | 0.66 | 0.31 | 0.41 | 0.12 | 0.12 | 1.68 |
| Comoros | Sub-Saharan Africa | 140 | 3.96 | 0.24 | 0.79 | 0.36 | 0.23 | 0.20 | 0.17 | 1.96 |
| Uganda | Sub-Saharan Africa | 141 | 3.93 | 0.21 | 1.13 | 0.34 | 0.46 | 0.07 | 0.29 | 1.43 |
| Senegal | Sub-Saharan Africa | 142 | 3.90 | 0.36 | 0.98 | 0.44 | 0.37 | 0.11 | 0.21 | 1.44 |
| Gabon | Sub-Saharan Africa | 143 | 3.90 | 1.06 | 0.91 | 0.43 | 0.32 | 0.11 | 0.07 | 1.00 |
| Niger | Sub-Saharan Africa | 144 | 3.85 | 0.07 | 0.77 | 0.30 | 0.48 | 0.16 | 0.19 | 1.88 |
| Cambodia | Southeastern Asia | 145 | 3.82 | 0.46 | 0.63 | 0.61 | 0.66 | 0.07 | 0.40 | 0.98 |
| Tanzania | Sub-Saharan Africa | 146 | 3.78 | 0.29 | 1.00 | 0.38 | 0.33 | 0.06 | 0.34 | 1.38 |
| Madagascar | Sub-Saharan Africa | 147 | 3.68 | 0.21 | 0.67 | 0.47 | 0.19 | 0.08 | 0.21 | 1.85 |
| Central African Republic | Sub-Saharan Africa | 148 | 3.68 | 0.08 | 0.00 | 0.07 | 0.49 | 0.08 | 0.24 | 2.72 |
| Chad | Sub-Saharan Africa | 149 | 3.67 | 0.34 | 0.76 | 0.15 | 0.24 | 0.05 | 0.18 | 1.94 |
| Guinea | Sub-Saharan Africa | 150 | 3.66 | 0.17 | 0.46 | 0.24 | 0.38 | 0.12 | 0.29 | 1.99 |
| Ivory Coast | Sub-Saharan Africa | 151 | 3.65 | 0.47 | 0.77 | 0.15 | 0.47 | 0.18 | 0.20 | 1.42 |
| Burkina Faso | Sub-Saharan Africa | 152 | 3.59 | 0.26 | 0.85 | 0.27 | 0.39 | 0.13 | 0.22 | 1.46 |
| Afghanistan | Southern Asia | 153 | 3.58 | 0.32 | 0.30 | 0.30 | 0.23 | 0.10 | 0.37 | 1.95 |
| Rwanda | Sub-Saharan Africa | 154 | 3.46 | 0.22 | 0.77 | 0.43 | 0.59 | 0.55 | 0.23 | 0.67 |
| Benin | Sub-Saharan Africa | 155 | 3.34 | 0.29 | 0.35 | 0.32 | 0.48 | 0.08 | 0.18 | 1.63 |
| Syria | Middle East and Northern Africa | 156 | 3.01 | 0.66 | 0.47 | 0.72 | 0.16 | 0.19 | 0.47 | 0.33 |
| Burundi | Sub-Saharan Africa | 157 | 2.90 | 0.02 | 0.42 | 0.22 | 0.12 | 0.10 | 0.20 | 1.83 |
| Togo | Sub-Saharan Africa | 158 | 2.84 | 0.21 | 0.14 | 0.28 | 0.36 | 0.11 | 0.17 | 1.57 |
Year2016 %>%
arrange(desc(`Happiness Score`)) %>%
mutate_each(funs(round(., 2)), -c(Country, Region)) %>%
head(157) %>%
formattable(list(
'Happiness Score' = color_bar("lightpink"),
'Economy (GDP per Capita)' = color_bar("paleturquoise"),
'Family' = color_bar("powderblue"),
'Health (Life Expectancy)' = color_bar("palegreen"),
'Freedom' = color_bar("lightgreen"),
'Trust (Government Corruption)' = color_bar("lavender"),
'Generosity' = color_bar("thistle"),
'Dystopia Residual' = color_bar("navajowhite")
), align = "l")
| Country | Region | Happiness Rank | Happiness Score | Economy (GDP per Capita) | Family | Health (Life Expectancy) | Freedom | Trust (Government Corruption) | Generosity | Dystopia Residual |
|---|---|---|---|---|---|---|---|---|---|---|
| Denmark | Western Europe | 1 | 7.53 | 1.44 | 1.16 | 0.80 | 0.58 | 0.44 | 0.36 | 2.74 |
| Switzerland | Western Europe | 2 | 7.51 | 1.53 | 1.15 | 0.86 | 0.59 | 0.41 | 0.28 | 2.69 |
| Iceland | Western Europe | 3 | 7.50 | 1.43 | 1.18 | 0.87 | 0.57 | 0.15 | 0.48 | 2.83 |
| Norway | Western Europe | 4 | 7.50 | 1.58 | 1.13 | 0.80 | 0.60 | 0.36 | 0.38 | 2.66 |
| Finland | Western Europe | 5 | 7.41 | 1.41 | 1.13 | 0.81 | 0.57 | 0.41 | 0.25 | 2.83 |
| Canada | North America | 6 | 7.40 | 1.44 | 1.10 | 0.83 | 0.57 | 0.31 | 0.45 | 2.70 |
| Netherlands | Western Europe | 7 | 7.34 | 1.46 | 1.03 | 0.81 | 0.55 | 0.30 | 0.47 | 2.71 |
| New Zealand | Australia and New Zealand | 8 | 7.33 | 1.36 | 1.17 | 0.83 | 0.58 | 0.42 | 0.49 | 2.48 |
| Australia | Australia and New Zealand | 9 | 7.31 | 1.44 | 1.10 | 0.85 | 0.57 | 0.32 | 0.47 | 2.55 |
| Sweden | Western Europe | 10 | 7.29 | 1.45 | 1.09 | 0.83 | 0.58 | 0.41 | 0.38 | 2.55 |
| Israel | Middle East and Northern Africa | 11 | 7.27 | 1.34 | 1.00 | 0.85 | 0.36 | 0.09 | 0.32 | 3.31 |
| Austria | Western Europe | 12 | 7.12 | 1.45 | 1.08 | 0.81 | 0.54 | 0.21 | 0.33 | 2.69 |
| United States | North America | 13 | 7.10 | 1.51 | 1.05 | 0.78 | 0.48 | 0.15 | 0.41 | 2.73 |
| Costa Rica | Latin America and Caribbean | 14 | 7.09 | 1.07 | 1.02 | 0.76 | 0.55 | 0.11 | 0.23 | 3.35 |
| Puerto Rico | Latin America and Caribbean | 15 | 7.04 | 1.36 | 1.08 | 0.78 | 0.47 | 0.12 | 0.22 | 3.01 |
| Germany | Western Europe | 16 | 6.99 | 1.45 | 1.10 | 0.81 | 0.53 | 0.29 | 0.30 | 2.51 |
| Brazil | Latin America and Caribbean | 17 | 6.95 | 1.09 | 1.04 | 0.61 | 0.40 | 0.14 | 0.16 | 3.51 |
| Belgium | Western Europe | 18 | 6.93 | 1.43 | 1.05 | 0.82 | 0.51 | 0.26 | 0.24 | 2.61 |
| Ireland | Western Europe | 19 | 6.91 | 1.48 | 1.16 | 0.81 | 0.54 | 0.30 | 0.45 | 2.16 |
| Luxembourg | Western Europe | 20 | 6.87 | 1.70 | 1.04 | 0.85 | 0.55 | 0.35 | 0.28 | 2.11 |
| Mexico | Latin America and Caribbean | 21 | 6.78 | 1.12 | 0.71 | 0.71 | 0.38 | 0.18 | 0.12 | 3.56 |
| Singapore | Southeastern Asia | 22 | 6.74 | 1.65 | 0.87 | 0.95 | 0.49 | 0.47 | 0.33 | 1.99 |
| United Kingdom | Western Europe | 23 | 6.72 | 1.40 | 1.09 | 0.81 | 0.50 | 0.27 | 0.50 | 2.15 |
| Chile | Latin America and Caribbean | 24 | 6.70 | 1.22 | 0.91 | 0.82 | 0.38 | 0.11 | 0.32 | 2.96 |
| Panama | Latin America and Caribbean | 25 | 6.70 | 1.18 | 0.99 | 0.71 | 0.49 | 0.08 | 0.24 | 3.01 |
| Argentina | Latin America and Caribbean | 26 | 6.65 | 1.15 | 1.07 | 0.70 | 0.42 | 0.07 | 0.11 | 3.13 |
| Czech Republic | Central and Eastern Europe | 27 | 6.60 | 1.31 | 1.01 | 0.76 | 0.41 | 0.04 | 0.10 | 2.96 |
| United Arab Emirates | Middle East and Northern Africa | 28 | 6.57 | 1.57 | 0.87 | 0.73 | 0.56 | 0.36 | 0.27 | 2.22 |
| Uruguay | Latin America and Caribbean | 29 | 6.54 | 1.18 | 1.03 | 0.72 | 0.54 | 0.21 | 0.18 | 2.67 |
| Malta | Western Europe | 30 | 6.49 | 1.31 | 1.10 | 0.80 | 0.55 | 0.18 | 0.56 | 1.99 |
| Colombia | Latin America and Caribbean | 31 | 6.48 | 1.03 | 1.02 | 0.60 | 0.45 | 0.05 | 0.16 | 3.17 |
| France | Western Europe | 32 | 6.48 | 1.39 | 1.01 | 0.84 | 0.47 | 0.18 | 0.12 | 2.47 |
| Thailand | Southeastern Asia | 33 | 6.47 | 1.09 | 1.04 | 0.65 | 0.50 | 0.03 | 0.59 | 2.58 |
| Saudi Arabia | Middle East and Northern Africa | 34 | 6.38 | 1.49 | 0.85 | 0.59 | 0.38 | 0.30 | 0.15 | 2.61 |
| Taiwan | Eastern Asia | 34 | 6.38 | 1.40 | 0.93 | 0.80 | 0.32 | 0.07 | 0.25 | 2.62 |
| Qatar | Middle East and Northern Africa | 36 | 6.38 | 1.82 | 0.88 | 0.72 | 0.57 | 0.48 | 0.32 | 1.58 |
| Spain | Western Europe | 37 | 6.36 | 1.34 | 1.13 | 0.88 | 0.38 | 0.06 | 0.18 | 2.40 |
| Algeria | Middle East and Northern Africa | 38 | 6.36 | 1.05 | 0.83 | 0.62 | 0.21 | 0.16 | 0.07 | 3.41 |
| Guatemala | Latin America and Caribbean | 39 | 6.32 | 0.83 | 0.87 | 0.54 | 0.50 | 0.09 | 0.29 | 3.20 |
| Suriname | Latin America and Caribbean | 40 | 6.27 | 1.10 | 0.78 | 0.51 | 0.52 | 0.13 | 0.17 | 3.07 |
| Kuwait | Middle East and Northern Africa | 41 | 6.24 | 1.62 | 0.88 | 0.64 | 0.43 | 0.24 | 0.16 | 2.28 |
| Bahrain | Middle East and Northern Africa | 42 | 6.22 | 1.44 | 0.94 | 0.66 | 0.47 | 0.26 | 0.17 | 2.27 |
| Trinidad and Tobago | Latin America and Caribbean | 43 | 6.17 | 1.33 | 0.99 | 0.53 | 0.48 | 0.01 | 0.32 | 2.51 |
| Venezuela | Latin America and Caribbean | 44 | 6.08 | 1.13 | 1.03 | 0.62 | 0.20 | 0.08 | 0.04 | 2.97 |
| Slovakia | Central and Eastern Europe | 45 | 6.08 | 1.28 | 1.08 | 0.70 | 0.23 | 0.03 | 0.14 | 2.61 |
| El Salvador | Latin America and Caribbean | 46 | 6.07 | 0.87 | 0.81 | 0.60 | 0.37 | 0.11 | 0.09 | 3.22 |
| Malaysia | Southeastern Asia | 47 | 6.00 | 1.25 | 0.88 | 0.62 | 0.39 | 0.09 | 0.41 | 2.35 |
| Nicaragua | Latin America and Caribbean | 48 | 5.99 | 0.69 | 0.90 | 0.65 | 0.47 | 0.16 | 0.30 | 2.82 |
| Uzbekistan | Central and Eastern Europe | 49 | 5.99 | 0.74 | 1.17 | 0.50 | 0.61 | 0.28 | 0.34 | 2.35 |
| Italy | Western Europe | 50 | 5.98 | 1.35 | 1.04 | 0.85 | 0.19 | 0.03 | 0.17 | 2.35 |
| Ecuador | Latin America and Caribbean | 51 | 5.98 | 0.97 | 0.86 | 0.69 | 0.40 | 0.18 | 0.10 | 2.77 |
| Belize | Latin America and Caribbean | 52 | 5.96 | 0.88 | 0.69 | 0.46 | 0.51 | 0.11 | 0.24 | 3.08 |
| Japan | Eastern Asia | 53 | 5.92 | 1.38 | 1.06 | 0.91 | 0.47 | 0.19 | 0.10 | 1.81 |
| Kazakhstan | Central and Eastern Europe | 54 | 5.92 | 1.23 | 0.96 | 0.57 | 0.41 | 0.11 | 0.15 | 2.49 |
| Moldova | Central and Eastern Europe | 55 | 5.90 | 0.69 | 0.83 | 0.52 | 0.25 | 0.02 | 0.20 | 3.38 |
| Russia | Central and Eastern Europe | 56 | 5.86 | 1.23 | 1.05 | 0.59 | 0.33 | 0.04 | 0.03 | 2.59 |
| Poland | Central and Eastern Europe | 57 | 5.84 | 1.25 | 1.05 | 0.69 | 0.45 | 0.06 | 0.14 | 2.20 |
| South Korea | Eastern Asia | 57 | 5.84 | 1.36 | 0.72 | 0.89 | 0.25 | 0.08 | 0.19 | 2.35 |
| Bolivia | Latin America and Caribbean | 59 | 5.82 | 0.79 | 0.84 | 0.47 | 0.51 | 0.08 | 0.22 | 2.92 |
| Lithuania | Central and Eastern Europe | 60 | 5.81 | 1.27 | 1.06 | 0.65 | 0.19 | 0.02 | 0.02 | 2.61 |
| Belarus | Central and Eastern Europe | 61 | 5.80 | 1.13 | 1.05 | 0.63 | 0.29 | 0.17 | 0.14 | 2.39 |
| North Cyprus | Western Europe | 62 | 5.77 | 1.31 | 0.82 | 0.84 | 0.44 | 0.17 | 0.26 | 1.93 |
| Slovenia | Central and Eastern Europe | 63 | 5.77 | 1.30 | 1.06 | 0.79 | 0.53 | 0.04 | 0.26 | 1.80 |
| Peru | Latin America and Caribbean | 64 | 5.74 | 1.00 | 0.81 | 0.63 | 0.38 | 0.05 | 0.15 | 2.73 |
| Turkmenistan | Central and Eastern Europe | 65 | 5.66 | 1.08 | 1.04 | 0.44 | 0.37 | 0.28 | 0.23 | 2.21 |
| Mauritius | Sub-Saharan Africa | 66 | 5.65 | 1.14 | 0.76 | 0.66 | 0.46 | 0.05 | 0.37 | 2.20 |
| Libya | Middle East and Northern Africa | 67 | 5.62 | 1.07 | 0.95 | 0.52 | 0.41 | 0.10 | 0.17 | 2.39 |
| Latvia | Central and Eastern Europe | 68 | 5.56 | 1.22 | 0.95 | 0.64 | 0.28 | 0.09 | 0.17 | 2.21 |
| Cyprus | Western Europe | 69 | 5.55 | 1.32 | 0.71 | 0.85 | 0.30 | 0.05 | 0.28 | 2.04 |
| Paraguay | Latin America and Caribbean | 70 | 5.54 | 0.89 | 1.11 | 0.58 | 0.46 | 0.07 | 0.25 | 2.16 |
| Romania | Central and Eastern Europe | 71 | 5.53 | 1.17 | 0.73 | 0.68 | 0.37 | 0.01 | 0.13 | 2.45 |
| Estonia | Central and Eastern Europe | 72 | 5.52 | 1.28 | 1.05 | 0.68 | 0.42 | 0.19 | 0.08 | 1.82 |
| Jamaica | Latin America and Caribbean | 73 | 5.51 | 0.89 | 0.96 | 0.59 | 0.44 | 0.04 | 0.22 | 2.36 |
| Croatia | Central and Eastern Europe | 74 | 5.49 | 1.19 | 0.61 | 0.71 | 0.24 | 0.04 | 0.18 | 2.52 |
| Hong Kong | Eastern Asia | 75 | 5.46 | 1.51 | 0.87 | 0.95 | 0.48 | 0.32 | 0.40 | 0.93 |
| Somalia | Sub-Saharan Africa | 76 | 5.44 | 0.00 | 0.34 | 0.11 | 0.57 | 0.31 | 0.27 | 3.84 |
| Kosovo | Central and Eastern Europe | 77 | 5.40 | 0.90 | 0.66 | 0.54 | 0.14 | 0.07 | 0.28 | 2.81 |
| Turkey | Middle East and Northern Africa | 78 | 5.39 | 1.16 | 0.88 | 0.65 | 0.24 | 0.12 | 0.05 | 2.29 |
| Indonesia | Southeastern Asia | 79 | 5.31 | 0.95 | 0.88 | 0.49 | 0.39 | 0.00 | 0.57 | 2.03 |
| Jordan | Middle East and Northern Africa | 80 | 5.30 | 1.00 | 0.86 | 0.61 | 0.36 | 0.13 | 0.14 | 2.20 |
| Azerbaijan | Central and Eastern Europe | 81 | 5.29 | 1.12 | 0.76 | 0.55 | 0.35 | 0.18 | 0.06 | 2.27 |
| Philippines | Southeastern Asia | 82 | 5.28 | 0.81 | 0.88 | 0.47 | 0.55 | 0.12 | 0.22 | 2.23 |
| China | Eastern Asia | 83 | 5.25 | 1.03 | 0.79 | 0.74 | 0.44 | 0.03 | 0.05 | 2.17 |
| Bhutan | Southern Asia | 84 | 5.20 | 0.85 | 0.91 | 0.50 | 0.46 | 0.16 | 0.49 | 1.83 |
| Kyrgyzstan | Central and Eastern Europe | 85 | 5.18 | 0.56 | 0.95 | 0.55 | 0.40 | 0.05 | 0.38 | 2.28 |
| Serbia | Central and Eastern Europe | 86 | 5.18 | 1.03 | 0.81 | 0.65 | 0.16 | 0.04 | 0.21 | 2.28 |
| Bosnia and Herzegovina | Central and Eastern Europe | 87 | 5.16 | 0.93 | 0.64 | 0.71 | 0.10 | 0.00 | 0.30 | 2.48 |
| Montenegro | Central and Eastern Europe | 88 | 5.16 | 1.08 | 0.74 | 0.64 | 0.15 | 0.13 | 0.17 | 2.26 |
| Dominican Republic | Latin America and Caribbean | 89 | 5.16 | 1.03 | 0.99 | 0.58 | 0.52 | 0.12 | 0.21 | 1.70 |
| Morocco | Middle East and Northern Africa | 90 | 5.15 | 0.84 | 0.39 | 0.59 | 0.26 | 0.08 | 0.04 | 2.95 |
| Hungary | Central and Eastern Europe | 91 | 5.14 | 1.24 | 0.93 | 0.68 | 0.20 | 0.04 | 0.10 | 1.95 |
| Pakistan | Southern Asia | 92 | 5.13 | 0.69 | 0.26 | 0.40 | 0.15 | 0.14 | 0.31 | 3.18 |
| Lebanon | Middle East and Northern Africa | 93 | 5.13 | 1.12 | 0.64 | 0.76 | 0.26 | 0.03 | 0.24 | 2.07 |
| Portugal | Western Europe | 94 | 5.12 | 1.28 | 0.94 | 0.79 | 0.45 | 0.02 | 0.12 | 1.53 |
| Macedonia | Central and Eastern Europe | 95 | 5.12 | 1.02 | 0.78 | 0.65 | 0.28 | 0.07 | 0.24 | 2.09 |
| Vietnam | Southeastern Asia | 96 | 5.06 | 0.74 | 0.79 | 0.66 | 0.56 | 0.12 | 0.25 | 1.94 |
| Somaliland Region | Sub-Saharan Africa | 97 | 5.06 | 0.26 | 0.76 | 0.33 | 0.39 | 0.37 | 0.51 | 2.44 |
| Tunisia | Middle East and Northern Africa | 98 | 5.04 | 0.98 | 0.43 | 0.60 | 0.24 | 0.08 | 0.04 | 2.68 |
| Greece | Western Europe | 99 | 5.03 | 1.25 | 0.75 | 0.80 | 0.06 | 0.04 | 0.00 | 2.13 |
| Tajikistan | Central and Eastern Europe | 100 | 5.00 | 0.49 | 0.76 | 0.53 | 0.43 | 0.14 | 0.26 | 2.39 |
| Mongolia | Eastern Asia | 101 | 4.91 | 0.99 | 1.09 | 0.55 | 0.36 | 0.03 | 0.35 | 1.54 |
| Laos | Southeastern Asia | 102 | 4.88 | 0.68 | 0.55 | 0.38 | 0.52 | 0.22 | 0.43 | 2.09 |
| Nigeria | Sub-Saharan Africa | 103 | 4.88 | 0.75 | 0.64 | 0.05 | 0.28 | 0.03 | 0.23 | 2.89 |
| Honduras | Latin America and Caribbean | 104 | 4.87 | 0.69 | 0.76 | 0.58 | 0.27 | 0.07 | 0.20 | 2.30 |
| Iran | Middle East and Northern Africa | 105 | 4.81 | 1.12 | 0.39 | 0.64 | 0.23 | 0.06 | 0.39 | 2.00 |
| Zambia | Sub-Saharan Africa | 106 | 4.80 | 0.61 | 0.64 | 0.24 | 0.43 | 0.11 | 0.18 | 2.59 |
| Nepal | Southern Asia | 107 | 4.79 | 0.45 | 0.70 | 0.50 | 0.37 | 0.07 | 0.38 | 2.33 |
| Palestinian Territories | Middle East and Northern Africa | 108 | 4.75 | 0.67 | 0.72 | 0.57 | 0.18 | 0.11 | 0.11 | 2.40 |
| Albania | Central and Eastern Europe | 109 | 4.66 | 0.96 | 0.50 | 0.73 | 0.32 | 0.05 | 0.17 | 1.93 |
| Bangladesh | Southern Asia | 110 | 4.64 | 0.54 | 0.25 | 0.53 | 0.40 | 0.13 | 0.19 | 2.61 |
| Sierra Leone | Sub-Saharan Africa | 111 | 4.63 | 0.36 | 0.63 | 0.00 | 0.31 | 0.08 | 0.24 | 3.01 |
| Iraq | Middle East and Northern Africa | 112 | 4.58 | 1.07 | 0.59 | 0.51 | 0.25 | 0.14 | 0.20 | 1.82 |
| Namibia | Sub-Saharan Africa | 113 | 4.57 | 0.93 | 0.70 | 0.35 | 0.49 | 0.10 | 0.08 | 1.92 |
| Cameroon | Sub-Saharan Africa | 114 | 4.51 | 0.52 | 0.63 | 0.13 | 0.43 | 0.06 | 0.23 | 2.52 |
| Ethiopia | Sub-Saharan Africa | 115 | 4.51 | 0.29 | 0.38 | 0.35 | 0.37 | 0.17 | 0.30 | 2.66 |
| South Africa | Sub-Saharan Africa | 116 | 4.46 | 1.02 | 0.96 | 0.19 | 0.42 | 0.08 | 0.14 | 1.64 |
| Sri Lanka | Southern Asia | 117 | 4.42 | 0.97 | 0.85 | 0.62 | 0.51 | 0.08 | 0.47 | 0.92 |
| India | Southern Asia | 118 | 4.40 | 0.74 | 0.29 | 0.45 | 0.40 | 0.09 | 0.25 | 2.18 |
| Myanmar | Southeastern Asia | 119 | 4.39 | 0.34 | 0.70 | 0.40 | 0.43 | 0.20 | 0.82 | 1.51 |
| Egypt | Middle East and Northern Africa | 120 | 4.36 | 0.95 | 0.50 | 0.52 | 0.19 | 0.10 | 0.13 | 1.97 |
| Armenia | Central and Eastern Europe | 121 | 4.36 | 0.86 | 0.62 | 0.64 | 0.14 | 0.04 | 0.08 | 1.98 |
| Kenya | Sub-Saharan Africa | 122 | 4.36 | 0.52 | 0.76 | 0.30 | 0.41 | 0.07 | 0.41 | 1.88 |
| Ukraine | Central and Eastern Europe | 123 | 4.32 | 0.87 | 1.01 | 0.59 | 0.13 | 0.02 | 0.20 | 1.50 |
| Ghana | Sub-Saharan Africa | 124 | 4.28 | 0.63 | 0.49 | 0.30 | 0.41 | 0.03 | 0.21 | 2.20 |
| Congo (Kinshasa) | Sub-Saharan Africa | 125 | 4.27 | 0.06 | 0.81 | 0.19 | 0.16 | 0.06 | 0.25 | 2.75 |
| Georgia | Central and Eastern Europe | 126 | 4.25 | 0.84 | 0.19 | 0.64 | 0.32 | 0.32 | 0.07 | 1.87 |
| Congo (Brazzaville) | Sub-Saharan Africa | 127 | 4.24 | 0.77 | 0.48 | 0.28 | 0.38 | 0.10 | 0.12 | 2.11 |
| Senegal | Sub-Saharan Africa | 128 | 4.22 | 0.44 | 0.77 | 0.40 | 0.31 | 0.12 | 0.19 | 1.98 |
| Bulgaria | Central and Eastern Europe | 129 | 4.22 | 1.11 | 0.93 | 0.68 | 0.21 | 0.01 | 0.13 | 1.15 |
| Mauritania | Sub-Saharan Africa | 130 | 4.20 | 0.61 | 0.84 | 0.29 | 0.13 | 0.18 | 0.23 | 1.93 |
| Zimbabwe | Sub-Saharan Africa | 131 | 4.19 | 0.35 | 0.71 | 0.16 | 0.25 | 0.09 | 0.19 | 2.44 |
| Malawi | Sub-Saharan Africa | 132 | 4.16 | 0.09 | 0.15 | 0.29 | 0.41 | 0.08 | 0.31 | 2.83 |
| Sudan | Sub-Saharan Africa | 133 | 4.14 | 0.63 | 0.82 | 0.30 | 0.00 | 0.10 | 0.18 | 2.11 |
| Gabon | Sub-Saharan Africa | 134 | 4.12 | 1.16 | 0.72 | 0.35 | 0.28 | 0.09 | 0.06 | 1.45 |
| Mali | Sub-Saharan Africa | 135 | 4.07 | 0.31 | 0.86 | 0.16 | 0.28 | 0.14 | 0.21 | 2.11 |
| Haiti | Latin America and Caribbean | 136 | 4.03 | 0.34 | 0.30 | 0.27 | 0.12 | 0.14 | 0.48 | 2.37 |
| Botswana | Sub-Saharan Africa | 137 | 3.97 | 1.09 | 0.89 | 0.35 | 0.44 | 0.11 | 0.12 | 0.97 |
| Comoros | Sub-Saharan Africa | 138 | 3.96 | 0.28 | 0.60 | 0.30 | 0.15 | 0.18 | 0.18 | 2.26 |
| Ivory Coast | Sub-Saharan Africa | 139 | 3.92 | 0.56 | 0.58 | 0.04 | 0.41 | 0.16 | 0.20 | 1.97 |
| Cambodia | Southeastern Asia | 140 | 3.91 | 0.56 | 0.54 | 0.42 | 0.59 | 0.08 | 0.40 | 1.32 |
| Angola | Sub-Saharan Africa | 141 | 3.87 | 0.85 | 0.66 | 0.05 | 0.01 | 0.08 | 0.12 | 2.09 |
| Niger | Sub-Saharan Africa | 142 | 3.86 | 0.13 | 0.61 | 0.26 | 0.38 | 0.17 | 0.21 | 2.09 |
| South Sudan | Sub-Saharan Africa | 143 | 3.83 | 0.39 | 0.19 | 0.16 | 0.20 | 0.13 | 0.26 | 2.51 |
| Chad | Sub-Saharan Africa | 144 | 3.76 | 0.42 | 0.63 | 0.04 | 0.13 | 0.05 | 0.19 | 2.31 |
| Burkina Faso | Sub-Saharan Africa | 145 | 3.74 | 0.32 | 0.63 | 0.21 | 0.33 | 0.13 | 0.24 | 1.87 |
| Uganda | Sub-Saharan Africa | 145 | 3.74 | 0.35 | 0.91 | 0.20 | 0.44 | 0.06 | 0.27 | 1.51 |
| Yemen | Middle East and Northern Africa | 147 | 3.72 | 0.58 | 0.47 | 0.31 | 0.23 | 0.06 | 0.10 | 1.97 |
| Madagascar | Sub-Saharan Africa | 148 | 3.69 | 0.28 | 0.46 | 0.37 | 0.14 | 0.08 | 0.22 | 2.15 |
| Tanzania | Sub-Saharan Africa | 149 | 3.67 | 0.47 | 0.78 | 0.36 | 0.32 | 0.05 | 0.31 | 1.38 |
| Liberia | Sub-Saharan Africa | 150 | 3.62 | 0.11 | 0.50 | 0.23 | 0.26 | 0.05 | 0.24 | 2.23 |
| Guinea | Sub-Saharan Africa | 151 | 3.61 | 0.22 | 0.31 | 0.19 | 0.31 | 0.12 | 0.30 | 2.16 |
| Rwanda | Sub-Saharan Africa | 152 | 3.52 | 0.33 | 0.62 | 0.32 | 0.54 | 0.51 | 0.24 | 0.97 |
| Benin | Sub-Saharan Africa | 153 | 3.48 | 0.39 | 0.10 | 0.21 | 0.40 | 0.07 | 0.20 | 2.11 |
| Afghanistan | Southern Asia | 154 | 3.36 | 0.38 | 0.11 | 0.17 | 0.16 | 0.07 | 0.31 | 2.15 |
| Togo | Sub-Saharan Africa | 155 | 3.30 | 0.28 | 0.00 | 0.25 | 0.35 | 0.12 | 0.18 | 2.14 |
| Syria | Middle East and Northern Africa | 156 | 3.07 | 0.75 | 0.15 | 0.63 | 0.07 | 0.17 | 0.48 | 0.82 |
| Burundi | Sub-Saharan Africa | 157 | 2.90 | 0.07 | 0.23 | 0.16 | 0.04 | 0.09 | 0.20 | 2.10 |
Year2017 %>%
arrange(desc(`Happiness Score`)) %>%
mutate_each(funs(round(., 2)), -c(Country, Region)) %>%
head(155) %>%
formattable(list(
'Happiness Score' = color_bar("lightpink"),
'Economy (GDP per Capita)' = color_bar("paleturquoise"),
'Family' = color_bar("powderblue"),
'Health (Life Expectancy)' = color_bar("palegreen"),
'Freedom' = color_bar("lightgreen"),
'Trust (Government Corruption)' = color_bar("lavender"),
'Generosity' = color_bar("thistle"),
'Dystopia Residual' = color_bar("navajowhite")
), align = "l")
| Country | Region | Happiness Rank | Happiness Score | Economy (GDP per Capita) | Family | Health (Life Expectancy) | Freedom | Trust (Government Corruption) | Generosity | Dystopia Residual |
|---|---|---|---|---|---|---|---|---|---|---|
| Norway | Western Europe | 1 | 7.54 | 1.62 | 1.53 | 0.80 | 0.64 | 0.32 | 0.36 | 2.28 |
| Denmark | Western Europe | 2 | 7.52 | 1.48 | 1.55 | 0.79 | 0.63 | 0.40 | 0.36 | 2.31 |
| Iceland | Western Europe | 3 | 7.50 | 1.48 | 1.61 | 0.83 | 0.63 | 0.15 | 0.48 | 2.32 |
| Switzerland | Western Europe | 4 | 7.49 | 1.56 | 1.52 | 0.86 | 0.62 | 0.37 | 0.29 | 2.28 |
| Finland | Western Europe | 5 | 7.47 | 1.44 | 1.54 | 0.81 | 0.62 | 0.38 | 0.25 | 2.43 |
| Netherlands | Western Europe | 6 | 7.38 | 1.50 | 1.43 | 0.81 | 0.59 | 0.28 | 0.47 | 2.29 |
| Canada | North America | 7 | 7.32 | 1.48 | 1.48 | 0.83 | 0.61 | 0.29 | 0.44 | 2.19 |
| New Zealand | Australia and New Zealand | 8 | 7.31 | 1.41 | 1.55 | 0.82 | 0.61 | 0.38 | 0.50 | 2.05 |
| Sweden | Western Europe | 9 | 7.28 | 1.49 | 1.48 | 0.83 | 0.61 | 0.38 | 0.39 | 2.10 |
| Australia | Australia and New Zealand | 10 | 7.28 | 1.48 | 1.51 | 0.84 | 0.60 | 0.30 | 0.48 | 2.07 |
| Israel | Middle East and Northern Africa | 11 | 7.21 | 1.38 | 1.38 | 0.84 | 0.41 | 0.09 | 0.33 | 2.80 |
| Costa Rica | Latin America and Caribbean | 12 | 7.08 | 1.11 | 1.42 | 0.76 | 0.58 | 0.10 | 0.21 | 2.90 |
| Austria | Western Europe | 13 | 7.01 | 1.49 | 1.46 | 0.82 | 0.57 | 0.22 | 0.32 | 2.14 |
| United States | North America | 14 | 6.99 | 1.55 | 1.42 | 0.77 | 0.51 | 0.14 | 0.39 | 2.22 |
| Ireland | Western Europe | 15 | 6.98 | 1.54 | 1.56 | 0.81 | 0.57 | 0.30 | 0.43 | 1.77 |
| Germany | Western Europe | 16 | 6.95 | 1.49 | 1.47 | 0.80 | 0.56 | 0.28 | 0.34 | 2.02 |
| Belgium | Western Europe | 17 | 6.89 | 1.46 | 1.46 | 0.82 | 0.54 | 0.25 | 0.23 | 2.12 |
| Luxembourg | Western Europe | 18 | 6.86 | 1.74 | 1.46 | 0.85 | 0.60 | 0.32 | 0.28 | 1.62 |
| United Kingdom | Western Europe | 19 | 6.71 | 1.44 | 1.50 | 0.81 | 0.51 | 0.27 | 0.49 | 1.70 |
| Chile | Latin America and Caribbean | 20 | 6.65 | 1.25 | 1.28 | 0.82 | 0.38 | 0.08 | 0.33 | 2.51 |
| United Arab Emirates | Middle East and Northern Africa | 21 | 6.65 | 1.63 | 1.27 | 0.73 | 0.61 | 0.32 | 0.36 | 1.73 |
| Brazil | Latin America and Caribbean | 22 | 6.64 | 1.11 | 1.43 | 0.62 | 0.44 | 0.11 | 0.16 | 2.77 |
| Czech Republic | Central and Eastern Europe | 23 | 6.61 | 1.35 | 1.43 | 0.75 | 0.49 | 0.04 | 0.09 | 2.45 |
| Argentina | Latin America and Caribbean | 24 | 6.60 | 1.19 | 1.44 | 0.70 | 0.49 | 0.06 | 0.11 | 2.61 |
| Mexico | Latin America and Caribbean | 25 | 6.58 | 1.15 | 1.21 | 0.71 | 0.41 | 0.13 | 0.12 | 2.84 |
| Singapore | Southeastern Asia | 26 | 6.57 | 1.69 | 1.35 | 0.95 | 0.55 | 0.46 | 0.35 | 1.22 |
| Malta | Western Europe | 27 | 6.53 | 1.34 | 1.49 | 0.82 | 0.59 | 0.15 | 0.57 | 1.56 |
| Uruguay | Latin America and Caribbean | 28 | 6.45 | 1.22 | 1.41 | 0.72 | 0.58 | 0.18 | 0.18 | 2.17 |
| Guatemala | Latin America and Caribbean | 29 | 6.45 | 0.87 | 1.26 | 0.54 | 0.53 | 0.08 | 0.28 | 2.89 |
| Panama | Latin America and Caribbean | 30 | 6.45 | 1.23 | 1.37 | 0.71 | 0.55 | 0.07 | 0.21 | 2.31 |
| France | Western Europe | 31 | 6.44 | 1.43 | 1.39 | 0.84 | 0.47 | 0.17 | 0.13 | 2.01 |
| Thailand | Southeastern Asia | 32 | 6.42 | 1.13 | 1.43 | 0.65 | 0.58 | 0.03 | 0.57 | 2.04 |
| Taiwan Province of China | NA | 33 | 6.42 | 1.43 | 1.38 | 0.79 | 0.36 | 0.06 | 0.26 | 2.13 |
| Spain | Western Europe | 34 | 6.40 | 1.38 | 1.53 | 0.89 | 0.41 | 0.07 | 0.19 | 1.93 |
| Qatar | Middle East and Northern Africa | 35 | 6.38 | 1.87 | 1.27 | 0.71 | 0.60 | 0.44 | 0.33 | 1.15 |
| Colombia | Latin America and Caribbean | 36 | 6.36 | 1.07 | 1.40 | 0.60 | 0.48 | 0.05 | 0.15 | 2.62 |
| Saudi Arabia | Middle East and Northern Africa | 37 | 6.34 | 1.53 | 1.29 | 0.59 | 0.45 | 0.27 | 0.15 | 2.07 |
| Trinidad and Tobago | Latin America and Caribbean | 38 | 6.17 | 1.36 | 1.38 | 0.52 | 0.52 | 0.01 | 0.33 | 2.05 |
| Kuwait | Middle East and Northern Africa | 39 | 6.11 | 1.63 | 1.26 | 0.63 | 0.50 | 0.22 | 0.23 | 1.64 |
| Slovakia | Central and Eastern Europe | 40 | 6.10 | 1.33 | 1.51 | 0.71 | 0.30 | 0.02 | 0.14 | 2.10 |
| Bahrain | Middle East and Northern Africa | 41 | 6.09 | 1.49 | 1.32 | 0.65 | 0.54 | 0.26 | 0.17 | 1.66 |
| Malaysia | Southeastern Asia | 42 | 6.08 | 1.29 | 1.28 | 0.62 | 0.40 | 0.07 | 0.42 | 2.00 |
| Nicaragua | Latin America and Caribbean | 43 | 6.07 | 0.74 | 1.29 | 0.65 | 0.45 | 0.13 | 0.30 | 2.51 |
| Ecuador | Latin America and Caribbean | 44 | 6.01 | 1.00 | 1.29 | 0.69 | 0.46 | 0.14 | 0.15 | 2.29 |
| El Salvador | Latin America and Caribbean | 45 | 6.00 | 0.91 | 1.18 | 0.60 | 0.43 | 0.09 | 0.08 | 2.71 |
| Poland | Central and Eastern Europe | 46 | 5.97 | 1.29 | 1.45 | 0.70 | 0.52 | 0.06 | 0.16 | 1.80 |
| Uzbekistan | Central and Eastern Europe | 47 | 5.97 | 0.79 | 1.55 | 0.50 | 0.66 | 0.25 | 0.42 | 1.82 |
| Italy | Western Europe | 48 | 5.96 | 1.40 | 1.44 | 0.85 | 0.26 | 0.03 | 0.17 | 1.81 |
| Russia | Central and Eastern Europe | 49 | 5.96 | 1.28 | 1.47 | 0.55 | 0.37 | 0.03 | 0.05 | 2.21 |
| Belize | Latin America and Caribbean | 50 | 5.96 | 0.91 | 1.08 | 0.45 | 0.55 | 0.10 | 0.24 | 2.63 |
| Japan | Eastern Asia | 51 | 5.92 | 1.42 | 1.44 | 0.91 | 0.51 | 0.16 | 0.12 | 1.36 |
| Lithuania | Central and Eastern Europe | 52 | 5.90 | 1.31 | 1.47 | 0.63 | 0.23 | 0.01 | 0.01 | 2.23 |
| Algeria | Middle East and Northern Africa | 53 | 5.87 | 1.09 | 1.15 | 0.62 | 0.23 | 0.15 | 0.07 | 2.57 |
| Latvia | Central and Eastern Europe | 54 | 5.85 | 1.26 | 1.40 | 0.64 | 0.33 | 0.07 | 0.15 | 1.99 |
| South Korea | Eastern Asia | 55 | 5.84 | 1.40 | 1.13 | 0.90 | 0.26 | 0.06 | 0.21 | 1.88 |
| Moldova | Central and Eastern Europe | 56 | 5.84 | 0.73 | 1.25 | 0.59 | 0.24 | 0.01 | 0.21 | 2.81 |
| Romania | Central and Eastern Europe | 57 | 5.82 | 1.22 | 1.15 | 0.69 | 0.46 | 0.00 | 0.13 | 2.18 |
| Bolivia | Latin America and Caribbean | 58 | 5.82 | 0.83 | 1.23 | 0.47 | 0.56 | 0.06 | 0.23 | 2.44 |
| Turkmenistan | Central and Eastern Europe | 59 | 5.82 | 1.13 | 1.49 | 0.44 | 0.42 | 0.26 | 0.25 | 1.83 |
| Kazakhstan | Central and Eastern Europe | 60 | 5.82 | 1.28 | 1.38 | 0.61 | 0.44 | 0.12 | 0.20 | 1.78 |
| North Cyprus | Western Europe | 61 | 5.81 | 1.35 | 1.19 | 0.83 | 0.47 | 0.16 | 0.27 | 1.55 |
| Slovenia | Central and Eastern Europe | 62 | 5.76 | 1.34 | 1.45 | 0.79 | 0.57 | 0.05 | 0.24 | 1.31 |
| Peru | Latin America and Caribbean | 63 | 5.72 | 1.04 | 1.22 | 0.63 | 0.45 | 0.05 | 0.13 | 2.21 |
| Mauritius | Sub-Saharan Africa | 64 | 5.63 | 1.19 | 1.21 | 0.64 | 0.49 | 0.04 | 0.36 | 1.70 |
| Cyprus | Western Europe | 65 | 5.62 | 1.36 | 1.13 | 0.84 | 0.36 | 0.04 | 0.27 | 1.62 |
| Estonia | Central and Eastern Europe | 66 | 5.61 | 1.32 | 1.48 | 0.70 | 0.48 | 0.18 | 0.10 | 1.36 |
| Belarus | Central and Eastern Europe | 67 | 5.57 | 1.16 | 1.44 | 0.64 | 0.30 | 0.16 | 0.16 | 1.72 |
| Libya | Middle East and Northern Africa | 68 | 5.53 | 1.10 | 1.36 | 0.52 | 0.47 | 0.09 | 0.15 | 1.84 |
| Turkey | Middle East and Northern Africa | 69 | 5.50 | 1.20 | 1.34 | 0.64 | 0.30 | 0.10 | 0.05 | 1.88 |
| Paraguay | Latin America and Caribbean | 70 | 5.49 | 0.93 | 1.51 | 0.58 | 0.47 | 0.09 | 0.22 | 1.69 |
| Hong Kong S.A.R., China | NA | 71 | 5.47 | 1.55 | 1.26 | 0.94 | 0.49 | 0.29 | 0.37 | 0.55 |
| Philippines | Southeastern Asia | 72 | 5.43 | 0.86 | 1.25 | 0.47 | 0.59 | 0.10 | 0.19 | 1.97 |
| Serbia | Central and Eastern Europe | 73 | 5.39 | 1.07 | 1.26 | 0.65 | 0.21 | 0.04 | 0.22 | 1.95 |
| Jordan | Middle East and Northern Africa | 74 | 5.34 | 0.99 | 1.24 | 0.60 | 0.42 | 0.12 | 0.17 | 1.79 |
| Hungary | Central and Eastern Europe | 75 | 5.32 | 1.29 | 1.34 | 0.69 | 0.18 | 0.04 | 0.08 | 1.72 |
| Jamaica | Latin America and Caribbean | 76 | 5.31 | 0.93 | 1.37 | 0.64 | 0.47 | 0.06 | 0.23 | 1.61 |
| Croatia | Central and Eastern Europe | 77 | 5.29 | 1.22 | 0.97 | 0.70 | 0.26 | 0.04 | 0.25 | 1.85 |
| Kosovo | Central and Eastern Europe | 78 | 5.28 | 0.95 | 1.14 | 0.54 | 0.26 | 0.06 | 0.32 | 2.01 |
| China | Eastern Asia | 79 | 5.27 | 1.08 | 1.16 | 0.74 | 0.47 | 0.02 | 0.03 | 1.76 |
| Pakistan | Southern Asia | 80 | 5.27 | 0.73 | 0.67 | 0.40 | 0.24 | 0.12 | 0.32 | 2.79 |
| Indonesia | Southeastern Asia | 81 | 5.26 | 1.00 | 1.27 | 0.49 | 0.44 | 0.02 | 0.61 | 1.43 |
| Venezuela | Latin America and Caribbean | 82 | 5.25 | 1.13 | 1.43 | 0.62 | 0.15 | 0.06 | 0.07 | 1.79 |
| Montenegro | Central and Eastern Europe | 83 | 5.24 | 1.12 | 1.24 | 0.67 | 0.19 | 0.09 | 0.20 | 1.73 |
| Morocco | Middle East and Northern Africa | 84 | 5.24 | 0.88 | 0.77 | 0.60 | 0.41 | 0.09 | 0.03 | 2.46 |
| Azerbaijan | Central and Eastern Europe | 85 | 5.23 | 1.15 | 1.15 | 0.54 | 0.40 | 0.18 | 0.05 | 1.76 |
| Dominican Republic | Latin America and Caribbean | 86 | 5.23 | 1.08 | 1.40 | 0.57 | 0.55 | 0.11 | 0.19 | 1.32 |
| Greece | Western Europe | 87 | 5.23 | 1.29 | 1.24 | 0.81 | 0.10 | 0.04 | 0.00 | 1.75 |
| Lebanon | Middle East and Northern Africa | 88 | 5.22 | 1.07 | 1.13 | 0.74 | 0.29 | 0.04 | 0.26 | 1.70 |
| Portugal | Western Europe | 89 | 5.20 | 1.32 | 1.37 | 0.80 | 0.50 | 0.02 | 0.10 | 1.11 |
| Bosnia and Herzegovina | Central and Eastern Europe | 90 | 5.18 | 0.98 | 1.07 | 0.71 | 0.20 | 0.00 | 0.33 | 1.89 |
| Honduras | Latin America and Caribbean | 91 | 5.18 | 0.73 | 1.14 | 0.58 | 0.35 | 0.07 | 0.24 | 2.07 |
| Macedonia | Central and Eastern Europe | 92 | 5.18 | 1.06 | 1.21 | 0.64 | 0.33 | 0.06 | 0.25 | 1.62 |
| Somalia | Sub-Saharan Africa | 93 | 5.15 | 0.02 | 0.72 | 0.11 | 0.60 | 0.28 | 0.29 | 3.12 |
| Vietnam | Southeastern Asia | 94 | 5.07 | 0.79 | 1.28 | 0.65 | 0.57 | 0.09 | 0.23 | 1.46 |
| Nigeria | Sub-Saharan Africa | 95 | 5.07 | 0.78 | 1.22 | 0.06 | 0.39 | 0.03 | 0.23 | 2.37 |
| Tajikistan | Central and Eastern Europe | 96 | 5.04 | 0.52 | 1.27 | 0.53 | 0.47 | 0.15 | 0.25 | 1.85 |
| Bhutan | Southern Asia | 97 | 5.01 | 0.89 | 1.34 | 0.50 | 0.50 | 0.17 | 0.47 | 1.14 |
| Kyrgyzstan | Central and Eastern Europe | 98 | 5.00 | 0.60 | 1.39 | 0.55 | 0.45 | 0.04 | 0.43 | 1.54 |
| Nepal | Southern Asia | 99 | 4.96 | 0.48 | 1.18 | 0.50 | 0.44 | 0.07 | 0.39 | 1.89 |
| Mongolia | Eastern Asia | 100 | 4.95 | 1.03 | 1.49 | 0.56 | 0.39 | 0.03 | 0.34 | 1.11 |
| South Africa | Sub-Saharan Africa | 101 | 4.83 | 1.05 | 1.38 | 0.19 | 0.48 | 0.07 | 0.14 | 1.51 |
| Tunisia | Middle East and Northern Africa | 102 | 4.80 | 1.01 | 0.87 | 0.61 | 0.29 | 0.09 | 0.05 | 1.89 |
| Palestinian Territories | Middle East and Northern Africa | 103 | 4.78 | 0.72 | 1.16 | 0.57 | 0.25 | 0.09 | 0.11 | 1.88 |
| Egypt | Middle East and Northern Africa | 104 | 4.74 | 0.99 | 1.00 | 0.52 | 0.28 | 0.11 | 0.13 | 1.70 |
| Bulgaria | Central and Eastern Europe | 105 | 4.71 | 1.16 | 1.43 | 0.71 | 0.29 | 0.01 | 0.11 | 1.00 |
| Sierra Leone | Sub-Saharan Africa | 106 | 4.71 | 0.37 | 0.98 | 0.01 | 0.32 | 0.07 | 0.29 | 2.67 |
| Cameroon | Sub-Saharan Africa | 107 | 4.70 | 0.56 | 0.95 | 0.13 | 0.43 | 0.05 | 0.24 | 2.33 |
| Iran | Middle East and Northern Africa | 108 | 4.69 | 1.16 | 0.71 | 0.64 | 0.25 | 0.05 | 0.39 | 1.50 |
| Albania | Central and Eastern Europe | 109 | 4.64 | 1.00 | 0.80 | 0.73 | 0.38 | 0.04 | 0.20 | 1.49 |
| Bangladesh | Southern Asia | 110 | 4.61 | 0.59 | 0.74 | 0.53 | 0.48 | 0.12 | 0.17 | 1.98 |
| Namibia | Sub-Saharan Africa | 111 | 4.57 | 0.96 | 1.10 | 0.34 | 0.52 | 0.09 | 0.08 | 1.48 |
| Kenya | Sub-Saharan Africa | 112 | 4.55 | 0.56 | 1.07 | 0.31 | 0.45 | 0.06 | 0.44 | 1.65 |
| Mozambique | NA | 113 | 4.55 | 0.23 | 0.87 | 0.11 | 0.48 | 0.18 | 0.32 | 2.36 |
| Myanmar | Southeastern Asia | 114 | 4.55 | 0.37 | 1.12 | 0.40 | 0.51 | 0.19 | 0.84 | 1.12 |
| Senegal | Sub-Saharan Africa | 115 | 4.53 | 0.48 | 1.18 | 0.41 | 0.38 | 0.12 | 0.18 | 1.79 |
| Zambia | Sub-Saharan Africa | 116 | 4.51 | 0.64 | 1.00 | 0.26 | 0.46 | 0.08 | 0.25 | 1.83 |
| Iraq | Middle East and Northern Africa | 117 | 4.50 | 1.10 | 0.98 | 0.50 | 0.29 | 0.11 | 0.20 | 1.32 |
| Gabon | Sub-Saharan Africa | 118 | 4.47 | 1.20 | 1.16 | 0.36 | 0.31 | 0.08 | 0.04 | 1.32 |
| Ethiopia | Sub-Saharan Africa | 119 | 4.46 | 0.34 | 0.86 | 0.35 | 0.41 | 0.17 | 0.31 | 2.02 |
| Sri Lanka | Southern Asia | 120 | 4.44 | 1.01 | 1.26 | 0.63 | 0.56 | 0.07 | 0.49 | 0.42 |
| Armenia | Central and Eastern Europe | 121 | 4.38 | 0.90 | 1.01 | 0.64 | 0.20 | 0.03 | 0.08 | 1.52 |
| India | Southern Asia | 122 | 4.32 | 0.79 | 0.75 | 0.46 | 0.47 | 0.09 | 0.23 | 1.52 |
| Mauritania | Sub-Saharan Africa | 123 | 4.29 | 0.65 | 1.27 | 0.29 | 0.10 | 0.14 | 0.20 | 1.65 |
| Congo (Brazzaville) | Sub-Saharan Africa | 124 | 4.29 | 0.81 | 0.83 | 0.29 | 0.44 | 0.08 | 0.12 | 1.72 |
| Georgia | Central and Eastern Europe | 125 | 4.29 | 0.95 | 0.57 | 0.65 | 0.31 | 0.25 | 0.05 | 1.50 |
| Congo (Kinshasa) | Sub-Saharan Africa | 126 | 4.28 | 0.09 | 1.23 | 0.19 | 0.24 | 0.06 | 0.25 | 2.22 |
| Mali | Sub-Saharan Africa | 127 | 4.19 | 0.48 | 1.28 | 0.17 | 0.31 | 0.10 | 0.18 | 1.67 |
| Ivory Coast | Sub-Saharan Africa | 128 | 4.18 | 0.60 | 0.90 | 0.05 | 0.45 | 0.13 | 0.20 | 1.84 |
| Cambodia | Southeastern Asia | 129 | 4.17 | 0.60 | 1.01 | 0.43 | 0.63 | 0.07 | 0.39 | 1.04 |
| Sudan | Sub-Saharan Africa | 130 | 4.14 | 0.66 | 1.21 | 0.29 | 0.01 | 0.09 | 0.18 | 1.69 |
| Ghana | Sub-Saharan Africa | 131 | 4.12 | 0.67 | 0.87 | 0.30 | 0.42 | 0.03 | 0.26 | 1.58 |
| Ukraine | Central and Eastern Europe | 132 | 4.10 | 0.89 | 1.39 | 0.58 | 0.12 | 0.02 | 0.27 | 0.81 |
| Uganda | Sub-Saharan Africa | 133 | 4.08 | 0.38 | 1.13 | 0.22 | 0.44 | 0.06 | 0.33 | 1.53 |
| Burkina Faso | Sub-Saharan Africa | 134 | 4.03 | 0.35 | 1.04 | 0.22 | 0.32 | 0.12 | 0.25 | 1.73 |
| Niger | Sub-Saharan Africa | 135 | 4.03 | 0.16 | 0.99 | 0.27 | 0.36 | 0.14 | 0.23 | 1.87 |
| Malawi | Sub-Saharan Africa | 136 | 3.97 | 0.23 | 0.51 | 0.32 | 0.47 | 0.07 | 0.29 | 2.08 |
| Chad | Sub-Saharan Africa | 137 | 3.94 | 0.44 | 0.95 | 0.04 | 0.16 | 0.05 | 0.22 | 2.07 |
| Zimbabwe | Sub-Saharan Africa | 138 | 3.88 | 0.38 | 1.08 | 0.20 | 0.34 | 0.10 | 0.19 | 1.60 |
| Lesotho | NA | 139 | 3.81 | 0.52 | 1.19 | 0.00 | 0.39 | 0.12 | 0.16 | 1.43 |
| Angola | Sub-Saharan Africa | 140 | 3.80 | 0.86 | 1.10 | 0.05 | 0.00 | 0.07 | 0.10 | 1.61 |
| Afghanistan | Southern Asia | 141 | 3.79 | 0.40 | 0.58 | 0.18 | 0.11 | 0.06 | 0.31 | 2.15 |
| Botswana | Sub-Saharan Africa | 142 | 3.77 | 1.12 | 1.22 | 0.34 | 0.51 | 0.10 | 0.10 | 0.38 |
| Benin | Sub-Saharan Africa | 143 | 3.66 | 0.43 | 0.44 | 0.21 | 0.43 | 0.06 | 0.21 | 1.89 |
| Madagascar | Sub-Saharan Africa | 144 | 3.64 | 0.31 | 0.91 | 0.38 | 0.19 | 0.07 | 0.21 | 1.58 |
| Haiti | Latin America and Caribbean | 145 | 3.60 | 0.37 | 0.64 | 0.28 | 0.03 | 0.10 | 0.49 | 1.70 |
| Yemen | Middle East and Northern Africa | 146 | 3.59 | 0.59 | 0.94 | 0.31 | 0.25 | 0.06 | 0.10 | 1.35 |
| South Sudan | Sub-Saharan Africa | 147 | 3.59 | 0.40 | 0.60 | 0.16 | 0.15 | 0.12 | 0.29 | 1.88 |
| Liberia | Sub-Saharan Africa | 148 | 3.53 | 0.12 | 0.87 | 0.23 | 0.33 | 0.04 | 0.27 | 1.67 |
| Guinea | Sub-Saharan Africa | 149 | 3.51 | 0.24 | 0.79 | 0.19 | 0.35 | 0.11 | 0.26 | 1.55 |
| Togo | Sub-Saharan Africa | 150 | 3.49 | 0.31 | 0.43 | 0.25 | 0.38 | 0.10 | 0.20 | 1.84 |
| Rwanda | Sub-Saharan Africa | 151 | 3.47 | 0.37 | 0.95 | 0.33 | 0.58 | 0.46 | 0.25 | 0.54 |
| Syria | Middle East and Northern Africa | 152 | 3.46 | 0.78 | 0.40 | 0.50 | 0.08 | 0.15 | 0.49 | 1.06 |
| Tanzania | Sub-Saharan Africa | 153 | 3.35 | 0.51 | 1.04 | 0.36 | 0.39 | 0.07 | 0.35 | 0.62 |
| Burundi | Sub-Saharan Africa | 154 | 2.90 | 0.09 | 0.63 | 0.15 | 0.06 | 0.08 | 0.20 | 1.68 |
| Central African Republic | NA | 155 | 2.69 | 0.00 | 0.00 | 0.02 | 0.27 | 0.06 | 0.28 | 2.07 |
Measuments are defined as in World Happiness Report 2017
Hapiness Rank: rank of country’s happiness score from high to low
Happiness Score: measured by each variable; reveals a populated-weighted average score on a scale running from 0 to 10 that is tracked over time and compared against other countries
There are 6 variables:
Economy (GDP per Capita): a measure of the total output of a country that takes gross domestic product (GDP) and divides it by the number of people in the country
Family: an important factor of social support
Helth (Life Expectancy): healthy years of life expectancy
Freedom: perceived freedom to make life decisions
Trust (Government Corruption): as measured by a perceived absence of corruption in government and business
Generosity: as measured by recent donations
These factors describe the extent to which they contribute in evaluating the happiness in each country.
Following Happiness Score maps show us an overview of Happiness Score across the globe. Since there were different number of countries conducted the survey each year, the blue-shaded countries may vary. There are also countries that never participated in the report, thus those countries are shaded in grey. But the majority countries are consistent.
At the first glance, North America, Australia and New Zealand are most recognizable regions that are in light blue. If we look closer to Europe, we can also see the light blue area, which includes many of the top rankers. It is also pretty obvious that Asia is around the score-5 range. However, if we look at Africa and Middle East, the extremely dark blue shading shows that people living in these places are truly suffering.
world <- map_data("world")
colnames(world)[5] <- "Country"
Year2015$Country <- as.character(Year2015$Country)
Year2015Map <- Year2015[which(!is.na(Year2015$Country)),]
ChangeName <- c("Congo (Brazzaville)"="Democratic Republic of the Congo","Congo (Kinshasa)"="Republic of Congo","Somaliland region" = "Somalia", "United States"="USA","United Kingdom"= "UK")
for(i in names(ChangeName)){
Year2015Map[Year2015Map$Country==i,"Country"] <- ChangeName[i]}
Map15 <- left_join(world, Year2015Map)
ggplot() +
geom_polygon( aes(x = Map15$long, y = Map15$lat, group = Map15$group,fill= Map15$`Happiness Score`)) +
coord_equal() +scale_fill_gradient(breaks=c(3,5,7,9)) +
xlab("") + ylab("") + guides(shape=FALSE) + labs(fill="Happiness Score")
world <- map_data("world")
colnames(world)[5] <- "Country"
Year2016$Country <- as.character(Year2016$Country)
Year2016Map <- Year2016[which(!is.na(Year2016$Country)),]
ChangeName <- c("Congo (Brazzaville)"="Democratic Republic of the Congo","Congo (Kinshasa)"="Republic of Congo", "Somaliland region" = "Somalia", "United States"="USA","United Kingdom"= "UK")
for(i in names(ChangeName)){
Year2016Map[Year2016Map$Country==i,"Country"] <- ChangeName[i]}
Map16 <- left_join(world, Year2016Map)
ggplot() +
geom_polygon( aes(x = Map16$long, y = Map16$lat, group = Map16$group,fill= Map16$`Happiness Score`)) +
coord_equal() +scale_fill_gradient(breaks=c(3,5,7,9)) +
xlab("") + ylab("") + guides(shape=FALSE) + labs(fill="Happiness Score")
world <- map_data("world")
colnames(world)[5] <- "Country"
Year2017$Country <- as.character(Year2017$Country)
Year2017Map <- Year2017[which(!is.na(Year2017$Country)),]
ChangeName <- c("Congo (Brazzaville)"="Democratic Republic of the Congo","Congo (Kinshasa)"="Republic of Congo", "Somaliland region" = "Somalia", "United States"="USA","United Kingdom"= "UK")
for(i in names(ChangeName)){
Year2017Map[Year2017Map$Country==i,"Country"] <- ChangeName[i]}
Map17 <- left_join(world, Year2017Map)
ggplot() +
geom_polygon( aes(x = Map17$long, y = Map17$lat, group = Map17$group,fill= Map17$`Happiness Score`)) +
coord_equal() +scale_fill_gradient(breaks=c(3,5,7,9)) +
xlab("") + ylab("") + guides(shape=FALSE) + labs(fill="Happiness Score")
Following bar chart shows the number of countries in World Happiness Report 2016. The reason of using this year is that it contains the most number of countries among these three years. We can see the number of countries distribution here.
Num_Countries <- ggplot(data = Year2016, aes(x = Region)) +
geom_bar() +
coord_flip()
ggplotly(Num_Countries)
We can see from these box plots that Happiness Scores in Australia and New Zealand and North America are the only two regions that has median score greater than 7. However, we need to note that these two regions only contain 4 countries (Australia, New Zealand, Canada, and United States). Most of the Western Europe countries rank top in the data set, but with lower outliers, the region median is slightly below 7. Middle East and Northern Africa has the most noticeable whisker. Sub-Saharan Africa has the largest number of countries and their Happiness Scores are the lowest score across regions.
var_boxplots <- ggplot(data = Year2016, aes(Region , `Happiness Score`)) +
geom_boxplot() +
geom_jitter(width = .25, alpha = .25) +
theme(axis.text.x = element_text(angle = -45, hjust = -0.002))
ggplotly(var_boxplots)
To quickly approach to multiple relationships, scatter plot matrices can visualize and compare relationships across the entire data set. Following matrices are generated by ggpairs from the GGally. Following matrices are based on World Happiness Report 2017.
Year2017 %>%
select('Happiness Score', 'Economy (GDP per Capita)', 'Family', 'Health (Life Expectancy)', 'Freedom', 'Trust (Government Corruption)', 'Generosity', 'Dystopia Residual') %>%
ggpairs()
To better visualized, in the following corrplot, we can see the correlation between each variable. Larger the circle, greater the correlation. With scale from -1 to 1, positive correlations are shown in blue colors. Darker the blue, greater the correlation.
In the first row of Happiness Score, we can see that the top three contributors are Economy (GDP per Capita), Family, and Health (Life Expectancy). Other noticeable correlations are Economy vs. Health and Economy vs. Family, which are not surprising because these are the top three contributors. Additionally, Family vs. Health also has a notable correlation, especially this correlation grows year-by-year.
corr2015 <- cor(as.matrix(Year2015[,-c(1,2,3)]))
corrplot(corr2015,method = "circle",type = "upper",mar = c(0,0,1,0))
corr2016 <- cor(as.matrix(Year2016[,-c(1,2,3)]))
corrplot(corr2016,method = "circle",type = "upper",mar = c(0,0,1,0))
corr2017 <- cor(as.matrix(Year2017[,-c(1,2,3)]))
corrplot(corr2017,method = "circle",type = "upper",mar = c(0,0,1,0))
Following two tables show Rank Change within two-year time frame. Default tables are sorted alphabetically. You can select columns to sort your result.
It appears that top 5 happiest countries basically stay the same, with slightly up or down in rank change. Countries that experienced significant rank change are mostly rank lower, even in some cases, rank bottom.
You can type in specific country you want to see in the Search box; you can also select 10/25/50/100 entries to show per page.
Y1516 <- merge(Year2015[,c(1,3)],
Year2016[,c(1,3)],
by.x = "Country",
by.y = "Country")
colnames(Y1516)<-c("Country","Happiness Rank 2015","Happiness Rank 2016")
Y1516 <- Y1516 %>%
mutate(`Rank Change`=`Happiness Rank 2015`-`Happiness Rank 2016`)
Y1516RC <- formattable(Y1516, list(
`Rank Change` = formatter("span",
style = ~ style(color = ifelse(`Rank Change` >= 0, "green", "red")))))
as.datatable(Y1516RC)
Y1617 <- merge(Year2016[,c(1,3)],
Year2017[,c(1,3)],
by.x = "Country",
by.y = "Country")
colnames(Y1617)<-c("Country","Happiness Rank 2016","Happiness Rank 2017")
Y1617 <- Y1617 %>%
mutate(`Rank Change`=`Happiness Rank 2016`-`Happiness Rank 2017`)
Y1617RC <- formattable(Y1617, list(
`Rank Change` = formatter("span",
style = ~ style(color = ifelse(`Rank Change` >= 0, "green", "red")))))
as.datatable(Y1617RC)
This exploratory data analysis addressed problems and findings associated with World Happiness Report from year 2015 to 2017.
What are the happiest/unhappiest countries/regions in the world?
What is the Happiness Score distribution across the globe?
Is the Happiness Score changing over the three-year time frame?
How do the Happiness Score and each individual variable score visualized? Can we understand individual scores without just looking at numbers?
How do six variables that make up final score correlate with the Happiness Score? Is there any strong relationship?
How do six variables correlate with each other? Is there any strong relationship?
Is the correlation between each variable changing over the three-year time frame?
Is there any Happiness Rank change in these available reported three years?
Cleaned data to fully tidy
Visualized numeric values in Data Preview
Utilized various packages (details as shown in the Packages Required section) to access self-explanatory maps, graphics, matrices, and tables
Added helpful comments to enhance audiences’ understanding of the content
Created a reader-friendly analytical report
People live in Western Europe, North America, Australia and New Zealand regions are more likely to have a happier life
People live in Sub-Saharan Africa, Middle East and Northern Africa regions are suffering that need worldwide humanistic concern
Top three main factors contributed to the Happiness Score are Economy (GDP per Capita), Family, and Health (Life Expectancy)
Top five happiest countries are fairly consistent every year, with slightly rank change
Countries that experienced significant rank change are mostly rank lower, even in some cases, rank bottom
As World Happiness Report keeps coming out every year, we will have more data, and possibly more countries to analyze
Since every report has chapters that discussing specific regions and countries, if you want to deeply analyze one specific place, you can find additional information in the report
Beyond the report itself, there are many relative resources and subjects that can be a nice combination to work on
Thank you for reading! I hope my EDA is helpful, or even make me happier, meaningful to you. As I addressed in my introduction, this project is not just about data analysis, it aims to bring extra considerations to the table. Happiness seems like an abstract thing, but we never stop pursuing it. At the very last, I want to quote Aristotle to conclude my analysis:
The simply complete thing, then, is that which is always chosen for itself and never on account of something else. Happiness above all seems to be of this character, for we always choose it on account of itself and never on account of something else. Yet honor, pleasure, intellect, and every virtue we choose on their own account…but we choose them also for the sake of happiness, because we suppose that, through them, we will be happy. Aristotle, The Nicomachean Ethics