k means clustering

x <- rbind(matrix(rnorm(1000, sd = 0.3), ncol = 2),
matrix(rnorm(1000, mean = 1, sd = 0.3), ncol = 2))
x
##                 [,1]          [,2]
##    [1,] -0.254758350 -0.1197926826
##    [2,] -0.144753926 -0.4622138506
##    [3,] -0.050539161 -0.1720906786
##    [4,] -0.510702995 -0.1621170778
##    [5,]  0.043629206  0.0220287938
##    [6,] -0.195057201  0.4040089104
##    [7,] -0.293887940  0.1546000386
##    [8,] -0.166325391  0.2749486940
##    [9,] -0.177605907 -0.5048323894
##   [10,] -0.001048073 -0.3853409570
##   [11,] -0.070159849 -0.0765219335
##   [12,] -0.126246948  0.5442939674
##   [13,]  0.207261806  0.0504811185
##   [14,] -0.410217806 -0.0630421950
##   [15,] -0.238139433  0.2541117019
##   [16,]  0.057121199  0.5760115438
##   [17,] -0.007025833 -0.0934874689
##   [18,] -0.051280058 -0.3947327910
##   [19,] -0.334558624  0.1400067579
##   [20,]  0.246069839  0.2698041183
##   [21,]  0.268895751  0.2591580743
##   [22,] -0.284753543  0.3340410530
##   [23,]  0.144909385  0.2837027149
##   [24,] -0.049594650  0.2343268542
##   [25,]  0.112780896 -0.0436260093
##   [26,] -0.172844651 -0.1088523140
##   [27,]  0.281498396  0.0803166265
##   [28,] -0.142808161  0.3702658072
##   [29,] -0.076147366 -0.0423666787
##   [30,]  0.260734271 -0.2028746645
##   [31,] -0.281483610 -0.0312102099
##   [32,]  0.376730913  0.0432811862
##   [33,] -0.460233295  0.0287004144
##   [34,] -0.339163313 -0.1850166327
##   [35,] -0.592911617 -0.0585219436
##   [36,]  0.326172497 -0.4324521058
##   [37,]  0.280034482 -0.2457679517
##   [38,] -0.175684052  0.0403752450
##   [39,]  0.424705107  0.2977497953
##   [40,] -0.882528991  0.3525969937
##   [41,] -0.164517086  0.5000445469
##   [42,] -0.064066824  0.1542083983
##   [43,] -0.034556855 -0.3866402142
##   [44,]  0.270487823  0.4901065448
##   [45,]  0.099364793  0.5046692202
##   [46,] -0.012281280 -0.0001764535
##   [47,] -0.236680489 -0.4273104346
##   [48,] -0.328584909 -0.0375851341
##   [49,] -0.380205108  0.2316368823
##   [50,]  0.281570867 -0.0564464557
##   [51,]  0.282889285 -0.0729487459
##   [52,] -0.137658791 -0.2589105970
##   [53,] -0.406562096  0.4449727360
##   [54,]  0.543041168  0.1701654211
##   [55,] -0.425520081 -0.1804540005
##   [56,] -0.041478431  0.0114832788
##   [57,]  0.016330245  0.6733445650
##   [58,]  0.406481625  0.1451740740
##   [59,]  0.095162513 -0.0900419236
##   [60,] -0.005017739  0.3008827841
##   [61,] -0.327702833 -0.3012921033
##   [62,]  0.318402053 -0.2547180742
##   [63,] -0.162827321  0.1590670231
##   [64,]  0.254975669  0.4534636971
##   [65,] -0.076462968 -0.5199912942
##   [66,] -0.052540710 -0.3002931798
##   [67,]  0.635032124  0.1165443221
##   [68,] -0.650876945 -0.1173834097
##   [69,]  0.423083137 -0.1919813972
##   [70,] -0.008134149  0.4693319028
##   [71,] -0.065828922  0.1694146544
##   [72,] -0.662906383 -0.1767345579
##   [73,] -0.424440984 -0.5482567532
##   [74,]  0.030487299 -0.0436328261
##   [75,] -0.127160956  0.4408570787
##   [76,] -0.145028241  0.1010822883
##   [77,] -0.037517972  0.0401866511
##   [78,]  0.068495742 -0.0145478641
##   [79,]  0.620640291 -0.1588489323
##   [80,]  0.044935301  0.1410912872
##   [81,] -0.086097462 -0.1421595135
##   [82,]  0.052891461 -0.0968350681
##   [83,] -0.246813571  0.3178981080
##   [84,] -0.048039368  0.0858639583
##   [85,]  0.116783017  0.5761955485
##   [86,] -0.142032761  0.3934339053
##   [87,] -0.252012086 -0.1905929593
##   [88,] -0.664458158  0.1089020870
##   [89,]  0.226916036  0.0881675696
##   [90,] -0.149950057  0.2968160203
##   [91,] -0.067599088 -0.2137829335
##   [92,]  0.068926060 -0.2941427864
##   [93,]  0.048485075 -0.2491189224
##   [94,]  0.058769076  0.2093498648
##   [95,] -0.412736968 -0.1631407924
##   [96,] -0.400603880  0.5180534284
##   [97,]  0.499620369 -0.3576204302
##   [98,] -0.611849024 -0.1404701993
##   [99,] -0.406182199 -0.6751443596
##  [100,] -0.268107304 -0.6884600134
##  [101,]  0.073236680 -0.2023619988
##  [102,]  0.072871943  0.0975178021
##  [103,]  0.127484294 -0.5427560053
##  [104,]  0.107782046 -0.3563609045
##  [105,]  0.291986506  0.4817257889
##  [106,] -0.135915607  0.1421710607
##  [107,] -0.308604451  0.1096679672
##  [108,]  0.591024801 -0.2666664578
##  [109,] -0.038648348  0.0027279548
##  [110,] -0.448309287  0.3223214791
##  [111,]  0.349967387  0.4197113174
##  [112,] -0.239950977 -0.3343918306
##  [113,] -0.263090695 -0.0693695841
##  [114,]  0.038648422  0.0916970737
##  [115,]  0.478522518 -0.1419946366
##  [116,] -0.068722469 -0.1208825966
##  [117,]  0.268503721 -0.6196267419
##  [118,]  0.190222966  0.0545523909
##  [119,]  0.347047482 -0.1113132515
##  [120,]  0.103975378  0.4276046345
##  [121,]  0.501296532 -0.4700510130
##  [122,] -0.105081389  0.2942659385
##  [123,]  0.284168668  0.2247719832
##  [124,]  0.082631285 -0.0839507497
##  [125,]  0.029183191  0.3746700104
##  [126,]  0.120151915 -0.4932891344
##  [127,] -0.331589171 -0.3373808869
##  [128,] -0.371474735  0.0454201159
##  [129,]  0.593634314  0.1711063548
##  [130,] -0.155049961 -0.0598446738
##  [131,]  0.035652139  0.2383998363
##  [132,] -0.362457509 -0.4085634113
##  [133,]  0.109219949 -0.0519392208
##  [134,] -0.047961808  0.3336841264
##  [135,] -0.114652326 -0.1364653408
##  [136,]  0.255775368  0.0063260220
##  [137,]  0.284483778 -0.1825622177
##  [138,] -0.049052904 -0.1969353176
##  [139,]  0.147850039  0.6032644856
##  [140,]  0.536150556 -0.0979589124
##  [141,]  0.497972594 -0.0778934966
##  [142,]  0.023808510  0.3110833434
##  [143,]  0.039181266  0.2617741481
##  [144,] -0.553430576  0.0827824468
##  [145,]  0.170795883 -0.1648196035
##  [146,]  0.060773618  0.4822729203
##  [147,] -0.084950180 -0.1495207374
##  [148,]  0.637991584 -0.3750732596
##  [149,] -0.337487074 -0.0723576266
##  [150,]  0.678580430 -0.0273667488
##  [151,]  0.248817567 -0.3288299550
##  [152,] -0.122004051  0.0399752847
##  [153,] -0.225156364  0.1623644238
##  [154,]  0.272194245  0.1147823744
##  [155,] -0.431393654 -0.0948301643
##  [156,]  0.584712044 -0.1412414604
##  [157,]  0.576192139  0.3807217219
##  [158,] -0.256026849  0.2323908575
##  [159,]  0.287080266  0.1835045441
##  [160,]  0.049584959 -0.1788614170
##  [161,]  0.178671372 -0.1188215682
##  [162,] -0.114095073  0.1250920665
##  [163,] -0.294826864  0.0900569393
##  [164,]  0.290787010 -0.2708057042
##  [165,]  0.576701423 -0.2708270982
##  [166,] -0.380773223  0.0278669486
##  [167,]  0.295345259 -0.2980723123
##  [168,]  0.014300260 -0.3046649469
##  [169,] -0.296715137  0.1165395168
##  [170,]  0.456700784 -0.4461460459
##  [171,]  0.136303026 -0.1638451310
##  [172,] -0.084700167  0.3366925738
##  [173,]  0.056622618 -0.1926132757
##  [174,]  0.056746523  0.0702027434
##  [175,]  0.018514625  0.3409832455
##  [176,] -0.166346327  0.2339706658
##  [177,] -0.460607020 -0.1368248770
##  [178,]  0.380348801 -0.3427585825
##  [179,]  0.327266317  0.8813556623
##  [180,]  0.208153183 -0.4677008023
##  [181,]  0.034253822  0.4284720849
##  [182,] -0.088172283  0.2540153220
##  [183,] -0.248594992 -0.0245029646
##  [184,]  0.056420403  0.1237100427
##  [185,] -0.086140127  0.1636019952
##  [186,] -0.062122459 -0.2559300180
##  [187,]  0.084147482 -0.5161048043
##  [188,]  0.126931922  0.1256153667
##  [189,] -0.023755063 -0.1612100065
##  [190,]  0.269462637 -0.3589204582
##  [191,]  0.267355335  0.2499899345
##  [192,]  0.326021157 -0.1749760822
##  [193,]  0.220281898  0.7992718728
##  [194,] -0.075011237 -0.5918546040
##  [195,] -0.220278690  0.1361590520
##  [196,]  0.358877983 -0.4296715778
##  [197,] -0.014685619  0.2636485354
##  [198,]  0.082055011  0.0951141924
##  [199,] -0.181440961 -0.2998504774
##  [200,] -0.218915452  0.4214526171
##  [201,]  0.020640977 -0.1442281881
##  [202,] -0.048414150 -0.5203827322
##  [203,]  0.280555197 -0.1657695981
##  [204,] -0.349124588 -0.1760241810
##  [205,] -0.092196037  0.2466862761
##  [206,] -0.157562370 -0.0644996808
##  [207,] -0.215843510  0.1596152919
##  [208,] -0.333811544  0.0363752807
##  [209,] -0.171107132 -0.0546807779
##  [210,]  0.789359053  0.4910094790
##  [211,] -0.406586316 -0.4739786006
##  [212,] -0.116407759  0.0793158232
##  [213,] -0.115050247  0.1005759412
##  [214,] -0.204326486 -0.1984615541
##  [215,]  0.179848003 -0.1911948917
##  [216,] -0.156139692 -0.0990591363
##  [217,]  0.353554663  0.0481188790
##  [218,] -0.006349317  0.0553442112
##  [219,] -0.701542115 -0.0208015489
##  [220,] -0.557592086 -0.1644032207
##  [221,]  0.441284193  0.5319350451
##  [222,]  0.413165642 -0.5634016514
##  [223,] -0.073442413  0.1172812244
##  [224,] -0.189111492 -0.4122244151
##  [225,] -0.321870754  0.1064997500
##  [226,] -0.020042380  0.2214265360
##  [227,] -0.297464100 -0.1703362350
##  [228,] -0.062300090 -0.0376118285
##  [229,]  0.212688422  0.0335058257
##  [230,]  0.386383530 -0.5989614035
##  [231,]  0.403612774  0.2887854341
##  [232,] -0.085764064  0.4141580859
##  [233,]  0.392749629  0.0278648078
##  [234,] -0.022968659 -0.1778465085
##  [235,] -0.094580488  0.1904567535
##  [236,] -0.148462548  0.1942418107
##  [237,] -0.411364368  0.4309652457
##  [238,]  0.433582853  0.0908862163
##  [239,] -0.130861497 -0.1855704744
##  [240,]  0.276620331 -0.2730753100
##  [241,]  0.567439646  0.4672626561
##  [242,] -0.067144583  0.0596470386
##  [243,]  0.143072691 -0.0743284025
##  [244,]  0.010424770  0.2623843044
##  [245,]  0.225423642 -0.3838569113
##  [246,] -0.365601449 -0.5953423598
##  [247,] -0.148387238 -0.4339827117
##  [248,] -0.307545076  0.0911188934
##  [249,] -0.176359099 -0.2830945106
##  [250,]  0.425445268  0.1628501527
##  [251,] -0.060572270  0.4345170580
##  [252,]  0.063033411 -0.1073129799
##  [253,] -0.270718212  0.1308991964
##  [254,]  0.220523168 -0.0230725914
##  [255,] -0.386845674  0.5350869011
##  [256,] -0.517630512 -0.0045670922
##  [257,]  0.284980086 -0.3529360341
##  [258,]  0.166861427 -0.0059358292
##  [259,]  0.354638765 -0.2844338609
##  [260,] -0.339015163  0.5632738364
##  [261,]  0.048816565 -0.8672021386
##  [262,] -0.006171349 -0.3446941367
##  [263,] -0.059296196 -0.1103531642
##  [264,] -0.686861024 -0.0071598178
##  [265,] -0.170313303  0.3706409459
##  [266,] -0.206957397 -0.2183941196
##  [267,]  0.235609861  0.0045511707
##  [268,]  0.276603603  0.2055521880
##  [269,]  0.039706290 -0.0056619525
##  [270,]  0.197063035 -0.1046051158
##  [271,]  0.070269989 -0.0765262035
##  [272,] -0.224953417 -0.0204492127
##  [273,]  0.114733298 -0.1238943695
##  [274,] -0.556732083  0.3662076777
##  [275,]  0.815433845  0.0628585206
##  [276,] -0.310918189 -0.1684742145
##  [277,] -0.279340769  0.0857680372
##  [278,]  0.168825329  0.1081412111
##  [279,]  0.267606785 -0.4298444344
##  [280,]  0.243205435 -0.1205318396
##  [281,]  0.102964819  0.1104524786
##  [282,] -0.328379831 -0.0548612570
##  [283,] -0.304501026 -0.3546747510
##  [284,]  0.124629568 -0.4155505254
##  [285,] -0.238511359  0.7509247622
##  [286,]  0.120336292  0.3226290256
##  [287,] -0.520724997 -0.2010286180
##  [288,] -0.112570392  0.1360710497
##  [289,]  0.190715990 -0.3206328788
##  [290,]  0.261061820 -0.3015381489
##  [291,]  0.236059365  0.0731127312
##  [292,] -0.319593846  0.2443245634
##  [293,] -0.202349359  0.2159372349
##  [294,]  0.233489486 -0.2751712111
##  [295,] -0.065817504  0.1007555916
##  [296,] -0.303199167 -0.2787175447
##  [297,] -0.101411667  0.0938959672
##  [298,]  0.099159229  0.1650266988
##  [299,] -0.391653920 -0.4439492692
##  [300,] -0.368894618  0.0444030479
##  [301,] -0.088183040  0.3977576497
##  [302,] -0.250386152 -0.2098296441
##  [303,]  0.611603317  0.2168879872
##  [304,]  0.508326449  0.2250367798
##  [305,] -0.262208809 -0.0969378384
##  [306,] -0.635906995 -0.3736894808
##  [307,] -0.375355321  0.1257501494
##  [308,] -0.037727872 -0.4200592773
##  [309,]  0.363163449 -0.0913969273
##  [310,] -0.118375597 -0.2198265783
##  [311,]  0.255720209 -0.0913562434
##  [312,]  0.167187071  0.3941878180
##  [313,]  0.092888969 -0.3322345683
##  [314,] -0.285995451 -0.2440319306
##  [315,]  0.507266018 -0.2378548322
##  [316,]  0.415331082 -0.2707725699
##  [317,] -0.429328287 -0.3828736219
##  [318,]  0.211638098 -0.3726184848
##  [319,]  0.174083727  0.1201050528
##  [320,] -0.046200036 -0.1418286332
##  [321,]  0.108718640  0.0602962527
##  [322,] -0.343365386  0.3488424625
##  [323,] -0.370766281  0.3555060863
##  [324,]  0.174868006 -0.4270821399
##  [325,]  0.147046170  0.1400025285
##  [326,] -0.168476107  0.1066456625
##  [327,] -0.023569137  0.0866802605
##  [328,] -0.255252611  0.4880743555
##  [329,] -0.543745020 -0.2487752960
##  [330,]  0.263946982  0.1648282899
##  [331,] -0.185176362  0.2440136586
##  [332,]  0.445863041 -0.5206170020
##  [333,] -0.285453376  0.2348619557
##  [334,]  0.479136695  0.4261691177
##  [335,] -0.309781647 -0.0732199774
##  [336,] -0.050677421  0.0481066402
##  [337,]  0.313020635 -0.1106117337
##  [338,]  0.007725061 -0.0207140022
##  [339,]  0.312643132 -0.2924721150
##  [340,]  0.663233621  0.2715895823
##  [341,]  0.097994826  0.7352625944
##  [342,]  0.062213636  0.4653435954
##  [343,] -0.089216407  0.1864579403
##  [344,] -0.027941985 -0.0456375644
##  [345,]  0.265497426  0.0322419070
##  [346,]  0.104662521  0.4500935883
##  [347,] -0.119659463 -0.0826295913
##  [348,] -0.506185572  0.1099362290
##  [349,] -0.088511929 -0.3419547960
##  [350,] -0.209906642 -0.4158861149
##  [351,] -0.285957964 -0.0587314671
##  [352,]  0.339115214  0.5475412648
##  [353,]  0.101439302 -0.0571516884
##  [354,] -0.196176875  0.0830084898
##  [355,] -0.432643749 -0.5602271499
##  [356,] -0.098198978  0.1998712810
##  [357,] -0.402624060 -0.3811092680
##  [358,]  0.065225496 -0.1264226345
##  [359,]  0.504142189 -0.2113568631
##  [360,]  0.335450946  0.5183165574
##  [361,]  0.114604023 -0.2182858785
##  [362,]  0.059290083 -0.3151004137
##  [363,]  0.635529025 -0.2841886063
##  [364,]  0.066684133  0.5121258549
##  [365,]  0.197024543  0.3519072655
##  [366,]  0.134397204 -0.1186631515
##  [367,]  0.265081096 -0.0322084607
##  [368,]  0.114147121  0.3988156423
##  [369,] -0.519282401 -0.0391693943
##  [370,] -0.173082627  0.2444949662
##  [371,]  0.289030679 -0.2391033792
##  [372,]  0.051265946  0.1690771538
##  [373,] -0.328231113 -0.1201236963
##  [374,] -0.143357197  0.3066061580
##  [375,] -0.515746180 -0.3437147393
##  [376,]  0.390839975  0.1366856956
##  [377,] -0.021494357  0.0028183211
##  [378,]  0.014597419  0.0335184096
##  [379,]  0.310192898  0.3786921037
##  [380,] -0.094167542 -0.5025286745
##  [381,] -0.072329774  0.1968773229
##  [382,]  0.246945436 -0.0110557054
##  [383,] -0.353884011 -0.4217873240
##  [384,] -0.009234097  0.4198030168
##  [385,] -0.503640123  0.5028973172
##  [386,] -0.512072257 -0.0999408981
##  [387,]  0.383891688  0.5554746341
##  [388,] -0.296726858  0.1333268012
##  [389,] -0.056540920 -0.1254533478
##  [390,]  0.422064985  0.2351699615
##  [391,]  0.416493106 -0.0730844197
##  [392,] -0.398185538  0.0284585751
##  [393,] -0.634485345  0.6371012340
##  [394,] -0.105917579 -0.0523383807
##  [395,]  0.112333090 -0.2354679130
##  [396,] -0.315342357 -0.1674314930
##  [397,]  0.058223302 -0.1635815398
##  [398,]  0.538259154  0.1885851622
##  [399,] -0.155280215  0.2670381326
##  [400,] -0.095601098 -0.0990445959
##  [401,]  0.016004619  0.2341399058
##  [402,]  0.507011339  0.2087545260
##  [403,]  0.228159256 -0.1719488070
##  [404,]  0.121002048  0.4323363132
##  [405,]  0.034082669 -0.3353278684
##  [406,]  0.074465833 -0.4226045979
##  [407,] -0.134476679 -0.4896535426
##  [408,] -0.032128672  0.4014414204
##  [409,]  0.434063498  0.0717503375
##  [410,] -0.047453872  0.3000336939
##  [411,]  0.252061708 -0.5018403605
##  [412,]  0.118431482  0.1737835856
##  [413,] -0.377495010 -0.6896643983
##  [414,]  0.031685754  0.1098396381
##  [415,] -0.003677829  0.1269314053
##  [416,] -0.164860304 -0.1864826426
##  [417,] -0.003728184 -0.1932548062
##  [418,] -0.204459970  0.0234972006
##  [419,]  0.235478778  0.1206289029
##  [420,] -0.093256334  0.2845872481
##  [421,] -0.040750669 -0.0979938215
##  [422,]  0.100881347  0.2764630950
##  [423,]  0.020543580  0.4963434584
##  [424,]  0.049311656 -0.2145658973
##  [425,] -0.347136939  0.3980700904
##  [426,] -0.531997595 -0.0214536058
##  [427,]  0.031681218 -0.3473950814
##  [428,]  0.312939411  0.2479979725
##  [429,]  0.039669699  0.6569841686
##  [430,]  0.254856050  0.4526087629
##  [431,] -0.143119764 -0.1342960449
##  [432,] -0.063176724 -0.0892919357
##  [433,] -0.145211895  0.1204684536
##  [434,] -0.041244143 -0.1512480491
##  [435,]  0.221315532  0.3479415306
##  [436,] -0.228137330  0.2113678495
##  [437,] -0.231858134  0.1775993418
##  [438,] -0.203928884 -0.3858630975
##  [439,]  0.416964783 -0.3485732240
##  [440,] -0.232423435 -0.0948758612
##  [441,] -0.357411824 -0.1379559203
##  [442,] -0.285814018  0.3512966294
##  [443,]  0.116301580  0.1538175560
##  [444,] -0.083665529  0.1335668080
##  [445,]  0.195287174  0.1807255166
##  [446,]  0.087853534 -0.0702374368
##  [447,] -0.103759164 -0.1522886058
##  [448,] -0.325475752 -0.0903932341
##  [449,] -0.135591056  0.3287495487
##  [450,]  0.186815626  0.3144457021
##  [451,]  0.194444957  0.1955131286
##  [452,]  0.695129349 -0.2459043536
##  [453,] -0.403192831 -0.1399753914
##  [454,]  0.294832896 -0.1014741729
##  [455,] -0.027641774  0.4365789374
##  [456,]  0.393258387 -0.1212928775
##  [457,]  0.356715332  0.1744649015
##  [458,] -0.555344811  0.0661218829
##  [459,] -0.399578383 -0.3823342576
##  [460,]  0.116290520  0.3979135471
##  [461,]  0.295191541  0.2356174190
##  [462,]  0.201256400  0.4793473403
##  [463,] -0.401432330  0.0551089799
##  [464,]  0.111345568 -0.3901903222
##  [465,] -0.581478309 -0.4725578161
##  [466,]  0.030764514  0.3890948675
##  [467,]  0.195313200  0.2595052363
##  [468,] -0.338907947 -0.3248096279
##  [469,] -0.294420418 -0.0887622808
##  [470,]  0.103252543  0.1763840071
##  [471,] -0.649769257 -0.1324350202
##  [472,]  0.160303204 -0.0189960231
##  [473,]  0.065132954 -0.0039553299
##  [474,] -0.015719467  0.1720263189
##  [475,] -0.242494094 -0.2984594795
##  [476,] -0.607227386  0.1821261302
##  [477,]  0.012599563 -0.1649849935
##  [478,]  0.211496795 -0.3011933522
##  [479,]  0.091440452 -0.2324562957
##  [480,] -0.211578806  0.0377570126
##  [481,]  0.026210564  0.2176739654
##  [482,] -0.102231047  0.0044283453
##  [483,]  0.797611119  0.4070337487
##  [484,]  0.148032667  0.2790513587
##  [485,] -0.232495091  0.4576454137
##  [486,] -0.519770017 -0.1266575632
##  [487,]  0.026115140  0.6267901474
##  [488,]  0.253130258  0.0444572303
##  [489,] -0.035362588  0.0778232590
##  [490,]  0.581104611  0.1235024821
##  [491,]  0.412056708 -0.1478684199
##  [492,]  0.093300666 -0.1722153326
##  [493,]  0.050539025  0.3480705289
##  [494,] -0.016152197 -1.0863986253
##  [495,]  0.247125815 -0.3573891500
##  [496,] -0.324877461  0.4524803874
##  [497,] -0.583387819 -0.2537207509
##  [498,] -0.014380883  0.4978213805
##  [499,] -0.246758086  0.0923173488
##  [500,]  0.336983663 -0.2970412094
##  [501,]  1.041849979  1.3290179115
##  [502,]  0.837457921  0.9968485507
##  [503,]  1.174918898  1.3196249553
##  [504,]  1.141096885  0.8999731935
##  [505,]  1.399559432  0.9317175041
##  [506,]  0.900335941  0.8867685565
##  [507,]  0.977845767  1.4124285469
##  [508,]  0.980718828  0.9386936106
##  [509,]  0.866272705  1.1291978968
##  [510,]  0.836291586  0.4813548355
##  [511,]  1.039239860  0.8599673006
##  [512,]  0.760137775  0.6796417125
##  [513,]  1.492698504  0.8837078357
##  [514,]  1.269695140  1.4723691636
##  [515,]  0.710196731  0.8232343403
##  [516,]  1.386823955  0.3185727100
##  [517,]  0.892748500  1.4328241436
##  [518,]  0.252670392  0.8663952436
##  [519,]  0.832009713  1.0562520521
##  [520,]  0.724785315  0.3454169384
##  [521,]  1.162955886  0.6905122997
##  [522,]  1.011095516  1.3553705163
##  [523,]  1.023659122  0.6517235583
##  [524,]  1.042930485  0.6879223364
##  [525,]  1.013768544  1.0937451616
##  [526,]  1.276903311  1.1076863793
##  [527,]  0.906813960  0.9257348496
##  [528,]  1.086721375  0.6965718227
##  [529,]  0.546094343  1.4824382116
##  [530,]  1.587999816  1.1904953849
##  [531,]  1.045944111  0.8708028118
##  [532,]  1.478834586  0.5311021956
##  [533,]  1.448653600  1.0655288046
##  [534,]  0.958877657  0.9477241535
##  [535,]  0.898273808  0.8361765976
##  [536,]  0.482126848  1.0915020493
##  [537,]  1.166128286  1.1604482930
##  [538,]  1.025230446  0.6429466062
##  [539,]  1.092257236  0.5593625445
##  [540,]  1.219285948  0.9899437704
##  [541,]  1.304618043  1.4429606395
##  [542,]  1.232646154  0.9179333571
##  [543,]  1.462628925  1.1792142222
##  [544,]  0.967470080  0.7131357984
##  [545,]  1.048716173  1.3763661224
##  [546,]  1.647398697  1.1638965407
##  [547,]  0.431800222  1.2525385034
##  [548,]  1.324910862  1.2539098986
##  [549,]  0.942595789  1.1835399528
##  [550,]  1.431359719  1.2046581153
##  [551,]  0.458560720  1.2335514287
##  [552,]  1.002669743  0.3559174772
##  [553,]  0.806957850  1.1764648149
##  [554,]  0.793838629  1.5499984397
##  [555,]  0.946813988  1.4995368392
##  [556,]  0.986455610  0.8760432334
##  [557,]  1.142224077  1.1562374817
##  [558,]  1.097412460  1.5000997618
##  [559,]  0.706173684  0.5261927353
##  [560,]  1.118951285  1.4265740033
##  [561,]  0.920839060  1.1546009317
##  [562,]  1.269612376  0.7089224769
##  [563,]  1.169365991  0.7724357597
##  [564,]  1.041348744  1.0598752946
##  [565,]  1.320079402  0.8193342539
##  [566,]  0.975260309  1.3413058489
##  [567,]  0.726041610  0.3714185821
##  [568,]  0.983292744  0.9728445264
##  [569,]  1.718522725  1.1123822658
##  [570,]  1.057370295  0.7582020375
##  [571,]  0.923142876  1.8518170366
##  [572,]  1.215129682  0.3442943613
##  [573,]  1.025590670  0.9556078739
##  [574,]  0.671074471  1.3217561601
##  [575,]  1.063034657  1.0151857227
##  [576,]  0.929591879  0.9892856488
##  [577,]  1.152313854  1.2911918170
##  [578,]  0.705198969  0.8653311411
##  [579,]  0.818259938  1.5223300638
##  [580,]  1.356300084  1.0334826487
##  [581,]  0.877139825  0.6726587585
##  [582,]  1.170782498  1.2869736017
##  [583,]  1.449948472  1.4841670705
##  [584,]  1.030849156  0.9122465099
##  [585,]  1.408558427  1.5205725084
##  [586,]  0.962972284  1.0107074275
##  [587,]  1.028298126  0.6934701941
##  [588,]  0.667853255  0.6299864605
##  [589,]  1.178188072  0.6431724515
##  [590,]  0.898212734  1.2880031479
##  [591,]  0.992375030  1.4165832884
##  [592,]  0.596285140  0.8716316914
##  [593,]  1.101048315  1.2132784486
##  [594,]  1.334433959  1.0284652065
##  [595,]  1.341896762  1.4872015239
##  [596,]  1.072438277  0.6946773894
##  [597,]  1.109530514  1.0343386539
##  [598,]  0.460163647  0.3820151396
##  [599,]  0.949738176  1.5267490332
##  [600,]  1.134024272  1.2315657489
##  [601,]  1.087807338  1.1087987923
##  [602,]  1.509657495  0.7362222666
##  [603,]  0.808475802  0.7703595823
##  [604,]  1.040562739  1.1681763967
##  [605,]  0.959029052  0.9873815796
##  [606,]  1.399185154  0.9102104295
##  [607,]  1.023274601  0.8838580238
##  [608,]  1.045255319  1.0973706976
##  [609,]  0.699338581  0.6305261278
##  [610,]  0.969041732  1.2412336126
##  [611,]  0.891268965  0.6529783888
##  [612,]  1.478530760  0.9943809699
##  [613,]  1.262507575  1.2598578921
##  [614,]  1.350712464  0.8693479801
##  [615,]  0.675477001  1.0658012153
##  [616,]  0.719876194  0.7443403610
##  [617,]  1.667988365  1.0254067480
##  [618,]  0.891744756  1.0519054495
##  [619,]  1.624331490  1.0063963373
##  [620,]  0.956452877  1.0192237394
##  [621,]  0.865800928  1.2419269697
##  [622,]  1.001271287  1.3115536526
##  [623,]  1.012893917  1.2026606193
##  [624,]  0.817697363  0.9591081909
##  [625,]  1.027872471  1.3769945946
##  [626,]  0.837628640  0.7074727001
##  [627,]  0.706230683  1.0617073259
##  [628,]  1.285125346  0.7566626064
##  [629,]  1.087869142  1.3247448974
##  [630,]  1.269122647  0.8472094359
##  [631,]  1.512119437  0.9903664254
##  [632,]  0.856539151  0.8677636115
##  [633,]  0.746971093  0.8385520942
##  [634,]  0.589558859  0.4061781025
##  [635,]  0.994235746  0.6388079877
##  [636,]  1.175030845  1.1286003098
##  [637,]  1.054505530  0.8051278951
##  [638,]  1.393055885  0.9135565585
##  [639,]  0.419577629  0.6742636500
##  [640,]  1.200542231  1.3050827360
##  [641,]  0.778961348  1.0508550139
##  [642,]  0.912775741  0.6745765840
##  [643,]  1.065559133  0.6051632295
##  [644,]  1.044742214  1.0911133599
##  [645,]  0.817330869  0.9328911895
##  [646,]  1.787097155  1.1573233789
##  [647,]  0.952604039  1.2118666526
##  [648,]  1.038099241  0.9751043665
##  [649,]  1.137647016  1.0619998505
##  [650,]  0.863104627  0.6254363847
##  [651,]  1.411895336  1.2234618900
##  [652,]  0.932203210  0.5803409086
##  [653,]  0.784234577  1.1182772705
##  [654,]  0.764412022  0.9030511766
##  [655,]  0.952639774  0.9156219656
##  [656,]  1.006258489  0.5496299065
##  [657,]  1.192770046  1.1904399503
##  [658,]  1.396698867  1.1966056339
##  [659,]  1.641548647  0.8995476995
##  [660,]  1.757812654  0.1782623771
##  [661,]  1.227701377  0.8344746397
##  [662,]  1.035749326  0.9689419906
##  [663,]  1.646543807  0.9870057275
##  [664,]  0.875210812  0.4791151073
##  [665,]  0.654110030  1.1167521871
##  [666,]  0.380453650  0.9520048268
##  [667,]  1.245440599  0.8987512330
##  [668,]  1.191020560  0.8658427237
##  [669,]  1.117918217  1.2124917095
##  [670,]  1.172056475  1.1211961798
##  [671,]  0.868162557  0.6912120449
##  [672,]  0.618880867  0.9276046977
##  [673,]  1.464358304  1.3634128323
##  [674,]  0.890359037  1.0547580781
##  [675,]  0.877694953  1.3657806568
##  [676,]  0.653989176  1.1836790317
##  [677,]  1.143675535  1.7106873426
##  [678,]  1.114299410  0.8792628520
##  [679,]  0.914892015  1.4301237633
##  [680,]  0.857457872  1.1171919295
##  [681,]  0.839628066  0.9946301779
##  [682,]  0.699446689  0.8534435682
##  [683,]  0.712790476  0.8400576991
##  [684,]  1.387453300  0.8083915376
##  [685,]  1.223629584  0.8436532587
##  [686,]  1.006706347  1.2950779840
##  [687,]  1.005754751  0.7759787675
##  [688,]  0.879490943  1.1160145333
##  [689,]  0.586933665  0.4517917113
##  [690,]  1.349176991  1.1385271166
##  [691,]  0.542032797  1.1871563669
##  [692,]  0.879006838  0.7886721493
##  [693,]  1.482267066  1.6390261749
##  [694,]  0.669848777  0.7971424422
##  [695,]  1.000678569  0.3913261261
##  [696,]  1.312955737  1.1846382787
##  [697,]  1.547684298  1.3587187646
##  [698,]  0.940070250  1.2526880452
##  [699,]  0.645296175  0.9016159145
##  [700,]  0.986418125  0.9591994423
##  [701,]  1.376687693  1.2788233673
##  [702,]  1.034982255  0.5564160777
##  [703,]  1.267304280  1.4190414079
##  [704,]  1.006123774  0.8027234497
##  [705,]  0.632544496  0.9461439870
##  [706,]  0.729970732  1.2461152772
##  [707,]  1.554841667  1.2730993953
##  [708,]  1.067851336  0.6644141703
##  [709,]  0.319784865  0.7976241517
##  [710,]  0.141737357  1.2820148525
##  [711,]  1.702402775  1.5140372219
##  [712,]  0.804091476  0.9796696335
##  [713,]  0.454926309  0.8028108964
##  [714,]  1.478322609  1.3345468119
##  [715,]  1.121099642  1.0012969101
##  [716,]  1.162548817  1.5944106997
##  [717,]  1.086920933  1.5781615095
##  [718,]  0.854545572  0.7965333619
##  [719,]  1.528287941  0.9470322292
##  [720,]  1.054770515  0.9841033222
##  [721,]  0.986013243  0.4615379624
##  [722,]  0.666382693  1.0279090971
##  [723,]  1.427742419  1.0169729198
##  [724,]  1.463297024  0.7964931204
##  [725,]  1.003691228  0.8619905478
##  [726,]  1.342168154  0.9426205875
##  [727,]  0.795337881  0.7382419644
##  [728,]  1.250296216  0.7262324527
##  [729,]  1.408833863  1.0432960545
##  [730,]  1.187584800  0.6006625333
##  [731,]  0.836740609  1.3407125381
##  [732,]  1.132980288  0.7060982207
##  [733,]  0.714446335  0.9297431247
##  [734,]  1.039580558  0.4331678994
##  [735,]  0.707377196  0.8559601433
##  [736,]  1.402445730  0.9572214737
##  [737,]  1.094463814  0.6090950170
##  [738,]  0.618651500  1.1760425788
##  [739,]  1.434373461  0.8388271963
##  [740,]  0.838503465  0.9529826695
##  [741,]  1.020947895  0.7613910614
##  [742,]  1.137648556  0.6887841783
##  [743,]  0.886076376  0.6097060344
##  [744,]  0.925304859  0.8648079313
##  [745,]  0.745248564  1.0116844147
##  [746,]  0.964240517  1.5801016008
##  [747,]  1.213809616  1.1126097528
##  [748,]  1.536317604  1.2049050278
##  [749,]  1.354823973  0.7729062179
##  [750,]  0.649053020  1.3983695252
##  [751,]  1.006614220  0.9240649417
##  [752,]  1.378260473  0.9069845699
##  [753,]  0.759033374  1.5078390700
##  [754,]  0.722583330  1.1155302080
##  [755,]  0.854250297  1.2178608908
##  [756,]  1.006900995  0.3686271237
##  [757,]  0.462425913  0.8640917524
##  [758,]  0.658668598  0.7530935832
##  [759,]  1.589181103  0.7959809309
##  [760,]  0.930207477  1.1926286953
##  [761,]  0.887470520  0.7566999121
##  [762,]  1.331026011  1.1087842254
##  [763,]  0.992746525  1.1542313196
##  [764,]  0.408121150  0.7261494071
##  [765,]  0.756583989  1.1433450220
##  [766,]  0.990261240  1.2600969042
##  [767,]  0.781109248  1.0625794441
##  [768,]  1.034861779  0.7673970174
##  [769,]  1.483836475  0.4718721115
##  [770,]  0.875955384  0.9594728709
##  [771,]  0.420175059  1.1220199907
##  [772,]  1.453555364  0.9058057076
##  [773,]  1.387930556  1.0917245353
##  [774,]  1.238802868  0.9548333433
##  [775,]  0.893111392  0.4095377517
##  [776,]  0.743930308  1.2100112090
##  [777,]  0.822559741  1.4178411375
##  [778,]  1.139721264  0.8942446868
##  [779,]  0.778160643  1.1527284148
##  [780,]  0.964198201  0.5010203998
##  [781,]  1.094706604  0.9983872357
##  [782,]  0.751649706  1.3101153593
##  [783,]  1.013581245  1.2372707270
##  [784,]  0.883075513  0.5403084831
##  [785,]  0.710712518  1.2936318225
##  [786,]  0.941425917  1.0318042669
##  [787,]  1.369243695  1.2401491515
##  [788,]  0.778767104  0.9516728842
##  [789,]  0.661500463  1.0805232785
##  [790,]  0.661306682  1.5648896586
##  [791,]  0.649836528  1.0701170106
##  [792,]  0.549550448  0.8764026880
##  [793,]  1.223413726  1.4297115155
##  [794,]  1.011462051  1.9711548993
##  [795,]  0.812377722  1.2368879765
##  [796,]  1.065313444  0.5785001731
##  [797,]  1.478080201  0.9681529209
##  [798,]  0.625660138  1.5844144592
##  [799,]  1.181494695  1.1091329020
##  [800,]  1.112526812  0.7041027367
##  [801,]  0.728956498  0.7020253101
##  [802,]  1.049357746  0.7879769590
##  [803,]  0.771362958  1.3434890459
##  [804,]  1.199931093  0.9221673778
##  [805,]  1.430091479  0.3762938613
##  [806,]  1.257513988  0.4325145667
##  [807,]  0.754867054  1.2956258602
##  [808,]  0.934062638  0.9561049521
##  [809,]  0.938726361  0.2081227187
##  [810,]  0.519795764  0.6320344686
##  [811,]  0.561015037  0.6633562975
##  [812,]  0.620592325  0.7738696799
##  [813,]  0.829262584  1.3617911033
##  [814,]  1.105737248  1.3140820491
##  [815,]  0.922675237  1.0790878226
##  [816,]  1.247587825  0.6817779754
##  [817,]  1.019454567  1.1133193937
##  [818,]  1.054429648  0.6944558209
##  [819,]  1.507155204  0.6733863635
##  [820,]  1.705081562  0.8692543658
##  [821,]  0.545029848  1.1554825217
##  [822,]  1.377059616  1.1105259628
##  [823,]  1.262092135  0.8217577322
##  [824,]  0.857488905  1.5127306822
##  [825,]  0.738293682  0.8604481612
##  [826,]  1.117513727  1.2664270034
##  [827,]  1.100471091  1.0470350291
##  [828,]  1.070073007  1.1747398993
##  [829,]  1.234772239  0.9158328837
##  [830,]  1.025595913  0.6582218319
##  [831,]  1.633596142  0.8723137844
##  [832,]  0.795704991  1.4202248911
##  [833,]  0.140004009  1.4033839012
##  [834,]  1.056591628  1.4576219601
##  [835,]  1.359839818  1.0582658342
##  [836,]  0.772676830  1.2452445184
##  [837,]  1.102860919  0.8662879638
##  [838,]  1.132790956  1.0859687323
##  [839,]  1.103191383  1.2703469212
##  [840,]  0.980945876  0.7908440723
##  [841,]  0.839554724  0.7722663235
##  [842,]  1.095215012  1.1188761148
##  [843,]  0.759163663  0.8342165692
##  [844,]  0.596677709  0.6445655542
##  [845,]  1.659349285  1.0961304330
##  [846,]  0.655497809  0.6963000952
##  [847,]  0.866390322  1.2288110127
##  [848,]  0.995248801  1.1007130584
##  [849,]  0.960405167  0.9270639669
##  [850,]  1.285316799  1.0744032208
##  [851,]  0.790223336  1.0354050081
##  [852,]  1.329583944  0.9961064587
##  [853,]  0.592599297  0.3651359760
##  [854,]  0.783263437  0.9904663785
##  [855,]  1.692486074  1.2857184423
##  [856,]  0.649806201  0.6415688223
##  [857,]  1.081756964  0.7167710939
##  [858,]  0.961179088  1.2375956243
##  [859,]  0.676775718  1.3397205721
##  [860,]  1.232658949  1.2094537499
##  [861,]  1.239194366  1.4107983103
##  [862,]  0.914292823  0.9818598504
##  [863,]  0.604661346  0.9351242636
##  [864,]  1.076290226  0.8198238562
##  [865,]  0.938150954  0.8448760607
##  [866,]  1.230759962  0.6277322757
##  [867,]  1.086165592  0.8705419495
##  [868,]  1.201138404  1.1266489243
##  [869,]  1.342504482  0.9239955262
##  [870,]  0.872230739  1.3845552796
##  [871,]  0.915909977  0.7415628193
##  [872,]  1.329015742  1.4775344047
##  [873,]  1.150426511  1.2747953276
##  [874,]  1.355564207  1.0855568541
##  [875,]  1.004250329  0.9846981903
##  [876,]  0.361436341  1.2716487222
##  [877,]  0.160580601  0.5444551201
##  [878,]  1.236908662  1.1454781423
##  [879,]  0.602607758  0.3664381454
##  [880,]  0.951062163  0.4322666261
##  [881,]  1.041594286  1.0041388889
##  [882,]  0.962772230  0.9280047329
##  [883,]  1.049312171  1.1434736470
##  [884,]  0.973391523  1.1957922208
##  [885,]  0.902079476  1.0160317955
##  [886,]  0.074073759  1.6154583700
##  [887,]  1.664260696  0.7685139388
##  [888,]  1.489200491  0.5838939566
##  [889,]  1.040827844  0.5950039861
##  [890,]  0.479040202  0.8049609704
##  [891,]  1.155253066  0.8112350695
##  [892,]  0.820413630  1.0653657951
##  [893,]  0.940541297  0.4144157902
##  [894,]  0.337309729  1.1878533955
##  [895,]  1.202376268  1.0545077863
##  [896,]  0.571783480  1.0089418229
##  [897,]  0.644180632  0.5917247240
##  [898,]  1.525087867  1.4673843290
##  [899,]  0.781689024  1.2198277925
##  [900,]  1.065973494  0.8829454542
##  [901,]  1.013408051  1.0849573045
##  [902,]  1.107603020  1.2963566103
##  [903,]  0.687056698  1.3571579421
##  [904,]  0.907360903  1.0296068992
##  [905,]  0.984518347  0.9416036486
##  [906,]  1.193464445  1.2600371878
##  [907,]  1.175111802  1.3517065272
##  [908,]  0.966541761  0.9980599352
##  [909,]  1.251351741  1.4533382840
##  [910,]  1.536326467  0.8684969734
##  [911,]  1.142868032  0.4813177105
##  [912,]  1.131675211  1.4814475619
##  [913,]  1.083731676  1.0791103269
##  [914,]  0.976929084  0.9375829693
##  [915,]  0.762072830  0.5938904431
##  [916,]  0.677101342  1.5405447335
##  [917,]  1.365105959  0.8687579118
##  [918,]  0.529873908  0.6680537171
##  [919,]  0.853113460  1.1908973829
##  [920,]  0.901135789  1.2255536105
##  [921,]  1.411284155  1.6372846416
##  [922,]  0.618475322  1.4360446577
##  [923,]  0.873535642  1.0492699789
##  [924,]  1.477427999  1.3467622930
##  [925,]  0.696343936  1.0561452466
##  [926,]  1.099899559  1.4080294393
##  [927,]  1.258750165  1.0436548573
##  [928,]  0.931187578  0.7673618525
##  [929,]  0.947768765  0.5050333124
##  [930,]  1.496285987  1.2719892003
##  [931,]  1.051584980  0.8116216327
##  [932,]  0.615205034  0.9174881814
##  [933,]  1.294901519  1.8343055117
##  [934,]  0.647102968  1.0146316195
##  [935,]  0.781795871  1.0138506465
##  [936,]  1.400493173  0.5902349184
##  [937,]  1.061676904  1.1227213367
##  [938,]  0.522151409  0.9326362547
##  [939,]  0.777976817  0.8382053874
##  [940,]  1.079873083  0.9654750875
##  [941,]  1.412563279  0.6650130218
##  [942,]  1.381152909  0.6128031132
##  [943,]  1.121097172  0.7929502375
##  [944,]  0.221384680  1.0056066049
##  [945,]  1.279092288  0.6397285479
##  [946,]  1.627814119  1.1611927215
##  [947,]  0.989328316  1.3448083488
##  [948,]  1.163257911  0.8917931747
##  [949,]  0.862953220  0.4885873011
##  [950,]  0.879238448  0.5019810065
##  [951,]  1.150984503  0.6785876538
##  [952,]  1.343005483  1.3247302541
##  [953,]  1.466190325  0.8176502651
##  [954,]  0.888798899  1.4723581019
##  [955,]  0.974095468  1.2470125122
##  [956,]  0.797005947  1.2232223243
##  [957,]  0.594030171  1.2220606480
##  [958,]  0.940114213  0.8896223861
##  [959,]  0.755573658  1.1903738869
##  [960,]  1.475931845  0.8068701663
##  [961,]  1.144975936  1.1067035869
##  [962,]  1.426092606  0.4596544189
##  [963,]  1.325043834  0.7957416951
##  [964,]  1.131486629  0.9350425683
##  [965,]  1.106404465  0.8498018051
##  [966,]  1.187590989  0.8113037381
##  [967,]  1.427600018  0.8532040407
##  [968,]  1.046010689  1.3019106481
##  [969,]  1.099485857  0.9673669973
##  [970,]  0.947902233  1.6237788678
##  [971,]  1.092367998  0.6808943682
##  [972,]  1.426739447  1.2484748795
##  [973,]  1.398441389  0.7986984891
##  [974,]  1.455360873  1.4913132523
##  [975,]  0.403436571  0.3708279843
##  [976,]  1.227301037  0.9566303233
##  [977,]  1.101938974  1.3407837597
##  [978,]  0.227691282  0.9143315697
##  [979,]  0.601999387  0.9417849501
##  [980,]  1.186159999  1.1639765571
##  [981,]  0.825447841  0.7245679624
##  [982,]  1.453252662  1.4072111929
##  [983,]  1.211721323  1.0033417258
##  [984,]  1.009508789  1.0759145159
##  [985,]  0.735862977  0.6596884623
##  [986,]  0.958768736  1.1307803929
##  [987,]  1.450956399  1.3930882187
##  [988,]  1.166834000  0.8263049482
##  [989,]  0.805427599  0.5325897092
##  [990,]  1.247356771  0.4696895970
##  [991,]  0.390662039  0.1431184189
##  [992,]  0.624241171  1.0796027496
##  [993,]  1.318209943  1.3264344523
##  [994,]  1.090644960  1.5405509848
##  [995,]  1.015038254  1.2304717623
##  [996,]  0.865590263  0.8042089024
##  [997,]  1.144665502  1.0144559132
##  [998,]  0.971495458  0.8896675702
##  [999,]  1.112000256  1.3418343682
## [1000,]  1.076301086  1.0546752971
fit <- kmeans(x,100)
fit
## K-means clustering with 100 clusters of sizes 11, 12, 10, 6, 12, 5, 15, 15, 8, 14, 4, 9, 8, 8, 12, 6, 11, 6, 18, 14, 7, 8, 2, 9, 16, 6, 9, 16, 7, 5, 10, 9, 13, 7, 18, 11, 10, 4, 7, 12, 11, 8, 10, 11, 14, 7, 9, 13, 15, 11, 7, 8, 15, 5, 5, 17, 11, 12, 7, 1, 12, 4, 12, 5, 2, 19, 14, 10, 13, 12, 4, 3, 12, 10, 8, 9, 10, 9, 7, 12, 11, 10, 13, 8, 17, 13, 15, 14, 7, 18, 15, 11, 7, 7, 20, 8, 1, 14, 10, 7
## 
## Cluster means:
##            [,1]        [,2]
## 1   -0.26617934 -0.35191003
## 2    1.09359832  1.01237158
## 3    1.38265531  0.91302182
## 4    0.57264339  1.16932053
## 5    0.11484482  0.45743047
## 6    0.40185641  1.21352241
## 7    0.01410535 -0.35210310
## 8    1.13916255  1.29837023
## 9    1.49039124  1.34360359
## 10   0.28274764 -0.12562970
## 11   1.09329550  1.84199120
## 12   0.98698528  1.24490087
## 13   1.65712318  1.17150552
## 14   1.28345229  0.81146748
## 15  -0.26028874  0.21639235
## 16  -0.37907845 -0.62618251
## 17   0.17341002 -0.44916672
## 18   1.44489994  0.60940559
## 19   0.09446360  0.12399304
## 20   1.18432309  1.13367160
## 21   1.65476439  0.91834837
## 22   0.39462047 -0.51011594
## 23   0.01633218 -0.97680038
## 24   0.57569401  0.18801918
## 25   0.23573400  0.03942821
## 26   0.77576590  1.32422762
## 27   0.47182125 -0.13385250
## 28   0.02282255  0.27766418
## 29   0.86446875  1.23284871
## 30   0.66048705  1.37060977
## 31  -0.44792440 -0.40845578
## 32   0.87043995  1.07989373
## 33   0.09492996 -0.19841447
## 34   0.57063829  0.40909963
## 35  -0.02607655  0.02338085
## 36   1.20251734  0.67201919
## 37   0.39608258  0.10441947
## 38   1.21571712  0.43195406
## 39   0.48176429  0.71023277
## 40   0.85902652  0.75492996
## 41   0.97011375  0.40736120
## 42  -0.11240996 -0.50317997
## 43   0.67038088  1.06887199
## 44  -0.19174853 -0.22682232
## 45   1.04825088  0.68129398
## 46  -0.52058639  0.03176441
## 47   0.81076875  0.45538963
## 48   1.03281677  0.80568057
## 49  -0.15564042  0.09260577
## 50   0.69150527  0.63601004
## 51   0.07169488  0.63540758
## 52   1.07795171  1.15781954
## 53   0.99722398  0.94381593
## 54   1.49693143  0.36093110
## 55   0.42279662  0.31490966
## 56   0.23443497  0.25023629
## 57   0.93179682  0.99813991
## 58  -0.57635903 -0.15684905
## 59   1.49070138  1.53625503
## 60  -0.23851136  0.75092476
## 61  -0.01760782  0.42999916
## 62  -0.66502217  0.06576671
## 63   0.85333872  1.45967859
## 64  -0.45291804  0.55128254
## 65   0.74700714  0.01774589
## 66  -0.04426906 -0.15607786
## 67  -0.06963209  0.16298911
## 68   0.92761237  0.87970828
## 69  -0.12316446 -0.08460701
## 70   1.02753970  1.36674524
## 71   0.62754063  1.54307177
## 72   0.11860504  1.43361904
## 73   1.36973694  1.24341317
## 74   0.77067836  1.19256105
## 75   0.59548786 -0.27462300
## 76   1.02960741  1.08845768
## 77  -0.37796815  0.38047038
## 78   1.05418610  1.54254689
## 79   1.05709460  0.57902442
## 80   1.33349045  1.07309861
## 81   0.58370761  0.92031511
## 82  -0.17747996  0.43907175
## 83  -0.37240953 -0.14643306
## 84   1.27831122  1.44911941
## 85  -0.32868189  0.08585790
## 86   0.70972317  0.82137655
## 87   1.13616189  0.85666441
## 88  -0.28411435 -0.06664638
## 89   1.46889260  1.00367576
## 90   0.09643342 -0.07338241
## 91   0.79152910  0.98436257
## 92   1.47101372  0.81859480
## 93   0.27850473  0.88808428
## 94   0.89223489  0.62228651
## 95   0.29571401 -0.30071027
## 96   1.22623766  0.94492925
## 97  -0.88252899  0.35259699
## 98  -0.13478414  0.27193764
## 99   0.32322084  0.48295757
## 100  0.95302188  1.17477717
## 
## Clustering vector:
##    [1]  88  42  66  58  35  82  15  98  42   7  69  82  25  83  15  51  66
##   [18]   7  85  56  56  77  56  67  90  69  25  82  69  10  88  37  46  83
##   [35]  58  22  95  49  55  97  82  67   7  99   5  35   1  88  15  10  10
##   [52]  44  77  24  83  35  51  37  90  28   1  95  49  99  42   7  24  58
##   [69]  27  61  67  58  16  90  82  49  35  90  75  19  66  90  15  35  51
##   [86]  82  44  62  25  98  66   7  33  28  83  64  75  58  16  16  33  19
##  [103]  17   7  99  49  85  75  35  77  99   1  88  19  27  66  22  25  10
##  [120]   5  22  98  56  90  61  17   1  85  24  69  28  31  90  28  69  25
##  [137]  10  66  51  27  27  28  28  46  33   5  66  75  88  65  95  49  15
##  [154]  25  83  27  34  15  56  33  90  49  85  95  75  85  95   7  85  22
##  [171]  33  98  33  19  28  98  83  95  93  17  61  98  88  19  67  66  17
##  [188]  19  66  95  56  10  93  42  49  22  28  19  44  82  66  42  10  83
##  [205]  98  69  15  85  69  47  31  49  49  44  33  69  37  35  62  58  99
##  [222]  22  67   1  85  28  83  35  25  22  55  61  37  66  67  98  77  37
##  [239]  44  95  34  35  90  28  17  16  42  85  44  37  61  90  85  25  64
##  [256]  46  95  25  95  64  23   7  66  62  82  44  25  56  35  10  90  88
##  [273]  90  77  65  83  85  19  17  10  19  88   1  17  60  28  58  67  95
##  [290]  95  25  15  15  95  67   1  49  19  31  85  61  44  24  24  88  31
##  [307]  85   7  10  44  10   5   7  44  75  95  31  17  19  66  19  77  77
##  [324]  17  19  49  35  82  58  56  98  22  15  34  88  35  10  35  95  24
##  [341]  51   5  67  35  25   5  69  46   7   1  88  99  90  49  16  67  31
##  [358]  90  27  99  33   7  75   5  56  90  25   5  46  98  95  19  83  98
##  [375]  31  37  35  35  99  42  67  25  31  61  64  58  99  85  66  55  27
##  [392]  85  64  69  33  83  33  24  98  69  28  24  10   5   7   7  42  61
##  [409]  37  28  17  19  16  19  67  44  66  49  25  98  66  28  61  33  77
##  [426]  46   7  56  51  99  69  69  49  66  56  15  15   1  95  88  83  77
##  [443]  19  67  56  90  66  88  98  56  56  75  83  10  61  27  37  46  31
##  [460]   5  56   5  85  17  31  61  56   1  88  19  58  90  90  67   1  62
##  [477]  66  95  33  49  28  35  47  56  82  58  51  25  35  24  27  33  28
##  [494]  23  95  77  58  61  85  95  70  91   8  87   3  68  70  53  32  47
##  [511]  48  50  92  84  86  54  63  93  32  47  36  70  45  45  76  80  68
##  [528]  45  71  13  48  18  89  53  68   4  20  45  79  96  84  96  73  45
##  [545]  70  13   6  73 100  73   6  41  74  63  63  68  20  78  50  70 100
##  [562]  36  87  76  14  70  47  53  13  48  11  38  53  30   2  57   8  86
##  [579]  63  80  94   8  59  53  59  57  45  50  36  29  70  81  52  80  84
##  [596]  45   2  55  78   8  52  92  40  52  57   3  53  76  50  12  94  89
##  [613]  73   3  43  86  21  32  21  57  29  70  12  91  70  40  43  14   8
##  [630]  14  89  68  86  34  45  20  48   3  39   8  91  94  79  76  91  13
##  [647] 100  53   2  94  73  94  74  91  68  79  20  73  21  54  14  53  21
##  [664]  47  43  93  96  87  52  20  40  81   9  32  63   4  11  87  63  32
##  [681]  91  86  86  92  14  12  48  32  34  80   4  40  59  86  41  73   9
##  [698]  12  81  53  73  79  84  48  81  74   9  45  93  72  59  91  39   9
##  [715]   2  78  78  40  89   2  41  43  89  92  48   3  40  36  89  36  26
##  [732]  36  91  41  86   3  79   4  92  91  48  36  94  68  91  78  20  13
##  [749]  14  30  53   3  63  43  29  41  81  86  92 100  40  80 100  39  74
##  [766]  12  91  48  54  57   6   3  80  96  41  74  63  87  74  41   2  26
##  [783]  12  94  26  57  73  91  43  71  43  81  84  11  29  79  89  71  20
##  [800]  45  50  48  26  96  54  38  26  57  41  39  39  86  26   8  32  36
##  [817]  76  45  18  21   4  80  14  63  86   8   2  52  96  45  21  63  72
##  [834]  78  80  74  87  20   8  48  40  52  86  50  13  50  29  76  53  80
##  [851]  91  80  34  91  13  50  45  12  30  20  84  57  81  48  68  36  87
##  [868]  20   3  63  40  84   8  80  53   6   5  20  34  41   2  53  52 100
##  [885]  57  72  21  18  79  39  87  32  41   6  20  81  50  59  74  87  76
##  [902]   8  30  57  53   8   8  57  84  92  38  78  76  53  50  71   3  39
##  [919]  29  29  59  30  32   9  43  70  80  40  41   9  48  81  11  43  91
##  [936]  18  52  81  86   2  18  18  87  93  36  13  70  87  47  47  36  73
##  [953]  92  63  12  74   4  68  74  92  20  54  14  87  87  87  92  70   2
##  [970]  78  45  73  92  59  55  96   8  93  81  20  40   9  96  76  50 100
##  [987]   9  87  47  38  37  43  73  78  12  40   2  68   8   2
## 
## Within cluster sum of squares by cluster:
##   [1] 0.057897476 0.022633876 0.017947630 0.028682234 0.047320776
##   [6] 0.024581316 0.073564248 0.035694617 0.028703887 0.053435903
##  [11] 0.112911345 0.010851556 0.066307322 0.023264995 0.053585321
##  [16] 0.039839694 0.073478882 0.028418170 0.052539608 0.035002146
##  [21] 0.055674361 0.081175488 0.026134020 0.044041934 0.048340189
##  [26] 0.015856581 0.051810060 0.064125426 0.010630242 0.011553181
##  [31] 0.100857109 0.016086477 0.035428517 0.020605043 0.050478406
##  [36] 0.044707951 0.034158842 0.019600658 0.049242509 0.032059299
##  [41] 0.083799811 0.029291397 0.017727410 0.045104768 0.029743397
##  [46] 0.025364658 0.060669357 0.026631747 0.046034957 0.054586421
##  [51] 0.034922176 0.016886644 0.021173627 0.147292177 0.017108664
##  [56] 0.093079586 0.015303556 0.072678973 0.093019915 0.000000000
##  [61] 0.038187296 0.033363714 0.072565858 0.066831852 0.013434728
##  [66] 0.049585251 0.029831109 0.020518018 0.029205886 0.043429302
##  [71] 0.016101497 0.059939590 0.065172341 0.022596209 0.064045789
##  [76] 0.007698713 0.081457617 0.077285933 0.009714804 0.037172634
##  [81] 0.046370726 0.049514471 0.050374828 0.018375984 0.059347997
##  [86] 0.041911503 0.047460765 0.030376372 0.021589953 0.051618580
##  [91] 0.047567325 0.052536720 0.059549962 0.018080208 0.098448383
##  [96] 0.011491981 0.000000000 0.035913236 0.061788490 0.008668759
##  (between_SS / total_SS =  99.4 %)
## 
## Available components:
## 
## [1] "cluster"      "centers"      "totss"        "withinss"    
## [5] "tot.withinss" "betweenss"    "size"         "iter"        
## [9] "ifault"

k medoid clustering

library(cluster)
all <- read.table("snps.txt", header=T,sep="\t")
result <- pam(all, 2, FALSE, "euclidean")
result
## Medoids:
##      ID name allele1 allele2
## [1,] 13    5       2       2
## [2,]  5   14       3       3
## Clustering vector:
##  [1] 1 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 2
## Objective function:
##    build     swap 
## 3.087855 2.508287 
## 
## Available components:
##  [1] "medoids"    "id.med"     "clustering" "objective"  "isolation" 
##  [6] "clusinfo"   "silinfo"    "diss"       "call"       "data"
summary(result)
## Medoids:
##      ID name allele1 allele2
## [1,] 13    5       2       2
## [2,]  5   14       3       3
## Clustering vector:
##  [1] 1 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 2
## Objective function:
##    build     swap 
## 3.087855 2.508287 
## 
## Numerical information per cluster:
##      size max_diss  av_diss diameter separation
## [1,]    9 4.242641 2.512493 8.124038          1
## [2,]    9 4.898979 2.504081 8.485281          1
## 
## Isolated clusters:
##  L-clusters: character(0)
##  L*-clusters: character(0)
## 
## Silhouette plot information:
##    cluster neighbor  sil_width
## 12       1        2 0.70505808
## 11       1        2 0.70097518
## 13       1        2 0.68851254
## 10       1        2 0.68056010
## 1        1        2 0.63944310
## 14       1        2 0.63538460
## 15       1        2 0.46908273
## 16       1        2 0.35730302
## 17       1        2 0.06532298
## 6        2        1 0.70559746
## 7        2        1 0.70088387
## 5        2        1 0.69051866
## 8        2        1 0.67395882
## 4        2        1 0.64632654
## 9        2        1 0.60774245
## 3        2        1 0.53758572
## 2        2        1 0.37584267
## 18       2        1 0.09361645
## Average silhouette width per cluster:
## [1] 0.5490714 0.5591192
## Average silhouette width of total data set:
## [1] 0.5540953
## 
## 153 dissimilarities, summarized :
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   1.000   3.162   6.000   6.554   9.110  17.059 
## Metric :  euclidean 
## Number of objects : 18
## 
## Available components:
##  [1] "medoids"    "id.med"     "clustering" "objective"  "isolation" 
##  [6] "clusinfo"   "silinfo"    "diss"       "call"       "data"
plot(result$data, col = result$clustering)

Hierarchical clustering

dat <- matrix(rnorm(500), nrow=50, ncol=10)
dat
##               [,1]        [,2]        [,3]        [,4]         [,5]
##  [1,]  1.104797535  0.63787505  1.32465334 -0.25992335 -0.007320741
##  [2,] -0.638433884  0.95061273  0.52292022  0.17514650  0.435569501
##  [3,] -2.021707903 -0.77850734 -0.51801442  1.10097672  0.691677214
##  [4,]  1.019227776  1.71111709  0.38055854  0.44028900  0.433922698
##  [5,]  1.048120526  1.09481962 -1.68762001  0.61746647  0.162703017
##  [6,]  0.422329491 -0.32101248 -0.23729926  0.99853886  0.596124149
##  [7,]  1.715203772 -0.03371737 -1.65854441 -0.47806956  0.323289217
##  [8,]  0.857493896  0.79314703 -2.15846227  0.26335257 -2.212372883
##  [9,] -0.704869937  0.86180800  0.47720567  0.90167346  2.092521081
## [10,] -0.529457370 -0.68268225  0.44040894  1.17657372  1.543582069
## [11,] -0.333237109 -0.20054647  0.44268528  0.37247847  0.486138736
## [12,] -1.079332006  1.49654184  0.56427818 -0.83427277  0.505108830
## [13,]  0.634255302 -0.02736137 -1.42541593 -0.05457677  0.737447725
## [14,]  0.322512677 -0.40967147 -0.00152185  0.38504078  0.690064577
## [15,] -1.531934111  1.66264116  1.43652229 -1.25082658 -0.835219052
## [16,] -0.777980920 -0.50712455  1.48106801  0.93846973 -0.039813872
## [17,] -1.370740161 -2.28435991  0.49800635 -1.15625703 -0.520810315
## [18,]  0.291441813 -0.21536996 -2.23817956 -1.13951256  0.541866967
## [19,] -0.121916635 -1.42268046 -0.64909492 -0.75554282 -0.102022074
## [20,] -0.407345541 -0.10970670  0.77514355  1.06781957  0.183143787
## [21,]  0.009500766  0.40119358  0.47077325 -0.22033991  1.433699912
## [22,] -0.605192986  0.12504966 -0.31059586 -0.06843142  0.393997199
## [23,]  0.126785728 -0.49754578  1.37070084  1.35362496  0.213009955
## [24,] -0.117273200 -1.18604245 -2.33241843 -0.31624999  0.515226004
## [25,] -0.217383365 -1.22240081  0.35384684 -1.84560143 -1.940444258
## [26,]  1.052677507  0.55642459  0.52527402  1.18728119 -1.838557784
## [27,]  1.135699100  0.88366640 -0.27493314  0.62232672 -1.552886027
## [28,] -1.260257972 -1.47211104 -1.23902710 -1.43913253 -0.805754735
## [29,] -0.982368301  0.07255701  0.09464866 -0.54286234 -1.258337764
## [30,]  0.321521747 -0.43689189 -0.39133650  0.59269900  1.720407125
## [31,]  0.154625634 -0.48636477 -0.25950773  2.69057794 -0.556879930
## [32,] -1.061863911 -0.66699457  0.66973499  0.76459266 -0.747863657
## [33,] -0.457305326 -0.22214139  0.03409044 -0.78491148 -0.733648370
## [34,] -0.736272290 -0.11004995  1.80494021 -0.41299414  1.081906838
## [35,]  0.849040550 -0.60756910  0.35677233  0.78016506 -0.051792206
## [36,] -2.338840060 -0.16804619  0.90469345 -1.46141846 -1.656513489
## [37,] -2.472918585 -0.31390118 -2.08125799  1.77166015 -0.072396919
## [38,] -2.216327354  1.14453264 -0.98494022  0.01055371 -0.409199484
## [39,] -2.037112840 -0.41184555  0.96394814  2.25156777  0.097243363
## [40,]  1.239702085  0.28817084  0.24705372 -0.22815373  1.748506193
## [41,]  0.984387787 -1.46653647 -1.51321835 -0.90992563 -1.960247259
## [42,] -1.761246049  0.81642555 -0.68560249 -1.04490090 -2.024400792
## [43,]  0.080012937 -0.51216665  0.27789593  1.19661811 -0.813865639
## [44,] -0.120125451 -0.49180348 -0.18822432  1.32262506  1.094092451
## [45,] -0.353031494  0.53231789  2.65639116  1.16040198  0.692426537
## [46,] -0.483383107  0.16159368  1.30021130  0.70068368  0.063998526
## [47,] -1.965545164 -0.11589754  0.89684067 -0.40691379 -0.083085823
## [48,] -0.559672753 -0.26826424  0.75026828  0.71223381 -1.497730455
## [49,]  1.869963115  0.23141846  0.59864835 -0.81426515 -0.162971475
## [50,]  0.048185182  0.18263742  1.81664831 -1.03148670  0.780833096
##              [,6]        [,7]         [,8]        [,9]       [,10]
##  [1,] -0.26737192 -0.82279100 -0.945755480  0.09437026  0.58207625
##  [2,] -0.11221575 -0.64528347 -1.803507024 -1.25336569  1.06473816
##  [3,] -1.47929116  2.43197764  1.611013295  2.45091692 -0.60510123
##  [4,]  0.55829114 -1.02660328  0.258008895  0.95411582  0.19945536
##  [5,]  0.83161052  0.87100896 -0.765632581  2.04072845  0.52767667
##  [6,] -0.11278553 -1.35742314 -1.418208589 -0.07394035 -2.26198024
##  [7,] -0.04785735  0.82297396  1.100363065  0.15232761 -2.21732453
##  [8,] -0.67473476  0.66250542  0.167627637 -0.38784192  1.70116532
##  [9,] -2.61457860 -1.58894275 -0.186432860  1.23748883 -0.59746149
## [10,]  1.09891523  0.22853225 -1.352267185  0.54320457  0.18732458
## [11,]  0.92329594 -1.74275080  0.884215856  1.07834535  0.49112664
## [12,] -0.07930201  0.42953484  0.531027645 -1.10967590  1.81924609
## [13,] -0.26327625  0.10758705  1.658734844 -0.64729778 -0.48395916
## [14,] -0.34218879  0.62004651 -1.741474005  0.13080102 -0.76000340
## [15,] -0.93483806 -0.85557134  1.493576198 -0.06253494  1.22857495
## [16,] -0.06169878 -0.38896284 -1.232636077  0.74197605  0.46853798
## [17,] -1.50969611 -0.72895698  0.027939618 -0.83649695 -2.01353439
## [18,] -1.15153283  0.98736098  0.775497248 -1.23147911 -0.27197819
## [19,]  0.23258530 -0.92936214 -0.377447373  0.05508135 -0.25757350
## [20,]  1.52923053 -1.97807610  1.768223112 -0.20562734 -0.84978031
## [21,] -0.04584245 -1.54323936  2.041499750 -0.08982952 -1.44626868
## [22,] -0.33892771 -1.44637922  0.001020245 -1.20592128 -0.55419720
## [23,]  0.93623313 -0.29848778  1.024025762  0.22832894  0.04792215
## [24,]  1.11621466 -0.49599548  1.166253764 -1.63741551  0.43505975
## [25,]  1.76356584 -0.03863671 -0.458777508  2.37714582  0.90735656
## [26,]  0.35942351  0.06583886 -1.489813928 -0.16367133  0.43111535
## [27,]  0.32909443  0.39247755  0.997393088  0.14204676  0.14490740
## [28,] -2.27039937  0.33608990  0.111351925 -0.81001621  0.98356721
## [29,] -0.88028861 -0.89989057  1.480715004  1.73354433  0.44803709
## [30,]  0.38362170  0.93363150 -2.001014335  0.92523531 -0.19176666
## [31,]  0.34720435  0.37341456  0.097776314  0.87435382  0.29157498
## [32,] -0.37840859  0.43747426 -1.908511364 -0.57113012  1.04413588
## [33,] -0.59076038 -1.62019769 -1.123747150  0.06793347  1.06000312
## [34,] -0.79918627  0.68311924 -0.338626555 -1.22330558  0.08817845
## [35,]  1.46458492 -0.17965817  0.632656319 -0.78775485 -0.55729490
## [36,]  0.40572861  0.39406253 -0.481221693 -0.93515238  0.02216662
## [37,]  1.40419937  0.29076114  1.074151565  0.97628128  0.66119869
## [38,] -0.11800518  0.19088493  0.818221363 -0.66880842 -0.07542987
## [39,]  0.70632842 -0.16176184  0.535107073 -0.23663230 -1.21406617
## [40,]  0.36760863 -1.04174195 -1.390887490 -0.61977418 -1.83030212
## [41,] -1.33889188 -0.72090035  0.439255160  1.05452255  1.80144957
## [42,] -0.86993438 -0.98622660  0.080764878  0.17933073  0.30288079
## [43,]  0.12772454  1.95166227  0.079850029 -0.69208549 -0.64995185
## [44,]  0.27190270 -1.71450382 -0.810329064  0.83084106 -0.15635790
## [45,] -0.94603456  1.28443779 -0.126174578  2.43496653 -0.67303033
## [46,]  0.06237562  0.07322864 -1.042467206 -1.82602624  0.39048600
## [47,] -1.52558285 -0.57034221 -0.299680479 -1.21577893  1.84000261
## [48,] -0.50030378  0.26970598 -0.115909185  0.52715478 -0.86367223
## [49,]  0.51866300 -0.40700665 -0.117779514 -0.45633651  1.22055768
## [50,]  0.25866693  0.97662624 -1.436576414  0.17436868  0.79637555
hc <- hclust(dist(dat))
hc
## 
## Call:
## hclust(d = dist(dat))
## 
## Cluster method   : complete 
## Distance         : euclidean 
## Number of objects: 50
plot(hc)

Expectation-maximization

library(mclust)
## Package 'mclust' version 5.3
## Type 'citation("mclust")' for citing this R package in publications.
data("mtcars")
head(mtcars)
##                    mpg cyl disp  hp drat    wt  qsec vs am gear carb
## Mazda RX4         21.0   6  160 110 3.90 2.620 16.46  0  1    4    4
## Mazda RX4 Wag     21.0   6  160 110 3.90 2.875 17.02  0  1    4    4
## Datsun 710        22.8   4  108  93 3.85 2.320 18.61  1  1    4    1
## Hornet 4 Drive    21.4   6  258 110 3.08 3.215 19.44  1  0    3    1
## Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2
## Valiant           18.1   6  225 105 2.76 3.460 20.22  1  0    3    1
str(mtcars)
## 'data.frame':    32 obs. of  11 variables:
##  $ mpg : num  21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
##  $ cyl : num  6 6 4 6 8 6 8 4 4 6 ...
##  $ disp: num  160 160 108 258 360 ...
##  $ hp  : num  110 110 93 110 175 105 245 62 95 123 ...
##  $ drat: num  3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
##  $ wt  : num  2.62 2.88 2.32 3.21 3.44 ...
##  $ qsec: num  16.5 17 18.6 19.4 17 ...
##  $ vs  : num  0 0 1 1 0 1 0 1 1 1 ...
##  $ am  : num  1 1 1 0 0 0 0 0 0 0 ...
##  $ gear: num  4 4 4 3 3 3 3 4 4 4 ...
##  $ carb: num  4 4 1 1 2 1 4 2 2 4 ...
fit <- Mclust(mtcars)
fit
## 'Mclust' model object:
##  best model: ellipsoidal, equal shape (VEV) with 4 components
summary(fit)
## ----------------------------------------------------
## Gaussian finite mixture model fitted by EM algorithm 
## ----------------------------------------------------
## 
## Mclust VEV (ellipsoidal, equal shape) model with 4 components:
## 
##  log.likelihood  n  df       BIC       ICL
##       -71.24536 32 281 -1116.363 -1116.363
## 
## Clustering table:
##  1  2  3  4 
## 12  7  9  4
d <- density(mtcars$mpg)
d
## 
## Call:
##  density.default(x = mtcars$mpg)
## 
## Data: mtcars$mpg (32 obs.);  Bandwidth 'bw' = 2.477
## 
##        x               y            
##  Min.   : 2.97   Min.   :6.481e-05  
##  1st Qu.:12.56   1st Qu.:5.461e-03  
##  Median :22.15   Median :1.926e-02  
##  Mean   :22.15   Mean   :2.604e-02  
##  3rd Qu.:31.74   3rd Qu.:4.530e-02  
##  Max.   :41.33   Max.   :6.795e-02
plot(d)

Anomaly detection

y <- rnorm(1000)
boxplot(y)
identify(rep(1, length(y)), y, labels = seq_along(y))

## integer(0)
x <- rnorm(1000)
summary(x)
##      Min.   1st Qu.    Median      Mean   3rd Qu.      Max. 
## -2.789995 -0.667856 -0.032975 -0.008402  0.643473  3.932214
boxplot.stats(x)$out
## [1] -2.780705  3.468434  3.932214 -2.789995
boxplot(x)

boxplot(mpg~cyl,data=mtcars, xlab="Cylinders", ylab="MPG")

x <- rnorm(10000)
y <- rnorm(10000)
f <- data.frame(x,y)
a <- boxplot.stats(x)$out
b <- boxplot.stats(y)$out
list <- union(a,b)
plot(f)
px <- f[f$x %in% a,]
py <- f[f$y %in% b,]
p <- rbind(px,py)
par(new=TRUE)
plot(p$x, p$y,cex=2,col=2)

Calculating anomalies

data("women")
str(women)
## 'data.frame':    15 obs. of  2 variables:
##  $ height: num  58 59 60 61 62 63 64 65 66 67 ...
##  $ weight: num  115 117 120 123 126 129 132 135 139 142 ...
head(women)
##   height weight
## 1     58    115
## 2     59    117
## 3     60    120
## 4     61    123
## 5     62    126
## 6     63    129
summary(women)
##      height         weight     
##  Min.   :58.0   Min.   :115.0  
##  1st Qu.:61.5   1st Qu.:124.5  
##  Median :65.0   Median :135.0  
##  Mean   :65.0   Mean   :136.7  
##  3rd Qu.:68.5   3rd Qu.:148.0  
##  Max.   :72.0   Max.   :164.0
outliers <- function(women, low, high) {
outs <- subset(women, women$height < low | women$height > high)
return(outs)
}
outliers(women, 60, 70)
##    height weight
## 1      58    115
## 2      59    117
## 14     71    159
## 15     72    164
library(DMwR)
## Loading required package: lattice
## Loading required package: grid
str(mtcars)
## 'data.frame':    32 obs. of  11 variables:
##  $ mpg : num  21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
##  $ cyl : num  6 6 4 6 8 6 8 4 4 6 ...
##  $ disp: num  160 160 108 258 360 ...
##  $ hp  : num  110 110 93 110 175 105 245 62 95 123 ...
##  $ drat: num  3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
##  $ wt  : num  2.62 2.88 2.32 3.21 3.44 ...
##  $ qsec: num  16.5 17 18.6 19.4 17 ...
##  $ vs  : num  0 0 1 1 0 1 0 1 1 1 ...
##  $ am  : num  1 1 1 0 0 0 0 0 0 0 ...
##  $ gear: num  4 4 4 3 3 3 3 4 4 4 ...
##  $ carb: num  4 4 1 1 2 1 4 2 2 4 ...
scores <- lofactor(mtcars, k=3)
plot(density(scores))

Association rules

library(arules)
## Loading required package: Matrix
## 
## Attaching package: 'arules'
## The following objects are masked from 'package:base':
## 
##     abbreviate, write
data <- read.csv("http://www.salemmarafi.com/wp-content/uploads/2014/03/groceries.csv")
rules <- apriori(data)
## Apriori
## 
## Parameter specification:
##  confidence minval smax arem  aval originalSupport maxtime support minlen
##         0.8    0.1    1 none FALSE            TRUE       5     0.1      1
##  maxlen target   ext
##      10  rules FALSE
## 
## Algorithmic control:
##  filter tree heap memopt load sort verbose
##     0.1 TRUE TRUE  FALSE TRUE    2    TRUE
## 
## Absolute minimum support count: 1529 
## 
## set item appearances ...[0 item(s)] done [0.00s].
## set transactions ...[655 item(s), 15295 transaction(s)] done [0.00s].
## sorting and recoding items ... [3 item(s)] done [0.00s].
## creating transaction tree ... done [0.00s].
## checking subsets of size 1 2 3 done [0.00s].
## writing ... [5 rule(s)] done [0.00s].
## creating S4 object  ... done [0.00s].
rules
## set of 5 rules
inspect(rules)
##     lhs                                    rhs            support  
## [1] {semi.finished.bread=}              => {margarine=}   0.2278522
## [2] {semi.finished.bread=}              => {ready.soups=} 0.2278522
## [3] {margarine=}                        => {ready.soups=} 0.3998039
## [4] {semi.finished.bread=,margarine=}   => {ready.soups=} 0.2278522
## [5] {semi.finished.bread=,ready.soups=} => {margarine=}   0.2278522
##     confidence lift    
## [1] 1          2.501226
## [2] 1          1.861385
## [3] 1          1.861385
## [4] 1          1.861385
## [5] 1          2.501226
rules2 <- apriori(data, parameter = list(supp = 0.01, conf = 0.8))
## Apriori
## 
## Parameter specification:
##  confidence minval smax arem  aval originalSupport maxtime support minlen
##         0.8    0.1    1 none FALSE            TRUE       5    0.01      1
##  maxlen target   ext
##      10  rules FALSE
## 
## Algorithmic control:
##  filter tree heap memopt load sort verbose
##     0.1 TRUE TRUE  FALSE TRUE    2    TRUE
## 
## Absolute minimum support count: 152 
## 
## set item appearances ...[0 item(s)] done [0.00s].
## set transactions ...[655 item(s), 15295 transaction(s)] done [0.00s].
## sorting and recoding items ... [75 item(s)] done [0.00s].
## creating transaction tree ... done [0.01s].
## checking subsets of size 1 2 3 4 done [0.00s].
## writing ... [68 rule(s)] done [0.00s].
## creating S4 object  ... done [0.00s].
inspect(rules2)
##      lhs                                    rhs                       support confidence     lift
## [1]  {semi.finished.bread=newspapers}    => {margarine=}           0.01157241  0.8894472 2.224709
## [2]  {semi.finished.bread=newspapers}    => {ready.soups=}         0.01294541  0.9949749 1.852031
## [3]  {citrus.fruit=newspapers}           => {semi.finished.bread=} 0.01203008  0.8932039 3.920101
## [4]  {citrus.fruit=newspapers}           => {margarine=}           0.01346845  1.0000000 2.501226
## [5]  {citrus.fruit=newspapers}           => {ready.soups=}         0.01346845  1.0000000 1.861385
## [6]  {margarine=newspapers}              => {ready.soups=}         0.01203008  0.8720379 1.623198
## [7]  {semi.finished.bread=shopping bags} => {margarine=}           0.01497221  1.0000000 2.501226
## [8]  {semi.finished.bread=shopping bags} => {ready.soups=}         0.01497221  1.0000000 1.861385
## [9]  {margarine=shopping bags}           => {ready.soups=}         0.01641059  1.0000000 1.861385
## [10] {citrus.fruit=shopping bags}        => {semi.finished.bread=} 0.01765283  1.0000000 4.388809
## [11] {citrus.fruit=shopping bags}        => {margarine=}           0.01765283  1.0000000 2.501226
## [12] {citrus.fruit=shopping bags}        => {ready.soups=}         0.01765283  1.0000000 1.861385
## [13] {citrus.fruit=bottled beer}         => {margarine=}           0.01595293  0.8215488 2.054880
## [14] {citrus.fruit=bottled beer}         => {ready.soups=}         0.01824126  0.9393939 1.748574
## [15] {citrus.fruit=canned beer}          => {margarine=}           0.02262177  0.8917526 2.230475
## [16] {citrus.fruit=canned beer}          => {ready.soups=}         0.02451782  0.9664948 1.799019
## [17] {citrus.fruit=soda}                 => {ready.soups=}         0.03059823  0.8509091 1.583869
## [18] {semi.finished.bread=}              => {margarine=}           0.22785224  1.0000000 2.501226
## [19] {semi.finished.bread=}              => {ready.soups=}         0.22785224  1.0000000 1.861385
## [20] {margarine=}                        => {ready.soups=}         0.39980386  1.0000000 1.861385
## [21] {semi.finished.bread=newspapers,                                                            
##       margarine=}                        => {ready.soups=}         0.01157241  1.0000000 1.861385
## [22] {semi.finished.bread=newspapers,                                                            
##       ready.soups=}                      => {margarine=}           0.01157241  0.8939394 2.235945
## [23] {citrus.fruit=newspapers,                                                                   
##       semi.finished.bread=}              => {margarine=}           0.01203008  1.0000000 2.501226
## [24] {citrus.fruit=newspapers,                                                                   
##       margarine=}                        => {semi.finished.bread=} 0.01203008  0.8932039 3.920101
## [25] {citrus.fruit=newspapers,                                                                   
##       semi.finished.bread=}              => {ready.soups=}         0.01203008  1.0000000 1.861385
## [26] {citrus.fruit=newspapers,                                                                   
##       ready.soups=}                      => {semi.finished.bread=} 0.01203008  0.8932039 3.920101
## [27] {citrus.fruit=newspapers,                                                                   
##       margarine=}                        => {ready.soups=}         0.01346845  1.0000000 1.861385
## [28] {citrus.fruit=newspapers,                                                                   
##       ready.soups=}                      => {margarine=}           0.01346845  1.0000000 2.501226
## [29] {semi.finished.bread=shopping bags,                                                         
##       margarine=}                        => {ready.soups=}         0.01497221  1.0000000 1.861385
## [30] {semi.finished.bread=shopping bags,                                                         
##       ready.soups=}                      => {margarine=}           0.01497221  1.0000000 2.501226
## [31] {citrus.fruit=shopping bags,                                                                
##       semi.finished.bread=}              => {margarine=}           0.01765283  1.0000000 2.501226
## [32] {citrus.fruit=shopping bags,                                                                
##       margarine=}                        => {semi.finished.bread=} 0.01765283  1.0000000 4.388809
## [33] {citrus.fruit=shopping bags,                                                                
##       semi.finished.bread=}              => {ready.soups=}         0.01765283  1.0000000 1.861385
## [34] {citrus.fruit=shopping bags,                                                                
##       ready.soups=}                      => {semi.finished.bread=} 0.01765283  1.0000000 4.388809
## [35] {citrus.fruit=shopping bags,                                                                
##       margarine=}                        => {ready.soups=}         0.01765283  1.0000000 1.861385
## [36] {citrus.fruit=shopping bags,                                                                
##       ready.soups=}                      => {margarine=}           0.01765283  1.0000000 2.501226
## [37] {citrus.fruit=bottled beer,                                                                 
##       semi.finished.bread=}              => {margarine=}           0.01098398  1.0000000 2.501226
## [38] {citrus.fruit=bottled beer,                                                                 
##       semi.finished.bread=}              => {ready.soups=}         0.01098398  1.0000000 1.861385
## [39] {citrus.fruit=bottled beer,                                                                 
##       margarine=}                        => {ready.soups=}         0.01595293  1.0000000 1.861385
## [40] {citrus.fruit=bottled beer,                                                                 
##       ready.soups=}                      => {margarine=}           0.01595293  0.8745520 2.187453
## [41] {citrus.fruit=bottled water,                                                                
##       margarine=}                        => {ready.soups=}         0.01386074  1.0000000 1.861385
## [42] {citrus.fruit=canned beer,                                                                  
##       semi.finished.bread=}              => {margarine=}           0.01837202  1.0000000 2.501226
## [43] {citrus.fruit=canned beer,                                                                  
##       margarine=}                        => {semi.finished.bread=} 0.01837202  0.8121387 3.564322
## [44] {citrus.fruit=canned beer,                                                                  
##       semi.finished.bread=}              => {ready.soups=}         0.01837202  1.0000000 1.861385
## [45] {citrus.fruit=canned beer,                                                                  
##       margarine=}                        => {ready.soups=}         0.02262177  1.0000000 1.861385
## [46] {citrus.fruit=canned beer,                                                                  
##       ready.soups=}                      => {margarine=}           0.02262177  0.9226667 2.307798
## [47] {semi.finished.bread=soda,                                                                  
##       margarine=}                        => {ready.soups=}         0.01072246  1.0000000 1.861385
## [48] {citrus.fruit=soda,                                                                         
##       semi.finished.bread=}              => {margarine=}           0.01412226  1.0000000 2.501226
## [49] {citrus.fruit=soda,                                                                         
##       semi.finished.bread=}              => {ready.soups=}         0.01412226  1.0000000 1.861385
## [50] {citrus.fruit=soda,                                                                         
##       margarine=}                        => {ready.soups=}         0.02451782  1.0000000 1.861385
## [51] {citrus.fruit=soda,                                                                         
##       ready.soups=}                      => {margarine=}           0.02451782  0.8012821 2.004188
## [52] {citrus.fruit=rolls/buns,                                                                   
##       margarine=}                        => {ready.soups=}         0.01922197  1.0000000 1.861385
## [53] {citrus.fruit=whole milk,                                                                   
##       margarine=}                        => {ready.soups=}         0.01915659  1.0000000 1.861385
## [54] {semi.finished.bread=,                                                                      
##       margarine=}                        => {ready.soups=}         0.22785224  1.0000000 1.861385
## [55] {semi.finished.bread=,                                                                      
##       ready.soups=}                      => {margarine=}           0.22785224  1.0000000 2.501226
## [56] {citrus.fruit=newspapers,                                                                   
##       semi.finished.bread=,                                                                      
##       margarine=}                        => {ready.soups=}         0.01203008  1.0000000 1.861385
## [57] {citrus.fruit=newspapers,                                                                   
##       semi.finished.bread=,                                                                      
##       ready.soups=}                      => {margarine=}           0.01203008  1.0000000 2.501226
## [58] {citrus.fruit=newspapers,                                                                   
##       margarine=,                                                                                
##       ready.soups=}                      => {semi.finished.bread=} 0.01203008  0.8932039 3.920101
## [59] {citrus.fruit=shopping bags,                                                                
##       semi.finished.bread=,                                                                      
##       margarine=}                        => {ready.soups=}         0.01765283  1.0000000 1.861385
## [60] {citrus.fruit=shopping bags,                                                                
##       semi.finished.bread=,                                                                      
##       ready.soups=}                      => {margarine=}           0.01765283  1.0000000 2.501226
## [61] {citrus.fruit=shopping bags,                                                                
##       margarine=,                                                                                
##       ready.soups=}                      => {semi.finished.bread=} 0.01765283  1.0000000 4.388809
## [62] {citrus.fruit=bottled beer,                                                                 
##       semi.finished.bread=,                                                                      
##       margarine=}                        => {ready.soups=}         0.01098398  1.0000000 1.861385
## [63] {citrus.fruit=bottled beer,                                                                 
##       semi.finished.bread=,                                                                      
##       ready.soups=}                      => {margarine=}           0.01098398  1.0000000 2.501226
## [64] {citrus.fruit=canned beer,                                                                  
##       semi.finished.bread=,                                                                      
##       margarine=}                        => {ready.soups=}         0.01837202  1.0000000 1.861385
## [65] {citrus.fruit=canned beer,                                                                  
##       semi.finished.bread=,                                                                      
##       ready.soups=}                      => {margarine=}           0.01837202  1.0000000 2.501226
## [66] {citrus.fruit=canned beer,                                                                  
##       margarine=,                                                                                
##       ready.soups=}                      => {semi.finished.bread=} 0.01837202  0.8121387 3.564322
## [67] {citrus.fruit=soda,                                                                         
##       semi.finished.bread=,                                                                      
##       margarine=}                        => {ready.soups=}         0.01412226  1.0000000 1.861385
## [68] {citrus.fruit=soda,                                                                         
##       semi.finished.bread=,                                                                      
##       ready.soups=}                      => {margarine=}           0.01412226  1.0000000 2.501226