This is an R Markdown Notebook. When you execute code within the notebook, the results appear beneath the code.

Try executing this chunk by clicking the Run button within the chunk or by placing your cursor inside it and pressing Ctrl+Shift+Enter.

Add a new chunk by clicking the Insert Chunk button on the toolbar or by pressing Ctrl+Alt+I.

When you save the notebook, an HTML file containing the code and output will be saved alongside it (click the Preview button or press Ctrl+Shift+K to preview the HTML file).

#Reading the data into R.
moviedata = read.csv("PROJECT/PROJECT/data/imbd_rating.csv")
head(moviedata)
#Cleaning the 'title' column head.
colnames(moviedata)[1] <- "title"
head(moviedata)
#Cleaning the alt-codes, maybe
titledata = moviedata$title
cleantitle = moviedata$title
class(cleantitle)
[1] "factor"
cleantitle = sub("Ã<U+0082>", "", cleantitle, fixed=TRUE)
cleantitle = sub("Ã<U+0083>", "", cleantitle, fixed=TRUE)
cleantitle = sub(",", "", cleantitle, fixed=TRUE)
class(cleantitle)
[1] "character"
head(cleantitle)
[1] "Avatar "                                                 "Pirates of the Caribbean: At World's End "              
[3] "Spectre "                                                "The Dark Knight Rises "                                 
[5] "Star Wars: Episode VII - The Force Awakens             " "John Carter "                                           
class(cleantitle)
[1] "character"
head(cleantitle)
[1] "Avatar "                                                 "Pirates of the Caribbean: At World's End "              
[3] "Spectre "                                                "The Dark Knight Rises "                                 
[5] "Star Wars: Episode VII - The Force Awakens             " "John Carter "                                           
genredata = moviedata$genres
cleangenre = genredata
cleangenre = sub("|", "", cleangenre)
class(cleangenre)
[1] "character"
head(genredata)
[1] Action|Adventure|Fantasy|Sci-Fi Action|Adventure|Fantasy        Action|Adventure|Thriller       Action|Thriller                
[5] Documentary                     Action|Adventure|Sci-Fi        
914 Levels: Action Action|Adventure ... Western
summary(moviedata)
                          title                       genres                 director                  actor1                 actor2    
 Ben-Hur                  :   3   Drama               : 236                   : 104   Robert De Niro   :  49   Morgan Freeman :  20  
 Halloween                :   3   Comedy              : 209   Steven Spielberg:  26   Johnny Depp      :  41   Charlize Theron:  15  
 Home                     :   3   Comedy|Drama        : 191   Woody Allen     :  22   Nicolas Cage     :  33   Brad Pitt      :  14  
 King Kong                :   3   Comedy|Drama|Romance: 187   Clint Eastwood  :  20   J.K. Simmons     :  31                  :  13  
 Pan                      :   3   Comedy|Romance      : 158   Martin Scorsese :  20   Bruce Willis     :  30   James Franco   :  11  
 The Fast and the Furious :   3   Drama|Romance       : 152   Ridley Scott    :  17   Denzel Washington:  30   Meryl Streep   :  11  
 (Other)                     :5025   (Other)             :3910   (Other)         :4834   (Other)          :4829   (Other)        :4959  
            actor3         length          budget          director_fb_likes actor1_fb_likes  actor2_fb_likes  actor3_fb_likes   total_cast_likes
               :  23   Min.   :  7.0   Min.   :2.180e+02   Min.   :    0.0   Min.   :     0   Min.   :     0   Min.   :    0.0   Min.   :     0  
 Ben Mendelsohn:   8   1st Qu.: 93.0   1st Qu.:6.000e+06   1st Qu.:    7.0   1st Qu.:   614   1st Qu.:   281   1st Qu.:  133.0   1st Qu.:  1411  
 John Heard    :   8   Median :103.0   Median :2.000e+07   Median :   49.0   Median :   988   Median :   595   Median :  371.5   Median :  3090  
 Steve Coogan  :   8   Mean   :107.2   Mean   :3.975e+07   Mean   :  686.5   Mean   :  6560   Mean   :  1652   Mean   :  645.0   Mean   :  9699  
 Anne Hathaway :   7   3rd Qu.:118.0   3rd Qu.:4.500e+07   3rd Qu.:  194.5   3rd Qu.: 11000   3rd Qu.:   918   3rd Qu.:  636.0   3rd Qu.: 13756  
 Jon Gries     :   7   Max.   :511.0   Max.   :1.222e+10   Max.   :23000.0   Max.   :640000   Max.   :137000   Max.   :23000.0   Max.   :656730  
 (Other)       :4982   NA's   :15      NA's   :492         NA's   :104       NA's   :7        NA's   :13       NA's   :23                        
    fb_likes      critic_reviews  users_reviews     users_votes          score        aspect_ratio       gross                year     
 Min.   :     0   Min.   :  1.0   Min.   :   1.0   Min.   :      5   Min.   :1.600   Min.   : 1.18   Min.   :      162   Min.   :1916  
 1st Qu.:     0   1st Qu.: 50.0   1st Qu.:  65.0   1st Qu.:   8594   1st Qu.:5.800   1st Qu.: 1.85   1st Qu.:  5340988   1st Qu.:1999  
 Median :   166   Median :110.0   Median : 156.0   Median :  34359   Median :6.600   Median : 2.35   Median : 25517500   Median :2005  
 Mean   :  7526   Mean   :140.2   Mean   : 272.8   Mean   :  83668   Mean   :6.442   Mean   : 2.22   Mean   : 48468408   Mean   :2002  
 3rd Qu.:  3000   3rd Qu.:195.0   3rd Qu.: 326.0   3rd Qu.:  96309   3rd Qu.:7.200   3rd Qu.: 2.35   3rd Qu.: 62309438   3rd Qu.:2011  
 Max.   :349000   Max.   :813.0   Max.   :5060.0   Max.   :1689764   Max.   :9.500   Max.   :16.00   Max.   :760505847   Max.   :2016  
                  NA's   :50      NA's   :21                                         NA's   :329     NA's   :884         NA's   :108   
LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6DQogIGh0bWxfbm90ZWJvb2s6IGRlZmF1bHQNCiAgaHRtbF9kb2N1bWVudDogZGVmYXVsdA0KICB3b3JkX2RvY3VtZW50OiBkZWZhdWx0DQotLS0NCg0KVGhpcyBpcyBhbiBbUiBNYXJrZG93bl0oaHR0cDovL3JtYXJrZG93bi5yc3R1ZGlvLmNvbSkgTm90ZWJvb2suIFdoZW4geW91IGV4ZWN1dGUgY29kZSB3aXRoaW4gdGhlIG5vdGVib29rLCB0aGUgcmVzdWx0cyBhcHBlYXIgYmVuZWF0aCB0aGUgY29kZS4gDQoNClRyeSBleGVjdXRpbmcgdGhpcyBjaHVuayBieSBjbGlja2luZyB0aGUgKlJ1biogYnV0dG9uIHdpdGhpbiB0aGUgY2h1bmsgb3IgYnkgcGxhY2luZyB5b3VyIGN1cnNvciBpbnNpZGUgaXQgYW5kIHByZXNzaW5nICpDdHJsK1NoaWZ0K0VudGVyKi4gDQoNCg0KDQpBZGQgYSBuZXcgY2h1bmsgYnkgY2xpY2tpbmcgdGhlICpJbnNlcnQgQ2h1bmsqIGJ1dHRvbiBvbiB0aGUgdG9vbGJhciBvciBieSBwcmVzc2luZyAqQ3RybCtBbHQrSSouDQoNCldoZW4geW91IHNhdmUgdGhlIG5vdGVib29rLCBhbiBIVE1MIGZpbGUgY29udGFpbmluZyB0aGUgY29kZSBhbmQgb3V0cHV0IHdpbGwgYmUgc2F2ZWQgYWxvbmdzaWRlIGl0IChjbGljayB0aGUgKlByZXZpZXcqIGJ1dHRvbiBvciBwcmVzcyAqQ3RybCtTaGlmdCtLKiB0byBwcmV2aWV3IHRoZSBIVE1MIGZpbGUpLg0KDQoNCg0KDQoNCmBgYHtyfQ0KI1JlYWRpbmcgdGhlIGRhdGEgaW50byBSLg0KbW92aWVkYXRhID0gcmVhZC5jc3YoIlBST0pFQ1QvUFJPSkVDVC9kYXRhL2ltYmRfcmF0aW5nLmNzdiIpDQpoZWFkKG1vdmllZGF0YSkNCmBgYA0KDQoNCg0KDQoNCmBgYHtyfQ0KI0NsZWFuaW5nIHRoZSAndGl0bGUnIGNvbHVtbiBoZWFkLg0KY29sbmFtZXMobW92aWVkYXRhKVsxXSA8LSAidGl0bGUiDQpoZWFkKG1vdmllZGF0YSkNCmBgYA0KDQoNCg0KDQpgYGB7cn0NCiNDbGVhbmluZyB0aGUgYWx0LWNvZGVzLCBtYXliZQ0KdGl0bGVkYXRhID0gbW92aWVkYXRhJHRpdGxlDQpjbGVhbnRpdGxlID0gbW92aWVkYXRhJHRpdGxlDQpjbGFzcyhjbGVhbnRpdGxlKQ0KYGBgDQoNCg0KDQoNCmBgYHtyfQ0KY2xlYW50aXRsZSA9IHN1Yigiw4IiLCAiIiwgY2xlYW50aXRsZSwgZml4ZWQ9VFJVRSkNCmNsZWFudGl0bGUgPSBzdWIoIsODIiwgIiIsIGNsZWFudGl0bGUsIGZpeGVkPVRSVUUpDQpjbGVhbnRpdGxlID0gc3ViKCIsIiwgIiIsIGNsZWFudGl0bGUsIGZpeGVkPVRSVUUpDQpjbGFzcyhjbGVhbnRpdGxlKQ0KaGVhZChjbGVhbnRpdGxlKQ0KYGBgDQoNCg0KYGBge3J9DQpjbGFzcyhjbGVhbnRpdGxlKQ0KaGVhZChjbGVhbnRpdGxlKQ0KDQpgYGANCg0KDQpgYGB7cn0NCmdlbnJlZGF0YSA9IG1vdmllZGF0YSRnZW5yZXMNCmNsZWFuZ2VucmUgPSBnZW5yZWRhdGENCmNsZWFuZ2VucmUgPSBzdWIoInwiLCAiIiwgY2xlYW5nZW5yZSkNCmNsYXNzKGNsZWFuZ2VucmUpDQpoZWFkKGdlbnJlZGF0YSkNCmBgYA0KDQpgYGB7cn0NCnN1bW1hcnkobW92aWVkYXRhKQ0KYGBgDQoNCg0KDQoNCg==