similarities in adult behavior

library("arules")
## Loading required package: Matrix
## 
## Attaching package: 'arules'
## The following objects are masked from 'package:base':
## 
##     abbreviate, write
data("Adult")
dim(Adult)
## [1] 48842   115
summary(Adult)
## transactions as itemMatrix in sparse format with
##  48842 rows (elements/itemsets/transactions) and
##  115 columns (items) and a density of 0.1089939 
## 
## most frequent items:
##            capital-loss=None            capital-gain=None 
##                        46560                        44807 
## native-country=United-States                   race=White 
##                        43832                        41762 
##            workclass=Private                      (Other) 
##                        33906                       401333 
## 
## element (itemset/transaction) length distribution:
## sizes
##     9    10    11    12    13 
##    19   971  2067 15623 30162 
## 
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    9.00   12.00   13.00   12.53   13.00   13.00 
## 
## includes extended item information - examples:
##            labels variables      levels
## 1       age=Young       age       Young
## 2 age=Middle-aged       age Middle-aged
## 3      age=Senior       age      Senior
## 
## includes extended transaction information - examples:
##   transactionID
## 1             1
## 2             2
## 3             3
data("Adult")
itemsets <- eclat(Adult)
## Eclat
## 
## parameter specification:
##  tidLists support minlen maxlen            target   ext
##     FALSE     0.1      1     10 frequent itemsets FALSE
## 
## algorithmic control:
##  sparse sort verbose
##       7   -2    TRUE
## 
## Absolute minimum support count: 4884 
## 
## create itemset ... 
## set transactions ...[115 item(s), 48842 transaction(s)] done [0.03s].
## sorting and recoding items ... [31 item(s)] done [0.02s].
## creating bit matrix ... [31 row(s), 48842 column(s)] done [0.00s].
## writing  ... [2616 set(s)] done [0.02s].
## Creating S4 object  ... done [0.00s].
itemsets.sorted <- sort(itemsets)
inspect(itemsets.sorted[1:10])
##      items                                            support  
## [1]  {capital-loss=None}                              0.9532779
## [2]  {capital-gain=None}                              0.9173867
## [3]  {native-country=United-States}                   0.8974243
## [4]  {capital-gain=None,capital-loss=None}            0.8706646
## [5]  {race=White}                                     0.8550428
## [6]  {capital-loss=None,native-country=United-States} 0.8548380
## [7]  {capital-gain=None,native-country=United-States} 0.8219565
## [8]  {race=White,capital-loss=None}                   0.8136849
## [9]  {race=White,native-country=United-States}        0.7881127
## [10] {race=White,capital-gain=None}                   0.7817862
itemsets <- eclat(Adult, parameter=list(minlen=8))
## Eclat
## 
## parameter specification:
##  tidLists support minlen maxlen            target   ext
##     FALSE     0.1      8     10 frequent itemsets FALSE
## 
## algorithmic control:
##  sparse sort verbose
##       7   -2    TRUE
## 
## Absolute minimum support count: 4884 
## 
## create itemset ... 
## set transactions ...[115 item(s), 48842 transaction(s)] done [0.03s].
## sorting and recoding items ... [31 item(s)] done [0.02s].
## creating bit matrix ... [31 row(s), 48842 column(s)] done [0.00s].
## writing  ... [17 set(s)] done [0.00s].
## Creating S4 object  ... done [0.00s].
inspect(itemsets)
##      items                                 support
## [1]  {marital-status=Married-civ-spouse,          
##       relationship=Husband,                       
##       race=White,                                 
##       sex=Male,                                   
##       capital-gain=None,                          
##       capital-loss=None,                          
##       hours-per-week=Over-time,                   
##       native-country=United-States}      0.1026575
## [2]  {age=Middle-aged,                            
##       workclass=Private,                          
##       marital-status=Married-civ-spouse,          
##       relationship=Husband,                       
##       race=White,                                 
##       sex=Male,                                   
##       capital-gain=None,                          
##       capital-loss=None,                          
##       native-country=United-States}      0.1056673
## [3]  {age=Middle-aged,                            
##       workclass=Private,                          
##       marital-status=Married-civ-spouse,          
##       relationship=Husband,                       
##       race=White,                                 
##       sex=Male,                                   
##       capital-loss=None,                          
##       native-country=United-States}      0.1199992
## [4]  {age=Middle-aged,                            
##       workclass=Private,                          
##       marital-status=Married-civ-spouse,          
##       relationship=Husband,                       
##       race=White,                                 
##       sex=Male,                                   
##       capital-gain=None,                          
##       native-country=United-States}      0.1140207
## [5]  {age=Middle-aged,                            
##       workclass=Private,                          
##       marital-status=Married-civ-spouse,          
##       relationship=Husband,                       
##       race=White,                                 
##       sex=Male,                                   
##       capital-gain=None,                          
##       capital-loss=None}                 0.1163138
## [6]  {age=Middle-aged,                            
##       workclass=Private,                          
##       marital-status=Married-civ-spouse,          
##       relationship=Husband,                       
##       sex=Male,                                   
##       capital-gain=None,                          
##       capital-loss=None,                          
##       native-country=United-States}      0.1136931
## [7]  {age=Middle-aged,                            
##       marital-status=Married-civ-spouse,          
##       relationship=Husband,                       
##       race=White,                                 
##       sex=Male,                                   
##       capital-gain=None,                          
##       capital-loss=None,                          
##       native-country=United-States}      0.1510995
## [8]  {age=Middle-aged,                            
##       workclass=Private,                          
##       marital-status=Married-civ-spouse,          
##       relationship=Husband,                       
##       race=White,                                 
##       capital-gain=None,                          
##       capital-loss=None,                          
##       native-country=United-States}      0.1056877
## [9]  {marital-status=Married-civ-spouse,          
##       relationship=Husband,                       
##       race=White,                                 
##       sex=Male,                                   
##       capital-gain=None,                          
##       capital-loss=None,                          
##       native-country=United-States,               
##       income=small}                      0.1101716
## [10] {workclass=Private,                          
##       marital-status=Married-civ-spouse,          
##       relationship=Husband,                       
##       race=White,                                 
##       sex=Male,                                   
##       capital-loss=None,                          
##       hours-per-week=Full-time,                   
##       native-country=United-States}      0.1085951
## [11] {workclass=Private,                          
##       marital-status=Married-civ-spouse,          
##       relationship=Husband,                       
##       race=White,                                 
##       sex=Male,                                   
##       capital-gain=None,                          
##       hours-per-week=Full-time,                   
##       native-country=United-States}      0.1028213
## [12] {workclass=Private,                          
##       marital-status=Married-civ-spouse,          
##       relationship=Husband,                       
##       race=White,                                 
##       sex=Male,                                   
##       capital-gain=None,                          
##       capital-loss=None,                          
##       hours-per-week=Full-time}          0.1086155
## [13] {workclass=Private,                          
##       marital-status=Married-civ-spouse,          
##       relationship=Husband,                       
##       sex=Male,                                   
##       capital-gain=None,                          
##       capital-loss=None,                          
##       hours-per-week=Full-time,                   
##       native-country=United-States}      0.1063020
## [14] {marital-status=Married-civ-spouse,          
##       relationship=Husband,                       
##       race=White,                                 
##       sex=Male,                                   
##       capital-gain=None,                          
##       capital-loss=None,                          
##       hours-per-week=Full-time,                   
##       native-country=United-States}      0.1429712
## [15] {workclass=Private,                          
##       marital-status=Married-civ-spouse,          
##       relationship=Husband,                       
##       race=White,                                 
##       sex=Male,                                   
##       capital-gain=None,                          
##       capital-loss=None,                          
##       native-country=United-States}      0.1769993
## [16] {age=Middle-aged,                            
##       workclass=Private,                          
##       relationship=Husband,                       
##       race=White,                                 
##       sex=Male,                                   
##       capital-gain=None,                          
##       capital-loss=None,                          
##       native-country=United-States}      0.1058106
## [17] {age=Middle-aged,                            
##       workclass=Private,                          
##       marital-status=Married-civ-spouse,          
##       race=White,                                 
##       sex=Male,                                   
##       capital-gain=None,                          
##       capital-loss=None,                          
##       native-country=United-States}      0.1065067
library(arulesNBMiner)
## Loading required package: rJava
data(Agrawal)
summary(Agrawal.db)
## transactions as itemMatrix in sparse format with
##  20000 rows (elements/itemsets/transactions) and
##  1000 columns (items) and a density of 0.00997795 
## 
## most frequent items:
## item540 item155 item803 item741 item399 (Other) 
##    1848    1477    1332    1295    1264  192343 
## 
## element (itemset/transaction) length distribution:
## sizes
##    1    2    3    4    5    6    7    8    9   10   11   12   13   14   15 
##   15   88  204  413  737 1233 1802 2217 2452 2444 2304 1858 1492 1072  706 
##   16   17   18   19   20   21   22   23   24   25 
##  431  233  138   83   46   19   10    1    1    1 
## 
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   1.000   8.000  10.000   9.978  12.000  25.000 
## 
## includes extended item information - examples:
##   labels
## 1  item1
## 2  item2
## 3  item3
summary(Agrawal.pat)
## set of 2000 itemsets
## 
## most frequent items:
## item399 item475 item756 item594 item293 (Other) 
##      29      29      29      28      26    3960 
## 
## element (itemset/transaction) length distribution:sizes
##   1   2   3   4   5   6 
## 702 733 385 134  34  12 
## 
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    1.00    1.00    2.00    2.05    3.00    6.00 
## 
## summary of quality measures:
##     pWeights           pCorrupts     
##  Min.   :2.100e-08   Min.   :0.0000  
##  1st Qu.:1.426e-04   1st Qu.:0.2885  
##  Median :3.431e-04   Median :0.5129  
##  Mean   :5.000e-04   Mean   :0.5061  
##  3rd Qu.:6.861e-04   3rd Qu.:0.7232  
##  Max.   :3.898e-03   Max.   :1.0000  
## 
## includes transaction ID lists: FALSE
mynbparameters <- NBMinerParameters(Agrawal.db)
mynbminer <- NBMiner(Agrawal.db, parameter = mynbparameters)
summary(mynbminer)
## set of 3332 itemsets
## 
## most frequent items:
## item540 item615 item258 item594 item293 (Other) 
##      69      57      55      50      46    6813 
## 
## element (itemset/transaction) length distribution:sizes
##    1    2    3    4    5 
## 1000 1287  725  259   61 
## 
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   1.000   1.000   2.000   2.128   3.000   5.000 
## 
## summary of quality measures:
##    precision     
##  Min.   :0.9901  
##  1st Qu.:1.0000  
##  Median :1.0000  
##  Mean   :0.9997  
##  3rd Qu.:1.0000  
##  Max.   :1.0000  
## 
## includes transaction ID lists: FALSE
library(arules)
tr <- read.transactions("https://raw.githubusercontent.com/dirkweissenborn/mahout-rbmClassifier/master/core/src/test/resources/retail.dat", format="basket")
summary(tr)
## transactions as itemMatrix in sparse format with
##  88162 rows (elements/itemsets/transactions) and
##  16470 columns (items) and a density of 0.0006257289 
## 
## most frequent items:
##      39      48      38      32      41 (Other) 
##   50675   42135   15596   15167   14945  770058 
## 
## element (itemset/transaction) length distribution:
## sizes
##    1    2    3    4    5    6    7    8    9   10   11   12   13   14   15 
## 3016 5516 6919 7210 6814 6163 5746 5143 4660 4086 3751 3285 2866 2620 2310 
##   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30 
## 2115 1874 1645 1469 1290 1205  981  887  819  684  586  582  472  480  355 
##   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45 
##  310  303  272  234  194  136  153  123  115  112   76   66   71   60   50 
##   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60 
##   44   37   37   33   22   24   21   21   10   11   10    9   11    4    9 
##   61   62   63   64   65   66   67   68   71   73   74   76 
##    7    4    5    2    2    5    3    3    1    1    1    1 
## 
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    1.00    4.00    8.00   10.31   14.00   76.00 
## 
## includes extended item information - examples:
##   labels
## 1      0
## 2      1
## 3     10
itemFrequencyPlot(tr, support=0.1)

rules <- apriori(tr, parameter=list(supp=0.5,conf=0.5))
## Apriori
## 
## Parameter specification:
##  confidence minval smax arem  aval originalSupport maxtime support minlen
##         0.5    0.1    1 none FALSE            TRUE       5     0.5      1
##  maxlen target   ext
##      10  rules FALSE
## 
## Algorithmic control:
##  filter tree heap memopt load sort verbose
##     0.1 TRUE TRUE  FALSE TRUE    2    TRUE
## 
## Absolute minimum support count: 44081 
## 
## set item appearances ...[0 item(s)] done [0.00s].
## set transactions ...[16470 item(s), 88162 transaction(s)] done [0.19s].
## sorting and recoding items ... [1 item(s)] done [0.00s].
## creating transaction tree ... done [0.02s].
## checking subsets of size 1 done [0.00s].
## writing ... [1 rule(s)] done [0.00s].
## creating S4 object  ... done [0.02s].
summary(rules)
## set of 1 rules
## 
## rule length distribution (lhs + rhs):sizes
## 1 
## 1 
## 
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##       1       1       1       1       1       1 
## 
## summary of quality measures:
##     support         confidence          lift  
##  Min.   :0.5748   Min.   :0.5748   Min.   :1  
##  1st Qu.:0.5748   1st Qu.:0.5748   1st Qu.:1  
##  Median :0.5748   Median :0.5748   Median :1  
##  Mean   :0.5748   Mean   :0.5748   Mean   :1  
##  3rd Qu.:0.5748   3rd Qu.:0.5748   3rd Qu.:1  
##  Max.   :0.5748   Max.   :0.5748   Max.   :1  
## 
## mining info:
##  data ntransactions support confidence
##    tr         88162     0.5        0.5
inspect(rules)
##     lhs    rhs  support   confidence lift
## [1] {}  => {39} 0.5747941 0.5747941  1
library ("TraMineR")
## 
## TraMineR stable version 2.0-6 (Built: 2017-08-16)
## Website: http://traminer.unige.ch
## Please type 'citation("TraMineR")' for citation information.
data(mvad)
summary(mvad)
##        id            weight        male     catholic  Belfast   N.Eastern
##  Min.   :  1.0   Min.   :0.1300   no :342   no :368   no :624   no :503  
##  1st Qu.:178.8   1st Qu.:0.4500   yes:370   yes:344   yes: 88   yes:209  
##  Median :356.5   Median :0.6900                                          
##  Mean   :356.5   Mean   :0.9994                                          
##  3rd Qu.:534.2   3rd Qu.:1.0700                                          
##  Max.   :712.0   Max.   :4.4600                                          
##  Southern  S.Eastern Western   Grammar   funemp    gcse5eq    fmpr    
##  no :497   no :629   no :595   no :583   no :595   no :452   no :537  
##  yes:215   yes: 83   yes:117   yes:129   yes:117   yes:260   yes:175  
##                                                                       
##                                                                       
##                                                                       
##                                                                       
##  livboth           Jul.93            Aug.93            Sep.93   
##  no :261   school     :135   school     :135   school     :179  
##  yes:451   FE         : 97   FE         : 98   FE         :275  
##            employment :173   employment :178   employment : 83  
##            training   :122   training   :127   training   :158  
##            joblessness:185   joblessness:174   joblessness: 17  
##            HE         :  0   HE         :  0   HE         :  0  
##          Oct.93            Nov.93            Dec.93            Jan.94   
##  school     :175   school     :174   school     :172   school     :171  
##  FE         :276   FE         :272   FE         :271   FE         :263  
##  employment : 88   employment : 95   employment : 98   employment :100  
##  training   :158   training   :157   training   :156   training   :158  
##  joblessness: 15   joblessness: 14   joblessness: 15   joblessness: 20  
##  HE         :  0   HE         :  0   HE         :  0   HE         :  0  
##          Feb.94            Mar.94            Apr.94            May.94   
##  school     :172   school     :171   school     :171   school     :170  
##  FE         :259   FE         :257   FE         :251   FE         :247  
##  employment :100   employment :106   employment :112   employment :117  
##  training   :154   training   :154   training   :153   training   :150  
##  joblessness: 27   joblessness: 24   joblessness: 25   joblessness: 28  
##  HE         :  0   HE         :  0   HE         :  0   HE         :  0  
##          Jun.94            Jul.94            Aug.94            Sep.94   
##  school     :165   school     :140   school     :139   school     :143  
##  FE         :232   FE         :196   FE         :196   FE         :221  
##  employment :130   employment :178   employment :184   employment :167  
##  training   :151   training   :142   training   :144   training   :146  
##  joblessness: 34   joblessness: 56   joblessness: 49   joblessness: 35  
##  HE         :  0   HE         :  0   HE         :  0   HE         :  0  
##          Oct.94            Nov.94            Dec.94            Jan.95   
##  school     :144   school     :144   school     :143   school     :144  
##  FE         :222   FE         :220   FE         :219   FE         :218  
##  employment :172   employment :176   employment :181   employment :182  
##  training   :137   training   :137   training   :133   training   :128  
##  joblessness: 37   joblessness: 35   joblessness: 36   joblessness: 40  
##  HE         :  0   HE         :  0   HE         :  0   HE         :  0  
##          Feb.95            Mar.95            Apr.95            May.95   
##  school     :143   school     :143   school     :142   school     :142  
##  FE         :211   FE         :210   FE         :203   FE         :200  
##  employment :185   employment :190   employment :199   employment :205  
##  training   :127   training   :124   training   :120   training   :118  
##  joblessness: 46   joblessness: 45   joblessness: 48   joblessness: 47  
##  HE         :  0   HE         :  0   HE         :  0   HE         :  0  
##          Jun.95            Jul.95            Aug.95            Sep.95   
##  school     :139   school     :149   school     :149   school     : 58  
##  FE         :189   FE         :140   FE         :138   FE         :152  
##  employment :215   employment :269   employment :273   employment :305  
##  training   :112   training   : 93   training   : 88   training   : 84  
##  joblessness: 57   joblessness: 58   joblessness: 61   joblessness: 61  
##  HE         :  0   HE         :  3   HE         :  3   HE         : 52  
##          Oct.95            Nov.95            Dec.95            Jan.96   
##  school     : 30   school     : 29   school     : 29   school     : 27  
##  FE         :137   FE         :136   FE         :135   FE         :132  
##  employment :294   employment :296   employment :296   employment :301  
##  training   : 81   training   : 79   training   : 80   training   : 81  
##  joblessness: 57   joblessness: 56   joblessness: 56   joblessness: 57  
##  HE         :113   HE         :116   HE         :116   HE         :114  
##          Feb.96            Mar.96            Apr.96            May.96   
##  school     : 27   school     : 27   school     : 27   school     : 27  
##  FE         :132   FE         :125   FE         :125   FE         :124  
##  employment :300   employment :308   employment :313   employment :315  
##  training   : 80   training   : 78   training   : 78   training   : 78  
##  joblessness: 60   joblessness: 61   joblessness: 56   joblessness: 55  
##  HE         :113   HE         :113   HE         :113   HE         :113  
##          Jun.96            Jul.96            Aug.96            Sep.96   
##  school     : 27   school     : 18   school     : 17   school     :  8  
##  FE         :122   FE         : 83   FE         : 83   FE         : 82  
##  employment :324   employment :388   employment :392   employment :387  
##  training   : 74   training   : 58   training   : 55   training   : 51  
##  joblessness: 53   joblessness: 58   joblessness: 59   joblessness: 59  
##  HE         :112   HE         :107   HE         :106   HE         :125  
##          Oct.96            Nov.96            Dec.96            Jan.97   
##  school     :  0   school     :  0   school     :  0   school     :  0  
##  FE         : 79   FE         : 80   FE         : 80   FE         : 79  
##  employment :379   employment :378   employment :380   employment :382  
##  training   : 51   training   : 50   training   : 49   training   : 46  
##  joblessness: 56   joblessness: 56   joblessness: 56   joblessness: 59  
##  HE         :147   HE         :148   HE         :147   HE         :146  
##          Feb.97            Mar.97            Apr.97            May.97   
##  school     :  0   school     :  0   school     :  0   school     :  0  
##  FE         : 79   FE         : 76   FE         : 75   FE         : 74  
##  employment :385   employment :386   employment :392   employment :394  
##  training   : 43   training   : 42   training   : 40   training   : 38  
##  joblessness: 59   joblessness: 61   joblessness: 60   joblessness: 61  
##  HE         :146   HE         :147   HE         :145   HE         :145  
##          Jun.97            Jul.97            Aug.97            Sep.97   
##  school     :  0   school     :  0   school     :  0   school     :  0  
##  FE         : 72   FE         : 44   FE         : 44   FE         : 37  
##  employment :400   employment :429   employment :431   employment :435  
##  training   : 37   training   : 26   training   : 22   training   : 24  
##  joblessness: 60   joblessness: 78   joblessness: 80   joblessness: 75  
##  HE         :143   HE         :135   HE         :135   HE         :141  
##          Oct.97            Nov.97            Dec.97            Jan.98   
##  school     :  0   school     :  0   school     :  0   school     :  0  
##  FE         : 29   FE         : 29   FE         : 29   FE         : 27  
##  employment :434   employment :441   employment :443   employment :443  
##  training   : 23   training   : 22   training   : 22   training   : 21  
##  joblessness: 73   joblessness: 67   joblessness: 66   joblessness: 70  
##  HE         :153   HE         :153   HE         :152   HE         :151  
##          Feb.98            Mar.98            Apr.98            May.98   
##  school     :  0   school     :  0   school     :  0   school     :  0  
##  FE         : 26   FE         : 26   FE         : 26   FE         : 25  
##  employment :444   employment :447   employment :449   employment :450  
##  training   : 17   training   : 17   training   : 17   training   : 16  
##  joblessness: 74   joblessness: 72   joblessness: 71   joblessness: 72  
##  HE         :151   HE         :150   HE         :149   HE         :149  
##          Jun.98            Jul.98            Aug.98            Sep.98   
##  school     :  0   school     :  0   school     :  0   school     :  0  
##  FE         : 25   FE         : 14   FE         : 14   FE         : 14  
##  employment :454   employment :477   employment :482   employment :479  
##  training   : 15   training   : 11   training   : 11   training   : 13  
##  joblessness: 71   joblessness: 81   joblessness: 80   joblessness: 85  
##  HE         :147   HE         :129   HE         :125   HE         :121  
##          Oct.98            Nov.98            Dec.98            Jan.99   
##  school     :  0   school     :  0   school     :  0   school     :  0  
##  FE         :  9   FE         :  8   FE         :  8   FE         :  9  
##  employment :482   employment :484   employment :481   employment :484  
##  training   : 13   training   : 12   training   : 13   training   : 13  
##  joblessness: 82   joblessness: 83   joblessness: 85   joblessness: 82  
##  HE         :126   HE         :125   HE         :125   HE         :124  
##          Feb.99            Mar.99            Apr.99            May.99   
##  school     :  0   school     :  0   school     :  0   school     :  0  
##  FE         :  9   FE         :  9   FE         :  9   FE         :  9  
##  employment :485   employment :483   employment :483   employment :482  
##  training   : 10   training   :  9   training   :  9   training   :  8  
##  joblessness: 85   joblessness: 88   joblessness: 89   joblessness: 93  
##  HE         :123   HE         :123   HE         :122   HE         :120  
##          Jun.99   
##  school     :  0  
##  FE         :  9  
##  employment :484  
##  training   :  8  
##  joblessness: 93  
##  HE         :118
myseq <- seqdef(mvad, 40:80)
##  [>] 6 distinct states appear in the data:
##      1 = employment
##      2 = FE
##      3 = HE
##      4 = joblessness
##      5 = school
##      6 = training
##  [>] state coding:
##        [alphabet]  [label]     [long label]
##      1  employment  employment  employment
##      2  FE          FE          FE
##      3  HE          HE          HE
##      4  joblessness joblessness joblessness
##      5  school      school      school
##      6  training    training    training
##  [>] 712 sequences in the data set
##  [>] min/max sequence length: 41/41
seqiplot(myseq)

seqfplot(myseq)

seqdplot(myseq)

seqHtplot(myseq)

myturbulence <- seqST(myseq)
##  [>] extracting symbols and durations ...
##  [>] computing turbulence for 712 sequence(s) ...
hist(myturbulence)

data(famform)
seq <- seqdef(famform)
##  [>] found missing values ('NA') in sequence data
##  [>] preparing 5 sequences
##  [>] coding void elements with '%' and missing values with '*'
##  [>] 5 distinct states appear in the data:
##      1 = M
##      2 = MC
##      3 = S
##      4 = SC
##      5 = U
##  [>] state coding:
##        [alphabet]  [label]  [long label]
##      1  M           M        M
##      2  MC          MC       MC
##      3  S           S        S
##      4  SC          SC       SC
##      5  U           U        U
##  [>] 5 sequences in the data set
##  [>] min/max sequence length: 2/5
seq
##     Sequence   
## [1] S-U        
## [2] S-U-M      
## [3] S-U-M-MC   
## [4] S-U-M-MC-SC
## [5] U-M-MC
seqLLCP(seq[3,],seq[4,])
## [1] 4
seqLLCS(seq[1,],seq[2,])
## [1] 2
cost <- seqsubm(seq, method="CONSTANT", cval=2)
##  [>] creating 5x5 substitution-cost matrix using 2 as constant value
cost
##      M-> MC-> S-> SC-> U->
## M->    0    2   2    2   2
## MC->   2    0   2    2   2
## S->    2    2   0    2   2
## SC->   2    2   2    0   2
## U->    2    2   2    2   0