Title

Tornadoes inflicted the most human fatalities while Floods caused the most financial damage.

Synopsis

From the U.S. National Oceanic and Atmospheric Administration’s (NOAA) storm database, it can be concluded that Tornadoes caused the most human fatalies. This includes 5633 fatalities and 91346 injuries. Floods have the greatest economic impact, costing $150 Billion.The Top 10 events with high human harm and economic impact have been included in this report.

Data Processing

The data for this assignment come in the form of a comma-separated-value file compressed via the bzip2 algorithm to reduce its size. Data can be downloaded from https://d396qusza40orc.cloudfront.net/repdata%2Fdata%2FStormData.csv.bz2

Library load

library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(ggplot2)

Steps

Data is downloaded to local working directory Read the csv file

stormdatabz <- bzfile("repdata_data_StormData.csv.bz2", open = "r")
stormdata<-read.table(stormdatabz, sep = ",", header = TRUE)
close(stormdatabz)

Check and prepare data

head(stormdata)
##   STATE__           BGN_DATE BGN_TIME TIME_ZONE COUNTY COUNTYNAME STATE
## 1       1  4/18/1950 0:00:00     0130       CST     97     MOBILE    AL
## 2       1  4/18/1950 0:00:00     0145       CST      3    BALDWIN    AL
## 3       1  2/20/1951 0:00:00     1600       CST     57    FAYETTE    AL
## 4       1   6/8/1951 0:00:00     0900       CST     89    MADISON    AL
## 5       1 11/15/1951 0:00:00     1500       CST     43    CULLMAN    AL
## 6       1 11/15/1951 0:00:00     2000       CST     77 LAUDERDALE    AL
##    EVTYPE BGN_RANGE BGN_AZI BGN_LOCATI END_DATE END_TIME COUNTY_END
## 1 TORNADO         0                                               0
## 2 TORNADO         0                                               0
## 3 TORNADO         0                                               0
## 4 TORNADO         0                                               0
## 5 TORNADO         0                                               0
## 6 TORNADO         0                                               0
##   COUNTYENDN END_RANGE END_AZI END_LOCATI LENGTH WIDTH F MAG FATALITIES
## 1         NA         0                      14.0   100 3   0          0
## 2         NA         0                       2.0   150 2   0          0
## 3         NA         0                       0.1   123 2   0          0
## 4         NA         0                       0.0   100 2   0          0
## 5         NA         0                       0.0   150 2   0          0
## 6         NA         0                       1.5   177 2   0          0
##   INJURIES PROPDMG PROPDMGEXP CROPDMG CROPDMGEXP WFO STATEOFFIC ZONENAMES
## 1       15    25.0          K       0                                    
## 2        0     2.5          K       0                                    
## 3        2    25.0          K       0                                    
## 4        2     2.5          K       0                                    
## 5        2     2.5          K       0                                    
## 6        6     2.5          K       0                                    
##   LATITUDE LONGITUDE LATITUDE_E LONGITUDE_ REMARKS REFNUM
## 1     3040      8812       3051       8806              1
## 2     3042      8755          0          0              2
## 3     3340      8742          0          0              3
## 4     3458      8626          0          0              4
## 5     3412      8642          0          0              5
## 6     3450      8748          0          0              6
str(stormdata)
## 'data.frame':    902297 obs. of  37 variables:
##  $ STATE__   : num  1 1 1 1 1 1 1 1 1 1 ...
##  $ BGN_DATE  : Factor w/ 16335 levels "1/1/1966 0:00:00",..: 6523 6523 4242 11116 2224 2224 2260 383 3980 3980 ...
##  $ BGN_TIME  : Factor w/ 3608 levels "00:00:00 AM",..: 272 287 2705 1683 2584 3186 242 1683 3186 3186 ...
##  $ TIME_ZONE : Factor w/ 22 levels "ADT","AKS","AST",..: 7 7 7 7 7 7 7 7 7 7 ...
##  $ COUNTY    : num  97 3 57 89 43 77 9 123 125 57 ...
##  $ COUNTYNAME: Factor w/ 29601 levels "","5NM E OF MACKINAC BRIDGE TO PRESQUE ISLE LT MI",..: 13513 1873 4598 10592 4372 10094 1973 23873 24418 4598 ...
##  $ STATE     : Factor w/ 72 levels "AK","AL","AM",..: 2 2 2 2 2 2 2 2 2 2 ...
##  $ EVTYPE    : Factor w/ 985 levels "   HIGH SURF ADVISORY",..: 834 834 834 834 834 834 834 834 834 834 ...
##  $ BGN_RANGE : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ BGN_AZI   : Factor w/ 35 levels "","  N"," NW",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ BGN_LOCATI: Factor w/ 54429 levels "","- 1 N Albion",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ END_DATE  : Factor w/ 6663 levels "","1/1/1993 0:00:00",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ END_TIME  : Factor w/ 3647 levels ""," 0900CST",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ COUNTY_END: num  0 0 0 0 0 0 0 0 0 0 ...
##  $ COUNTYENDN: logi  NA NA NA NA NA NA ...
##  $ END_RANGE : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ END_AZI   : Factor w/ 24 levels "","E","ENE","ESE",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ END_LOCATI: Factor w/ 34506 levels "","- .5 NNW",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ LENGTH    : num  14 2 0.1 0 0 1.5 1.5 0 3.3 2.3 ...
##  $ WIDTH     : num  100 150 123 100 150 177 33 33 100 100 ...
##  $ F         : int  3 2 2 2 2 2 2 1 3 3 ...
##  $ MAG       : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ FATALITIES: num  0 0 0 0 0 0 0 0 1 0 ...
##  $ INJURIES  : num  15 0 2 2 2 6 1 0 14 0 ...
##  $ PROPDMG   : num  25 2.5 25 2.5 2.5 2.5 2.5 2.5 25 25 ...
##  $ PROPDMGEXP: Factor w/ 19 levels "","-","?","+",..: 17 17 17 17 17 17 17 17 17 17 ...
##  $ CROPDMG   : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ CROPDMGEXP: Factor w/ 9 levels "","?","0","2",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ WFO       : Factor w/ 542 levels ""," CI","$AC",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ STATEOFFIC: Factor w/ 250 levels "","ALABAMA, Central",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ ZONENAMES : Factor w/ 25112 levels "","                                                                                                                               "| __truncated__,..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ LATITUDE  : num  3040 3042 3340 3458 3412 ...
##  $ LONGITUDE : num  8812 8755 8742 8626 8642 ...
##  $ LATITUDE_E: num  3051 0 0 0 0 ...
##  $ LONGITUDE_: num  8806 0 0 0 0 ...
##  $ REMARKS   : Factor w/ 436781 levels "","-2 at Deer Park\n",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ REFNUM    : num  1 2 3 4 5 6 7 8 9 10 ...
stormdata$EVTYPE<-toupper(stormdata$EVTYPE)

Calculate harmful impact

harmful<-summarize(group_by(stormdata,EVTYPE), Deaths=sum(FATALITIES,na.rm=TRUE),Injuries=sum(INJURIES,na.rm=TRUE))
harmful
## # A tibble: 898 x 3
##                   EVTYPE Deaths Injuries
##                    <chr>  <dbl>    <dbl>
##  1    HIGH SURF ADVISORY      0        0
##  2         COASTAL FLOOD      0        0
##  3           FLASH FLOOD      0        0
##  4             LIGHTNING      0        0
##  5             TSTM WIND      0        0
##  6       TSTM WIND (G45)      0        0
##  7            WATERSPOUT      0        0
##  8                  WIND      0        0
##  9                     ?      0        0
## 10       ABNORMAL WARMTH      0        0
## # ... with 888 more rows

Remove events with no data

harmful<-harmful[harmful$Deaths>0|harmful$Injuries>0,]

Save and sort data for deaths

death<-harmful[order(-harmful$Deaths),]
death$EVTYPE<-factor(death$EVTYPE, levels=death$EVTYPE[order(-death$Deaths)])

Save and sort data for injuries

injury<-harmful[order(-harmful$Injuries),]
injury$EVTYPE<-factor(injury$EVTYPE,levels=injury$EVTYPE[order(-injury$Injuries)])

Convert cost data into dollars

conversion <- function(x) { if (toupper(x) == "H") {return(100);}
  else if (toupper(x) == "K") { return(1000)}
  else if (toupper(x) == "M") { return(1000000)}
  else if (toupper(x) == "B") {return(1000000000)}
  else return(1)
}
property<-sapply(stormdata$PROPDMGEXP, function(x) conversion(x))
crop<-sapply(stormdata$CROPDMGEXP, function(x) conversion(x))
stormdata$TOTPROPDMG <- stormdata$PROPDMG*property
stormdata$TOTCROPDMG <- stormdata$CROPDMG*crop

Calculate total cost

stormdata$TOTCOST<-stormdata$TOTPROPDMG+stormdata$TOTCROPDMG
costly<-summarize(group_by(stormdata, EVTYPE), Cost=sum(TOTCOST/1000000,na.rm=TRUE))

Remove events with no cost data, sort and round off cost data

costly<-costly[costly$Cost>0,]
costly<-costly[order(-costly$Cost),]
costly$EVTYPE<-factor(costly$EVTYPE, levels=costly$EVTYPE[order(-costly$Cost)])
costly$Cost<-round(costly$Cost, digits=2)

Results

Tornadoes caused the most deaths with 5633 recorded. The other events in the Top 10 are Excessive Heat, Flash Flood, Heat, Lightning, TSTM Wind, Flood, Rip Current, High Wind and Avalanche.

df<-as.data.frame(death)
plot1<-ggplot(df[1:10,],aes(x=df[1:10,"EVTYPE"],y=df[1:10,"Deaths"]))
plot1<-plot1 + ggtitle("Top 10 Event Type with Deaths")
plot1<-plot1 + labs(x="Event", y="Deaths")
plot1<-plot1 + geom_bar(stat="identity", fill="red")
plot1<-plot1 + geom_text(aes(label=df[1:10,"Deaths"]), size=2, vjust = -0.5)
plot1<-plot1  + theme(axis.text.x=element_text(angle=90, hjust=1))
print(plot1)

Tornadoes caused the most injuries with 91346 recorded. The other events in the Top 10 are TSTM Wind, Flood, Excessive Heat, Lightning, Heat, Ice Storm,Flash Flood, Thunderstorm Wind and Hail.

df2<-as.data.frame(injury)
plot2<-ggplot(df2[1:10,],aes(x=df2[1:10,"EVTYPE"],y=df2[1:10,"Injuries"]))
plot2<-plot2 + ggtitle("Top 10 Event Type with Injuries")
plot2<-plot2 + labs(x="Event", y="Injuries")
plot2<-plot2 + geom_bar(stat="identity", fill="orange")
plot2<-plot2 + geom_text(aes(label=df2[1:10,"Injuries"]), size=2, vjust = -0.5)
plot2<-plot2  + theme(axis.text.x=element_text(angle=90, hjust=1))
print(plot2)

Floods has the greatest economic impact with 150billion in damages. The other events in the Top 10 are Hurricane/Typhoon, Tornado, Storm Surge, Hail, Flash Flood, Drought, Hurricane, River Flood and Ice Storm.

df3<-as.data.frame(costly)
plot3<-ggplot(df3[1:10,],aes(x=df3[1:10,"EVTYPE"],y=df3[1:10,"Cost"]))
plot3<-plot3 + ggtitle("Top 10 Event Type with High Cost")
plot3<-plot3 + labs(x="Event", y="Cost")
plot3<-plot3 + geom_bar(stat="identity", fill="lightblue")
plot3<-plot3 + geom_text(aes(label=df3[1:10,"Cost"]), size=2, vjust = -0.5)
plot3<-plot3  + theme(axis.text.x=element_text(angle=90, hjust=1))
print(plot3)