Vis 01

library(datasets)
library(ggplot2)
data(mpg)
mpg <- mpg
head(mpg)
## # A tibble: 6 x 11
##   manufacturer model displ  year   cyl      trans   drv   cty   hwy    fl
##          <chr> <chr> <dbl> <int> <int>      <chr> <chr> <int> <int> <chr>
## 1         audi    a4   1.8  1999     4   auto(l5)     f    18    29     p
## 2         audi    a4   1.8  1999     4 manual(m5)     f    21    29     p
## 3         audi    a4   2.0  2008     4 manual(m6)     f    20    31     p
## 4         audi    a4   2.0  2008     4   auto(av)     f    21    30     p
## 5         audi    a4   2.8  1999     6   auto(l5)     f    16    26     p
## 6         audi    a4   2.8  1999     6 manual(m5)     f    18    26     p
## # ... with 1 more variables: class <chr>
ggplot(mpg, aes(class, fill=trans)) + 
  geom_bar(position = "stack") + 
  scale_fill_discrete(name = "Transmission")

Vis 02

ggplot(mpg, aes(x = manufacturer, y = hwy)) + 
  geom_boxplot() + 
  coord_flip() + 
  labs(y ="Highway Fuel Efficiency (miles/gallon)" , x = "Vehicle Manufacturer") +
  theme_classic()

Vis 03

library(ggthemes)
data("diamonds")
head(diamonds)
## # A tibble: 6 x 10
##   carat       cut color clarity depth table price     x     y     z
##   <dbl>     <ord> <ord>   <ord> <dbl> <dbl> <int> <dbl> <dbl> <dbl>
## 1  0.23     Ideal     E     SI2  61.5    55   326  3.95  3.98  2.43
## 2  0.21   Premium     E     SI1  59.8    61   326  3.89  3.84  2.31
## 3  0.23      Good     E     VS1  56.9    65   327  4.05  4.07  2.31
## 4  0.29   Premium     I     VS2  62.4    58   334  4.20  4.23  2.63
## 5  0.31      Good     J     SI2  63.3    58   335  4.34  4.35  2.75
## 6  0.24 Very Good     J    VVS2  62.8    57   336  3.94  3.96  2.48
ggplot(diamonds, aes(price, color = cut, fill = cut)) +
  geom_density(alpha = 0.2) +
  labs(x = "Diamond Price (USD)", y = "Density") +
  ggtitle(label = "Diamond Price Density") +
  theme_economist()

Vis 04

data(iris)
head(iris)
##   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1          5.1         3.5          1.4         0.2  setosa
## 2          4.9         3.0          1.4         0.2  setosa
## 3          4.7         3.2          1.3         0.2  setosa
## 4          4.6         3.1          1.5         0.2  setosa
## 5          5.0         3.6          1.4         0.2  setosa
## 6          5.4         3.9          1.7         0.4  setosa
ggplot(iris, aes(x = Sepal.Length, y = Petal.Length)) + 
  geom_point() + 
  geom_smooth(method = lm) +
  labs(x = "Iris Sepal Length", y = "Iris Petal Length") +
  ggtitle("Relationship between Sepal and Petal Length") + 
  theme_minimal()

Vis 05

ggplot(iris, aes(x = Sepal.Length, y = Petal.Length, fill = Species, color = Species)) + 
  geom_point() +
  geom_smooth(method = lm, se = FALSE) +
  labs(x = "Iris Sepal Length", y = "Iris Petal Length") + 
  ggtitle(label = "Relationship between Sepal and Petal Length", subtitle = "Species Level Comparison") + 
  theme_tufte() +
  theme(legend.position = "bottom")