Predict 30 Data Points
From the given data set taking two columns RUB_sol & MFA_sol and predicting 30 data points on it
Dataset Size
6096 observations of 7 variables
library(tidyr)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 3.3.3
library(tseries)
## Warning: package 'tseries' was built under R version 3.3.3
library(xts)
## Warning: package 'xts' was built under R version 3.3.3
## Loading required package: zoo
## Warning: package 'zoo' was built under R version 3.3.3
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
##
## Attaching package: 'xts'
## The following objects are masked from 'package:dplyr':
##
## first, last
library(forecast)
## Warning: package 'forecast' was built under R version 3.3.3
library(quantmod)
## Warning: package 'quantmod' was built under R version 3.3.3
## Loading required package: TTR
## Warning: package 'TTR' was built under R version 3.3.3
## Version 0.4-0 included new data defaults. See ?getSymbols.
library(lubridate)
## Warning: package 'lubridate' was built under R version 3.3.3
##
## Attaching package: 'lubridate'
## The following object is masked from 'package:base':
##
## date
library(ggfortify)
## Warning: package 'ggfortify' was built under R version 3.3.3
##
## Attaching package: 'ggfortify'
## The following object is masked from 'package:forecast':
##
## gglagplot
dfrdata <- read.csv("./data/xtsdata.csv",header = T,stringsAsFactors = F)
head(dfrdata)
## time15 RUB_sol MFA_sol NFA_sol NFY_sol SFY_baro_air NFA_baro_air
## 1 4/30/2012 0:15 11.929 12.689 11.26 8.19 9.43 13.134
## 2 4/30/2012 0:30 11.879 12.627 11.28 8.18 9.25 12.925
## 3 4/30/2012 0:45 11.828 12.570 11.26 8.21 9.03 12.736
## 4 4/30/2012 1:00 11.779 12.511 11.23 8.22 8.82 12.605
## 5 4/30/2012 1:15 11.730 12.459 11.17 8.23 8.60 12.455
## 6 4/30/2012 1:30 11.682 12.397 11.15 8.24 8.42 12.335
cat("\nClass:\n")
##
## Class:
class(dfrdata)
## [1] "data.frame"
#nrow(dfrdata)
As the class is data frame, therefore need to convert it into a time series
is.Date(dfrdata$time15)
## [1] FALSE
cat("\n")
dfrdata$time15 <- as.POSIXlt(dfrdata$time15,format="%m/%d/%Y %H:%M")
xtsRub <- xts(dfrdata$RUB_sol, order.by=dfrdata$time15)
xtsMfa <- xts(dfrdata$MFA_sol, order.by=dfrdata$time15)
colnames(xtsRub) <- c("RUB_sol")
colnames(xtsMfa) <- c("MFA_sol")
cat("Extended Time Series RUB_sol\n")
## Extended Time Series RUB_sol
head(xtsRub)
## RUB_sol
## 2012-04-30 00:15:00 11.929
## 2012-04-30 00:30:00 11.879
## 2012-04-30 00:45:00 11.828
## 2012-04-30 01:00:00 11.779
## 2012-04-30 01:15:00 11.730
## 2012-04-30 01:30:00 11.682
cat("\n")
cat("Extended Time Series MFA_sol\n")
## Extended Time Series MFA_sol
head(xtsMfa)
## MFA_sol
## 2012-04-30 00:15:00 12.689
## 2012-04-30 00:30:00 12.627
## 2012-04-30 00:45:00 12.570
## 2012-04-30 01:00:00 12.511
## 2012-04-30 01:15:00 12.459
## 2012-04-30 01:30:00 12.397
cat("\n")
cat("\nSummary:\n")
##
## Summary:
summary(xtsRub)
## Index RUB_sol
## Min. :2012-04-30 00:15:00 Min. : 9.489
## 1st Qu.:2012-05-15 21:11:15 1st Qu.:13.906
## Median :2012-05-31 18:07:30 Median :16.043
## Mean :2012-05-31 18:07:30 Mean :15.956
## 3rd Qu.:2012-06-16 15:03:45 3rd Qu.:17.971
## Max. :2012-07-02 12:00:00 Max. :22.439
cat("\nStart:\n")
##
## Start:
start(xtsRub)
## [1] "2012-04-30 00:15:00 IST"
cat("\nEnds:\n")
##
## Ends:
end(xtsRub)
## [1] "2012-07-02 12:00:00 IST"
cat("\nFreq:\n")
##
## Freq:
frequency(xtsRub)
## [1] 0.001111111
cat("\nIndex:\n")
##
## Index:
head(index(xtsRub))
## [1] "2012-04-30 00:15:00 IST" "2012-04-30 00:30:00 IST"
## [3] "2012-04-30 00:45:00 IST" "2012-04-30 01:00:00 IST"
## [5] "2012-04-30 01:15:00 IST" "2012-04-30 01:30:00 IST"
cat("\nPeriodicity:\n")
##
## Periodicity:
periodicity(xtsRub)
## 15 minute periodicity from 2012-04-30 00:15:00 to 2012-07-02 12:00:00
cat("\nMonthly OHLC:\n")
##
## Monthly OHLC:
to.monthly(xtsRub)
## xtsRub.Open xtsRub.High xtsRub.Low xtsRub.Close
## Apr 2012 11.929 13.665 10.914 12.589
## May 2012 12.546 18.891 9.489 17.254
## Jun 2012 17.207 22.439 12.995 18.997
## Jul 2012 18.960 21.896 17.883 20.550
cat("\nMonthly Mean:\n")
##
## Monthly Mean:
lapply(split(xtsRub,f="months"),FUN=mean)
## [[1]]
## [1] 12.27673
##
## [[2]]
## [1] 14.09251
##
## [[3]]
## [1] 17.82781
##
## [[4]]
## [1] 19.42347
autoplot(xtsRub, ts.colour='blue') +
labs(title="Times Series Plot") +
labs(x="Month") +
labs(y="RUB_sol")
cat("\nSummary:\n")
##
## Summary:
summary(xtsMfa)
## Index MFA_sol
## Min. :2012-04-30 00:15:00 Min. :10.54
## 1st Qu.:2012-05-15 21:11:15 1st Qu.:13.30
## Median :2012-05-31 18:07:30 Median :15.09
## Mean :2012-05-31 18:07:30 Mean :14.92
## 3rd Qu.:2012-06-16 15:03:45 3rd Qu.:16.45
## Max. :2012-07-02 12:00:00 Max. :19.71
cat("\nStart:\n")
##
## Start:
start(xtsMfa)
## [1] "2012-04-30 00:15:00 IST"
cat("\nEnds:\n")
##
## Ends:
end(xtsMfa)
## [1] "2012-07-02 12:00:00 IST"
cat("\nFreq:\n")
##
## Freq:
frequency(xtsMfa)
## [1] 0.001111111
cat("\nIndex:\n")
##
## Index:
head(index(xtsMfa))
## [1] "2012-04-30 00:15:00 IST" "2012-04-30 00:30:00 IST"
## [3] "2012-04-30 00:45:00 IST" "2012-04-30 01:00:00 IST"
## [5] "2012-04-30 01:15:00 IST" "2012-04-30 01:30:00 IST"
cat("\nPeriodicity:\n")
##
## Periodicity:
periodicity(xtsMfa)
## 15 minute periodicity from 2012-04-30 00:15:00 to 2012-07-02 12:00:00
cat("\nMonthly OHLC:\n")
##
## Monthly OHLC:
to.monthly(xtsMfa)
## xtsMfa.Open xtsMfa.High xtsMfa.Low xtsMfa.Close
## Apr 2012 12.689 13.855 11.579 12.769
## May 2012 12.701 17.203 10.541 15.834
## Jun 2012 15.796 19.709 13.883 16.295
## Jul 2012 16.252 18.691 15.603 17.819
cat("\nMonthly Mean:\n")
##
## Monthly Mean:
lapply(split(xtsMfa,f="months"),FUN=mean)
## [[1]]
## [1] 12.69096
##
## [[2]]
## [1] 13.41241
##
## [[3]]
## [1] 16.45846
##
## [[4]]
## [1] 16.94893
autoplot(xtsMfa, ts.colour='blue') +
labs(title="Times Series Plot") +
labs(x="Month") +
labs(y="MFA_sol")
# make data for box plot
dfData <- as.data.frame(xtsRub)
colnames(dfData) <- c("values")
dfData <- mutate(dfData,
dates=row.names(dfData),
months=as.numeric(substring(row.names(dfData),6,7)))
dfData$months <- as.factor(dfData$months)
levels(dfData$months) <- c("Apr","May","Jun","Jul")
head(dfData,10)
## values dates months
## 1 11.929 2012-04-30 00:15:00 Apr
## 2 11.879 2012-04-30 00:30:00 Apr
## 3 11.828 2012-04-30 00:45:00 Apr
## 4 11.779 2012-04-30 01:00:00 Apr
## 5 11.730 2012-04-30 01:15:00 Apr
## 6 11.682 2012-04-30 01:30:00 Apr
## 7 11.635 2012-04-30 01:45:00 Apr
## 8 11.589 2012-04-30 02:00:00 Apr
## 9 11.545 2012-04-30 02:15:00 Apr
## 10 11.502 2012-04-30 02:30:00 Apr
ggplot(dfData,aes(x=months,y=values)) +
geom_boxplot(outlier.colour = "red", colour = "blue")+
labs(title= "Monthly Box Plot")+
labs(x= "Months")+
labs(y= "RUB_sol")
# make data for box plot
dfData <- as.data.frame(xtsMfa)
colnames(dfData) <- c("values")
dfData <- mutate(dfData,
dates=row.names(dfData),
months=as.numeric(substring(row.names(dfData),6,7)))
dfData$months <- as.factor(dfData$months)
levels(dfData$months) <- c("Apr","May","Jun","Jul")
head(dfData,10)
## values dates months
## 1 12.689 2012-04-30 00:15:00 Apr
## 2 12.627 2012-04-30 00:30:00 Apr
## 3 12.570 2012-04-30 00:45:00 Apr
## 4 12.511 2012-04-30 01:00:00 Apr
## 5 12.459 2012-04-30 01:15:00 Apr
## 6 12.397 2012-04-30 01:30:00 Apr
## 7 12.353 2012-04-30 01:45:00 Apr
## 8 12.296 2012-04-30 02:00:00 Apr
## 9 12.250 2012-04-30 02:15:00 Apr
## 10 12.207 2012-04-30 02:30:00 Apr
ggplot(dfData,aes(x=months,y=values)) +
geom_boxplot(outlier.colour = "red", colour = "blue")+
labs(title= "Monthly Box Plot")+
labs(x= "Months")+
labs(y= "MFA_sol")
# Augmented Dickey-Fuller Test
adf.test(xtsRub, alternative="stationary", k=0)
##
## Augmented Dickey-Fuller Test
##
## data: xtsRub
## Dickey-Fuller = -1.9731, Lag order = 0, p-value = 0.5898
## alternative hypothesis: stationary
adf.test(xtsMfa, alternative="stationary", k=0)
##
## Augmented Dickey-Fuller Test
##
## data: xtsMfa
## Dickey-Fuller = -2.0628, Lag order = 0, p-value = 0.5517
## alternative hypothesis: stationary
P-value higher than 0.05
Therefore the data is not stationary for both RUB_sol & MFA_sol
autoplot(acf(xtsRub, plot = FALSE))
autoplot(acf(xtsMfa, plot = FALSE))
autoplot(pacf(xtsRub, plot = FALSE))
autoplot(pacf(xtsMfa, plot = FALSE))
As all the ACF is above zero we use ARIMA for both
Predicting the next 30 Data Points at 99% Level of Confidence
armModel <- auto.arima(xtsRub)
armModel
## Series: xtsRub
## ARIMA(5,1,1)
##
## Coefficients:
## ar1 ar2 ar3 ar4 ar5 ma1
## 1.9571 -1.0185 0.1645 -0.1499 0.0409 -0.9766
## s.e. 0.0131 0.0282 0.0309 0.0282 0.0130 0.0029
##
## sigma^2 estimated as 0.0003703: log likelihood=15431.69
## AIC=-30849.37 AICc=-30849.36 BIC=-30802.37
cat("\nNext 30 Data Points of RUB_sol\n")
##
## Next 30 Data Points of RUB_sol
fcData <- forecast(armModel,h=30,level = 99)
fcData
## Point Forecast Lo 99 Hi 99
## 5486401 20.75225 20.70268 20.80181
## 5487301 20.94708 20.83710 21.05705
## 5488201 21.13238 20.95213 21.31262
## 5489101 21.30777 21.04672 21.56881
## 5490001 21.47257 21.12200 21.82313
## 5490901 21.62601 21.17885 22.07317
## 5491801 21.76750 21.21776 22.31724
## 5492701 21.89651 21.23922 22.55381
## 5493601 22.01261 21.24371 22.78151
## 5494501 22.11543 21.23175 22.99910
## 5495401 22.20469 21.20385 23.20552
## 5496301 22.28020 21.16058 23.39982
## 5497201 22.34186 21.10254 23.58118
## 5498101 22.38964 21.03038 23.74889
## 5499001 22.42358 20.94477 23.90239
## 5499901 22.44382 20.84645 24.04120
## 5500801 22.45057 20.73616 24.16498
## 5501701 22.44410 20.61472 24.27348
## 5502601 22.42475 20.48293 24.36658
## 5503501 22.39294 20.34165 24.44424
## 5504401 22.34914 20.19174 24.50654
## 5505301 22.29388 20.03410 24.55366
## 5506201 22.22773 19.86961 24.58586
## 5507101 22.15134 19.69917 24.60351
## 5508001 22.06537 19.52370 24.60705
## 5508901 21.97055 19.34409 24.59700
## 5509801 21.86760 19.16123 24.57398
## 5510701 21.75732 18.97600 24.53865
## 5511601 21.64050 18.78926 24.49175
## 5512501 21.51796 18.60185 24.43408
autoplot(fcData,ts.colour = "green")+
labs(title = "RUB_sol Prediction (30 Data Points)")
armModel2 <- auto.arima(xtsMfa)
armModel2
## Series: xtsMfa
## ARIMA(4,1,4)
##
## Coefficients:
## Warning in sqrt(diag(x$var.coef)): NaNs produced
## ar1 ar2 ar3 ar4 ma1 ma2 ma3 ma4
## 0.4856 0.7682 -0.3657 -0.008 0.1278 -0.4095 0.2634 0.1029
## s.e. NaN NaN NaN NaN NaN 0.0508 NaN NaN
##
## sigma^2 estimated as 0.0009886: log likelihood=12441.01
## AIC=-24864.02 AICc=-24863.99 BIC=-24803.58
cat("\nNext 30 Data Points of MFA_sol\n")
##
## Next 30 Data Points of MFA_sol
fcData2 <- forecast(armModel2,h=30,level = 99)
fcData2
## Point Forecast Lo 99 Hi 99
## 5486401 17.89291 17.81192 17.97390
## 5487301 17.96065 17.80691 18.11438
## 5488201 18.02405 17.78440 18.26370
## 5489101 18.08410 17.74525 18.42295
## 5490001 18.13661 17.68604 18.58718
## 5490901 18.18452 17.61532 18.75372
## 5491801 18.22566 17.53236 18.91897
## 5492701 18.26277 17.44336 19.08218
## 5493601 18.29446 17.34759 19.24132
## 5494501 18.32293 17.24921 19.39664
## 5495401 18.34720 17.14743 19.54697
## 5496301 18.36898 17.04505 19.69291
## 5497201 18.38754 16.94132 19.83376
## 5498101 18.40418 16.83816 19.97020
## 5499001 18.41836 16.73490 20.10182
## 5499901 18.43107 16.63288 20.22927
## 5500801 18.44191 16.53152 20.35229
## 5501701 18.45162 16.43175 20.47148
## 5502601 18.45990 16.33310 20.58669
## 5503501 18.46731 16.23620 20.69842
## 5504401 18.47364 16.14067 20.80660
## 5505301 18.47930 16.04695 20.91165
## 5506201 18.48413 15.95471 21.01355
## 5507101 18.48846 15.86427 21.11264
## 5508001 18.49215 15.77535 21.20894
## 5508901 18.49545 15.68817 21.30273
## 5509801 18.49827 15.60251 21.39404
## 5510701 18.50079 15.51849 21.48310
## 5511601 18.50295 15.43594 21.56995
## 5512501 18.50487 15.35495 21.65480
autoplot(fcData2, ts.colour="green")+
labs(title= "MFA_sol Prediction (30 Data Points)")