Note: For base and Var 1 models, I define duration of infection as the time any animal is infectious. For Var2 models, I define duration of infection as the time any animal is either in the C or I stage.
For report, we should put the axes on the same scale and add some threashold where the coefficeint is biologically relevant.
##
## Call:
## lm(formula = full.model.1, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.64201 -0.21249 0.00259 0.16880 1.51072
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.834e-02 2.364e-03 7.758 9.21e-15 ***
## size 6.661e-01 2.540e-03 262.226 < 2e-16 ***
## seed 2.071e-02 2.712e-03 7.636 2.37e-14 ***
## V1 -5.112e-03 2.239e-03 -2.283 0.0225 *
## V2 -5.792e-01 2.239e-03 -258.656 < 2e-16 ***
## V3 -3.894e-01 2.239e-03 -173.903 < 2e-16 ***
## size:seed 7.717e-02 3.306e-03 23.341 < 2e-16 ***
## size:V1 4.013e-04 2.301e-03 0.174 0.8615
## size:V2 -1.573e-01 2.301e-03 -68.384 < 2e-16 ***
## size:V3 -2.020e-03 2.301e-03 -0.878 0.3799
## seed:V1 -7.068e-05 2.301e-03 -0.031 0.9755
## seed:V2 -1.942e-03 2.301e-03 -0.844 0.3987
## seed:V3 6.264e-04 2.301e-03 0.272 0.7854
## V1:V2 -3.715e-04 2.220e-03 -0.167 0.8671
## V1:V3 2.108e-03 2.231e-03 0.945 0.3447
## V2:V3 4.709e-02 2.230e-03 21.118 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2742 on 14984 degrees of freedom
## Multiple R-squared: 0.9249, Adjusted R-squared: 0.9248
## F-statistic: 1.23e+04 on 15 and 14984 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = full.model.1, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.77009 -0.19945 -0.00964 0.17697 1.63884
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0152575 0.0024604 6.201 5.75e-10 ***
## size 0.5871473 0.0026435 222.113 < 2e-16 ***
## seed 0.0139518 0.0028220 4.944 7.74e-07 ***
## V1 -0.0044044 0.0023306 -1.890 0.058799 .
## V2 -0.6330918 0.0023303 -271.678 < 2e-16 ***
## V3 -0.4203738 0.0023305 -180.377 < 2e-16 ***
## size:seed 0.0638179 0.0034407 18.548 < 2e-16 ***
## size:V1 0.0004084 0.0023941 0.171 0.864534
## size:V2 -0.1411391 0.0023942 -58.951 < 2e-16 ***
## size:V3 0.0010652 0.0023942 0.445 0.656406
## seed:V1 0.0004855 0.0023941 0.203 0.839299
## seed:V2 0.0023273 0.0023942 0.972 0.331023
## seed:V3 -0.0086036 0.0023942 -3.593 0.000327 ***
## V1:V2 -0.0012038 0.0023107 -0.521 0.602402
## V1:V3 0.0002124 0.0023220 0.091 0.927119
## V2:V3 0.0475908 0.0023206 20.508 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2853 on 14984 degrees of freedom
## Multiple R-squared: 0.9187, Adjusted R-squared: 0.9186
## F-statistic: 1.128e+04 on 15 and 14984 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = full.model.1, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5820 -0.2260 -0.0238 0.1632 8.8999
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0091192 0.0041576 2.193 0.02830 *
## size 0.6112822 0.0044670 136.845 < 2e-16 ***
## seed -0.0197660 0.0047687 -4.145 3.42e-05 ***
## V1 -0.1648596 0.0039382 -41.861 < 2e-16 ***
## V2 -0.4993635 0.0039378 -126.813 < 2e-16 ***
## V3 -0.3211822 0.0039382 -81.556 < 2e-16 ***
## size:seed 0.0373123 0.0058142 6.417 1.43e-10 ***
## size:V1 -0.0625920 0.0040456 -15.472 < 2e-16 ***
## size:V2 -0.1343139 0.0040457 -33.199 < 2e-16 ***
## size:V3 0.0120380 0.0040458 2.975 0.00293 **
## seed:V1 0.0126363 0.0040456 3.124 0.00179 **
## seed:V2 -0.0012588 0.0040457 -0.311 0.75569
## seed:V3 0.0068420 0.0040458 1.691 0.09083 .
## V1:V2 0.0004039 0.0039047 0.103 0.91762
## V1:V3 0.0095695 0.0039237 2.439 0.01474 *
## V2:V3 0.0356709 0.0039215 9.096 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4822 on 14984 degrees of freedom
## Multiple R-squared: 0.7677, Adjusted R-squared: 0.7675
## F-statistic: 3302 on 15 and 14984 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = full.model.1, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4368 -0.2755 -0.0741 0.1499 8.2290
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.004647 0.005347 0.869 0.38477
## size 0.473832 0.005745 82.480 < 2e-16 ***
## seed -0.049140 0.006133 -8.012 1.21e-15 ***
## V1 -0.254528 0.005065 -50.254 < 2e-16 ***
## V2 -0.467662 0.005064 -92.346 < 2e-16 ***
## V3 -0.293129 0.005065 -57.877 < 2e-16 ***
## size:seed 0.020464 0.007477 2.737 0.00621 **
## size:V1 -0.054528 0.005203 -10.480 < 2e-16 ***
## size:V2 -0.106690 0.005203 -20.505 < 2e-16 ***
## size:V3 0.017034 0.005203 3.274 0.00106 **
## seed:V1 0.044763 0.005203 8.604 < 2e-16 ***
## seed:V2 -0.002016 0.005203 -0.387 0.69845
## seed:V3 -0.005505 0.005203 -1.058 0.29003
## V1:V2 -0.026255 0.005022 -5.228 1.73e-07 ***
## V1:V3 -0.014659 0.005046 -2.905 0.00368 **
## V2:V3 0.022045 0.005043 4.371 1.24e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6201 on 14984 degrees of freedom
## Multiple R-squared: 0.6158, Adjusted R-squared: 0.6155
## F-statistic: 1601 on 15 and 14984 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = full.model.1, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.67967 -0.21945 0.00226 0.17656 1.61735
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0173899 0.0024604 7.068 1.64e-12 ***
## size 0.6808540 0.0026421 257.697 < 2e-16 ***
## seed 0.0240075 0.0028205 8.512 < 2e-16 ***
## V1 -0.0017472 0.0023323 -0.749 0.4538
## V2 -0.5166783 0.0023315 -221.608 < 2e-16 ***
## V3 -0.0672410 0.0023298 -28.861 < 2e-16 ***
## V4 -0.4374955 0.0023306 -187.720 < 2e-16 ***
## size:seed 0.0755108 0.0034389 21.958 < 2e-16 ***
## size:V1 0.0010574 0.0023938 0.442 0.6587
## size:V2 -0.1328319 0.0023943 -55.479 < 2e-16 ***
## size:V3 -0.0022827 0.0023933 -0.954 0.3402
## size:V4 -0.0044436 0.0023928 -1.857 0.0633 .
## seed:V1 0.0005934 0.0023938 0.248 0.8042
## seed:V2 -0.0042939 0.0023943 -1.793 0.0729 .
## seed:V3 -0.0033937 0.0023933 -1.418 0.1562
## seed:V4 0.0010182 0.0023928 0.426 0.6705
## V1:V2 0.0048711 0.0023357 2.085 0.0370 *
## V1:V3 -0.0045766 0.0023076 -1.983 0.0474 *
## V1:V4 -0.0008721 0.0023121 -0.377 0.7060
## V2:V3 0.0006890 0.0023005 0.299 0.7646
## V2:V4 0.0484986 0.0022945 21.136 < 2e-16 ***
## V3:V4 0.0133119 0.0023051 5.775 7.85e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2852 on 14978 degrees of freedom
## Multiple R-squared: 0.9188, Adjusted R-squared: 0.9187
## F-statistic: 8068 on 21 and 14978 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = full.model.1, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.83399 -0.21670 -0.01237 0.18840 1.54594
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.016697 0.002645 6.314 2.80e-10 ***
## size 0.596445 0.002840 210.028 < 2e-16 ***
## seed -0.009811 0.003032 -3.236 0.00121 **
## V1 -0.001165 0.002507 -0.465 0.64225
## V2 -0.634977 0.002506 -253.381 < 2e-16 ***
## V3 -0.206584 0.002504 -82.495 < 2e-16 ***
## V4 -0.320462 0.002505 -127.928 < 2e-16 ***
## size:seed 0.068001 0.003696 18.397 < 2e-16 ***
## size:V1 0.002833 0.002573 1.101 0.27081
## size:V2 -0.118970 0.002573 -46.229 < 2e-16 ***
## size:V3 0.004655 0.002572 1.810 0.07038 .
## size:V4 -0.004548 0.002572 -1.768 0.07700 .
## seed:V1 -0.001198 0.002573 -0.466 0.64154
## seed:V2 -0.004691 0.002573 -1.823 0.06834 .
## seed:V3 0.007434 0.002572 2.890 0.00386 **
## seed:V4 -0.007449 0.002572 -2.896 0.00378 **
## V1:V2 0.004200 0.002511 1.673 0.09435 .
## V1:V3 -0.004967 0.002480 -2.002 0.04525 *
## V1:V4 -0.003604 0.002485 -1.450 0.14706
## V2:V3 0.025155 0.002473 10.173 < 2e-16 ***
## V2:V4 0.019458 0.002466 7.890 3.24e-15 ***
## V3:V4 -0.045615 0.002478 -18.410 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3065 on 14978 degrees of freedom
## Multiple R-squared: 0.9062, Adjusted R-squared: 0.906
## F-statistic: 6888 on 21 and 14978 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = full.model.1, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.80982 -0.21621 -0.04308 0.14569 2.79259
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.0009018 0.0031331 -0.288 0.7735
## size 0.0019351 0.0033645 0.575 0.5652
## seed -0.0019836 0.0035918 -0.552 0.5808
## V1 0.0001062 0.0029701 0.036 0.9715
## V2 -0.3311349 0.0029690 -111.531 < 2e-16 ***
## V3 0.6064725 0.0029668 204.418 < 2e-16 ***
## V4 -0.6080937 0.0029678 -204.896 < 2e-16 ***
## size:seed 0.0017106 0.0043792 0.391 0.6961
## size:V1 0.0024104 0.0030483 0.791 0.4291
## size:V2 0.0066915 0.0030489 2.195 0.0282 *
## size:V3 -0.0013421 0.0030477 -0.440 0.6597
## size:V4 -0.0131665 0.0030471 -4.321 1.56e-05 ***
## seed:V1 0.0006734 0.0030483 0.221 0.8252
## seed:V2 0.0026772 0.0030489 0.878 0.3799
## seed:V3 -0.0003043 0.0030477 -0.100 0.9205
## seed:V4 0.0004371 0.0030471 0.143 0.8859
## V1:V2 0.0054658 0.0029743 1.838 0.0661 .
## V1:V3 -0.0043692 0.0029385 -1.487 0.1371
## V1:V4 -0.0036457 0.0029443 -1.238 0.2157
## V2:V3 -0.1111495 0.0029295 -37.942 < 2e-16 ***
## V2:V4 0.0323967 0.0029219 11.087 < 2e-16 ***
## V3:V4 -0.0941938 0.0029354 -32.089 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3632 on 14978 degrees of freedom
## Multiple R-squared: 0.8683, Adjusted R-squared: 0.8681
## F-statistic: 4702 on 21 and 14978 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = full.model.1, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.45609 -0.26920 0.03059 0.22718 0.41074
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.657e-03 2.509e-03 2.255 0.0242 *
## size 9.370e-01 2.694e-03 347.794 < 2e-16 ***
## seed -8.878e-02 2.876e-03 -30.868 < 2e-16 ***
## V1 4.599e-16 2.378e-03 0.000 1.0000
## V2 2.014e-16 2.377e-03 0.000 1.0000
## V3 2.743e-17 2.376e-03 0.000 1.0000
## V4 2.308e-16 2.376e-03 0.000 1.0000
## size:seed 2.464e-02 3.507e-03 7.028 2.19e-12 ***
## size:V1 8.178e-16 2.441e-03 0.000 1.0000
## size:V2 3.985e-16 2.441e-03 0.000 1.0000
## size:V3 -2.224e-17 2.440e-03 0.000 1.0000
## size:V4 3.510e-16 2.440e-03 0.000 1.0000
## seed:V1 2.632e-16 2.441e-03 0.000 1.0000
## seed:V2 1.134e-16 2.441e-03 0.000 1.0000
## seed:V3 -1.710e-17 2.440e-03 0.000 1.0000
## seed:V4 1.388e-16 2.440e-03 0.000 1.0000
## V1:V2 2.228e-16 2.382e-03 0.000 1.0000
## V1:V3 9.890e-17 2.353e-03 0.000 1.0000
## V1:V4 6.839e-17 2.358e-03 0.000 1.0000
## V2:V3 7.277e-17 2.346e-03 0.000 1.0000
## V2:V4 2.450e-16 2.340e-03 0.000 1.0000
## V3:V4 1.750e-17 2.350e-03 0.000 1.0000
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2908 on 14978 degrees of freedom
## Multiple R-squared: 0.9156, Adjusted R-squared: 0.9154
## F-statistic: 7733 on 21 and 14978 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = full.model.1, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.7048 -0.2283 0.0365 0.1422 0.7353
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.575e-02 2.791e-03 -5.644 1.69e-08 ***
## size 8.452e-01 2.997e-03 282.022 < 2e-16 ***
## seed -2.554e-01 3.199e-03 -79.818 < 2e-16 ***
## V1 4.030e-15 2.646e-03 0.000 1
## V2 -6.191e-17 2.645e-03 0.000 1
## V3 7.952e-16 2.643e-03 0.000 1
## V4 3.097e-15 2.644e-03 0.000 1
## size:seed -6.862e-02 3.901e-03 -17.591 < 2e-16 ***
## size:V1 7.457e-15 2.715e-03 0.000 1
## size:V2 1.424e-18 2.716e-03 0.000 1
## size:V3 1.323e-15 2.715e-03 0.000 1
## size:V4 5.717e-15 2.714e-03 0.000 1
## seed:V1 2.249e-15 2.715e-03 0.000 1
## seed:V2 -2.340e-17 2.716e-03 0.000 1
## seed:V3 4.103e-16 2.715e-03 0.000 1
## seed:V4 1.698e-15 2.714e-03 0.000 1
## V1:V2 5.672e-16 2.649e-03 0.000 1
## V1:V3 -6.984e-16 2.617e-03 0.000 1
## V1:V4 -3.626e-15 2.623e-03 0.000 1
## V2:V3 1.666e-16 2.609e-03 0.000 1
## V2:V4 6.167e-16 2.603e-03 0.000 1
## V3:V4 -8.727e-16 2.615e-03 0.000 1
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3235 on 14978 degrees of freedom
## Multiple R-squared: 0.8955, Adjusted R-squared: 0.8954
## F-statistic: 6112 on 21 and 14978 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = full.model.1, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.7896 -0.2404 -0.0013 0.2062 1.2407
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0191786 0.0027516 6.970 3.30e-12 ***
## size 0.7216257 0.0029536 244.322 < 2e-16 ***
## seed 0.0164280 0.0031531 5.210 1.91e-07 ***
## V1 -0.0059435 0.0026065 -2.280 0.02261 *
## V2 -0.6057970 0.0026077 -232.313 < 2e-16 ***
## V3 -0.1654399 0.0026060 -63.485 < 2e-16 ***
## V4 -0.1138885 0.0026064 -43.696 < 2e-16 ***
## size:seed 0.0897467 0.0038444 23.345 < 2e-16 ***
## size:V1 0.0009153 0.0026763 0.342 0.73236
## size:V2 -0.0811626 0.0026772 -30.316 < 2e-16 ***
## size:V3 -0.0120565 0.0026763 -4.505 6.69e-06 ***
## size:V4 -0.0231301 0.0026756 -8.645 < 2e-16 ***
## seed:V1 0.0005598 0.0026763 0.209 0.83433
## seed:V2 -0.0005234 0.0026772 -0.195 0.84502
## seed:V3 0.0004307 0.0026763 0.161 0.87216
## seed:V4 -0.0016649 0.0026756 -0.622 0.53378
## V1:V2 0.0063878 0.0025768 2.479 0.01319 *
## V1:V3 -0.0002714 0.0025943 -0.105 0.91668
## V1:V4 -0.0005978 0.0026059 -0.229 0.81855
## V2:V3 -0.0283731 0.0025911 -10.950 < 2e-16 ***
## V2:V4 -0.0219895 0.0025516 -8.618 < 2e-16 ***
## V3:V4 -0.0081797 0.0025723 -3.180 0.00148 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3188 on 14978 degrees of freedom
## Multiple R-squared: 0.8985, Adjusted R-squared: 0.8984
## F-statistic: 6314 on 21 and 14978 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = full.model.1, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.0802 -0.2652 -0.0209 0.2359 1.6378
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.471e-02 3.206e-03 4.588 4.50e-06 ***
## size 5.981e-01 3.442e-03 173.794 < 2e-16 ***
## seed 1.019e-02 3.674e-03 2.773 0.00557 **
## V1 -4.749e-03 3.037e-03 -1.564 0.11792
## V2 -6.975e-01 3.039e-03 -229.558 < 2e-16 ***
## V3 -1.588e-01 3.037e-03 -52.284 < 2e-16 ***
## V4 -1.034e-01 3.037e-03 -34.052 < 2e-16 ***
## size:seed 7.308e-02 4.480e-03 16.314 < 2e-16 ***
## size:V1 -1.404e-03 3.119e-03 -0.450 0.65267
## size:V2 -8.090e-02 3.120e-03 -25.932 < 2e-16 ***
## size:V3 -1.168e-02 3.119e-03 -3.747 0.00018 ***
## size:V4 -1.787e-02 3.118e-03 -5.731 1.02e-08 ***
## seed:V1 -2.494e-03 3.119e-03 -0.800 0.42382
## seed:V2 -3.474e-03 3.120e-03 -1.114 0.26550
## seed:V3 -3.475e-03 3.119e-03 -1.114 0.26523
## seed:V4 -1.033e-03 3.118e-03 -0.331 0.74045
## V1:V2 8.530e-03 3.003e-03 2.841 0.00451 **
## V1:V3 2.488e-05 3.023e-03 0.008 0.99343
## V1:V4 -1.706e-03 3.037e-03 -0.562 0.57431
## V2:V3 -4.322e-02 3.019e-03 -14.315 < 2e-16 ***
## V2:V4 -3.339e-02 2.973e-03 -11.230 < 2e-16 ***
## V3:V4 -8.596e-03 2.997e-03 -2.868 0.00414 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3715 on 14978 degrees of freedom
## Multiple R-squared: 0.8622, Adjusted R-squared: 0.862
## F-statistic: 4462 on 21 and 14978 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = full.model.1, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.6569 -0.2470 -0.0350 0.1687 19.0973
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.009552 0.004527 2.110 0.03489 *
## size 0.611848 0.004859 125.910 < 2e-16 ***
## seed -0.049877 0.005188 -9.615 < 2e-16 ***
## V1 -0.165255 0.004288 -38.536 < 2e-16 ***
## V2 -0.526479 0.004290 -122.714 < 2e-16 ***
## V3 -0.152415 0.004287 -35.549 < 2e-16 ***
## V4 -0.083966 0.004288 -19.581 < 2e-16 ***
## size:seed 0.049319 0.006325 7.797 6.73e-15 ***
## size:V1 -0.013583 0.004403 -3.085 0.00204 **
## size:V2 -0.071204 0.004405 -16.165 < 2e-16 ***
## size:V3 -0.014116 0.004403 -3.206 0.00135 **
## size:V4 -0.012579 0.004402 -2.858 0.00428 **
## seed:V1 0.043936 0.004403 9.978 < 2e-16 ***
## seed:V2 0.003905 0.004405 0.887 0.37533
## seed:V3 0.001930 0.004403 0.438 0.66118
## seed:V4 -0.001822 0.004402 -0.414 0.67901
## V1:V2 0.032253 0.004239 7.608 2.95e-14 ***
## V1:V3 0.025981 0.004268 6.087 1.18e-09 ***
## V1:V4 -0.019633 0.004287 -4.579 4.71e-06 ***
## V2:V3 -0.009568 0.004263 -2.244 0.02482 *
## V2:V4 -0.004597 0.004198 -1.095 0.27353
## V3:V4 -0.021985 0.004232 -5.195 2.08e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5245 on 14978 degrees of freedom
## Multiple R-squared: 0.7252, Adjusted R-squared: 0.7249
## F-statistic: 1883 on 21 and 14978 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = full.model.1, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.9872 -0.2663 -0.0509 0.1739 15.1995
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0073116 0.0056469 1.295 0.19541
## size 0.4496813 0.0060613 74.188 < 2e-16 ***
## seed -0.0528226 0.0064708 -8.163 3.52e-16 ***
## V1 -0.1653061 0.0053490 -30.904 < 2e-16 ***
## V2 -0.5491412 0.0053515 -102.615 < 2e-16 ***
## V3 -0.1380156 0.0053479 -25.807 < 2e-16 ***
## V4 -0.0591625 0.0053488 -11.061 < 2e-16 ***
## size:seed 0.0403288 0.0078895 5.112 3.23e-07 ***
## size:V1 0.0009456 0.0054922 0.172 0.86331
## size:V2 -0.0592175 0.0054942 -10.778 < 2e-16 ***
## size:V3 -0.0084604 0.0054924 -1.540 0.12348
## size:V4 -0.0116665 0.0054909 -2.125 0.03363 *
## seed:V1 0.0463306 0.0054922 8.436 < 2e-16 ***
## seed:V2 0.0053076 0.0054942 0.966 0.33404
## seed:V3 0.0034996 0.0054924 0.637 0.52403
## seed:V4 -0.0033387 0.0054909 -0.608 0.54317
## V1:V2 0.0295239 0.0052881 5.583 2.40e-08 ***
## V1:V3 0.0352096 0.0053240 6.613 3.88e-11 ***
## V1:V4 -0.0343795 0.0053479 -6.429 1.33e-10 ***
## V2:V3 -0.0166293 0.0053174 -3.127 0.00177 **
## V2:V4 -0.0022352 0.0052364 -0.427 0.66949
## V3:V4 -0.0299385 0.0052789 -5.671 1.44e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6543 on 14978 degrees of freedom
## Multiple R-squared: 0.5725, Adjusted R-squared: 0.5719
## F-statistic: 955.2 on 21 and 14978 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = full.model.1, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.7896 -0.2404 -0.0013 0.2062 1.2407
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0191786 0.0027516 6.970 3.30e-12 ***
## size 0.7216257 0.0029536 244.322 < 2e-16 ***
## seed 0.0164280 0.0031531 5.210 1.91e-07 ***
## V1 -0.0059435 0.0026065 -2.280 0.02261 *
## V2 -0.6057970 0.0026077 -232.313 < 2e-16 ***
## V3 -0.1654399 0.0026060 -63.485 < 2e-16 ***
## V4 -0.1138885 0.0026064 -43.696 < 2e-16 ***
## size:seed 0.0897467 0.0038444 23.345 < 2e-16 ***
## size:V1 0.0009153 0.0026763 0.342 0.73236
## size:V2 -0.0811626 0.0026772 -30.316 < 2e-16 ***
## size:V3 -0.0120565 0.0026763 -4.505 6.69e-06 ***
## size:V4 -0.0231301 0.0026756 -8.645 < 2e-16 ***
## seed:V1 0.0005598 0.0026763 0.209 0.83433
## seed:V2 -0.0005234 0.0026772 -0.195 0.84502
## seed:V3 0.0004307 0.0026763 0.161 0.87216
## seed:V4 -0.0016649 0.0026756 -0.622 0.53378
## V1:V2 0.0063878 0.0025768 2.479 0.01319 *
## V1:V3 -0.0002714 0.0025943 -0.105 0.91668
## V1:V4 -0.0005978 0.0026059 -0.229 0.81855
## V2:V3 -0.0283731 0.0025911 -10.950 < 2e-16 ***
## V2:V4 -0.0219895 0.0025516 -8.618 < 2e-16 ***
## V3:V4 -0.0081797 0.0025723 -3.180 0.00148 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3188 on 14978 degrees of freedom
## Multiple R-squared: 0.8985, Adjusted R-squared: 0.8984
## F-statistic: 6314 on 21 and 14978 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = full.model.1, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.0802 -0.2652 -0.0209 0.2359 1.6378
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.471e-02 3.206e-03 4.588 4.50e-06 ***
## size 5.981e-01 3.442e-03 173.794 < 2e-16 ***
## seed 1.019e-02 3.674e-03 2.773 0.00557 **
## V1 -4.749e-03 3.037e-03 -1.564 0.11792
## V2 -6.975e-01 3.039e-03 -229.558 < 2e-16 ***
## V3 -1.588e-01 3.037e-03 -52.284 < 2e-16 ***
## V4 -1.034e-01 3.037e-03 -34.052 < 2e-16 ***
## size:seed 7.308e-02 4.480e-03 16.314 < 2e-16 ***
## size:V1 -1.404e-03 3.119e-03 -0.450 0.65267
## size:V2 -8.090e-02 3.120e-03 -25.932 < 2e-16 ***
## size:V3 -1.168e-02 3.119e-03 -3.747 0.00018 ***
## size:V4 -1.787e-02 3.118e-03 -5.731 1.02e-08 ***
## seed:V1 -2.494e-03 3.119e-03 -0.800 0.42382
## seed:V2 -3.474e-03 3.120e-03 -1.114 0.26550
## seed:V3 -3.475e-03 3.119e-03 -1.114 0.26523
## seed:V4 -1.033e-03 3.118e-03 -0.331 0.74045
## V1:V2 8.530e-03 3.003e-03 2.841 0.00451 **
## V1:V3 2.488e-05 3.023e-03 0.008 0.99343
## V1:V4 -1.706e-03 3.037e-03 -0.562 0.57431
## V2:V3 -4.322e-02 3.019e-03 -14.315 < 2e-16 ***
## V2:V4 -3.339e-02 2.973e-03 -11.230 < 2e-16 ***
## V3:V4 -8.596e-03 2.997e-03 -2.868 0.00414 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3715 on 14978 degrees of freedom
## Multiple R-squared: 0.8622, Adjusted R-squared: 0.862
## F-statistic: 4462 on 21 and 14978 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = full.model.1, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.6569 -0.2470 -0.0350 0.1687 19.0973
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.009552 0.004527 2.110 0.03489 *
## size 0.611848 0.004859 125.910 < 2e-16 ***
## seed -0.049877 0.005188 -9.615 < 2e-16 ***
## V1 -0.165255 0.004288 -38.536 < 2e-16 ***
## V2 -0.526479 0.004290 -122.714 < 2e-16 ***
## V3 -0.152415 0.004287 -35.549 < 2e-16 ***
## V4 -0.083966 0.004288 -19.581 < 2e-16 ***
## size:seed 0.049319 0.006325 7.797 6.73e-15 ***
## size:V1 -0.013583 0.004403 -3.085 0.00204 **
## size:V2 -0.071204 0.004405 -16.165 < 2e-16 ***
## size:V3 -0.014116 0.004403 -3.206 0.00135 **
## size:V4 -0.012579 0.004402 -2.858 0.00428 **
## seed:V1 0.043936 0.004403 9.978 < 2e-16 ***
## seed:V2 0.003905 0.004405 0.887 0.37533
## seed:V3 0.001930 0.004403 0.438 0.66118
## seed:V4 -0.001822 0.004402 -0.414 0.67901
## V1:V2 0.032253 0.004239 7.608 2.95e-14 ***
## V1:V3 0.025981 0.004268 6.087 1.18e-09 ***
## V1:V4 -0.019633 0.004287 -4.579 4.71e-06 ***
## V2:V3 -0.009568 0.004263 -2.244 0.02482 *
## V2:V4 -0.004597 0.004198 -1.095 0.27353
## V3:V4 -0.021985 0.004232 -5.195 2.08e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5245 on 14978 degrees of freedom
## Multiple R-squared: 0.7252, Adjusted R-squared: 0.7249
## F-statistic: 1883 on 21 and 14978 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = full.model.1, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.9872 -0.2663 -0.0509 0.1739 15.1995
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0073116 0.0056469 1.295 0.19541
## size 0.4496813 0.0060613 74.188 < 2e-16 ***
## seed -0.0528226 0.0064708 -8.163 3.52e-16 ***
## V1 -0.1653061 0.0053490 -30.904 < 2e-16 ***
## V2 -0.5491412 0.0053515 -102.615 < 2e-16 ***
## V3 -0.1380156 0.0053479 -25.807 < 2e-16 ***
## V4 -0.0591625 0.0053488 -11.061 < 2e-16 ***
## size:seed 0.0403288 0.0078895 5.112 3.23e-07 ***
## size:V1 0.0009456 0.0054922 0.172 0.86331
## size:V2 -0.0592175 0.0054942 -10.778 < 2e-16 ***
## size:V3 -0.0084604 0.0054924 -1.540 0.12348
## size:V4 -0.0116665 0.0054909 -2.125 0.03363 *
## seed:V1 0.0463306 0.0054922 8.436 < 2e-16 ***
## seed:V2 0.0053076 0.0054942 0.966 0.33404
## seed:V3 0.0034996 0.0054924 0.637 0.52403
## seed:V4 -0.0033387 0.0054909 -0.608 0.54317
## V1:V2 0.0295239 0.0052881 5.583 2.40e-08 ***
## V1:V3 0.0352096 0.0053240 6.613 3.88e-11 ***
## V1:V4 -0.0343795 0.0053479 -6.429 1.33e-10 ***
## V2:V3 -0.0166293 0.0053174 -3.127 0.00177 **
## V2:V4 -0.0022352 0.0052364 -0.427 0.66949
## V3:V4 -0.0299385 0.0052789 -5.671 1.44e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6543 on 14978 degrees of freedom
## Multiple R-squared: 0.5725, Adjusted R-squared: 0.5719
## F-statistic: 955.2 on 21 and 14978 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = full.model.1, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.64792 -0.26891 0.05404 0.22697 0.81265
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.605e-02 2.489e-03 10.464 <2e-16 ***
## size 8.745e-01 2.672e-03 327.267 <2e-16 ***
## seed 5.475e-02 2.853e-03 19.193 <2e-16 ***
## V1 -1.305e-03 2.358e-03 -0.553 0.580
## V2 -4.024e-02 2.359e-03 -17.058 <2e-16 ***
## V3 -3.901e-01 2.358e-03 -165.466 <2e-16 ***
## V4 -2.365e-01 2.358e-03 -100.318 <2e-16 ***
## size:seed 1.161e-01 3.478e-03 33.379 <2e-16 ***
## size:V1 7.087e-06 2.421e-03 0.003 0.998
## size:V2 1.709e-03 2.422e-03 0.706 0.480
## size:V3 -5.500e-02 2.421e-03 -22.716 <2e-16 ***
## size:V4 -6.221e-02 2.421e-03 -25.701 <2e-16 ***
## seed:V1 -2.652e-04 2.421e-03 -0.110 0.913
## seed:V2 3.607e-03 2.422e-03 1.489 0.136
## seed:V3 -7.943e-04 2.421e-03 -0.328 0.743
## seed:V4 -1.269e-03 2.421e-03 -0.524 0.600
## V1:V2 3.431e-03 2.331e-03 1.472 0.141
## V1:V3 1.042e-03 2.347e-03 0.444 0.657
## V1:V4 3.709e-04 2.358e-03 0.157 0.875
## V2:V3 -2.539e-03 2.344e-03 -1.083 0.279
## V2:V4 -4.308e-04 2.308e-03 -0.187 0.852
## V3:V4 -2.456e-02 2.327e-03 -10.551 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2884 on 14978 degrees of freedom
## Multiple R-squared: 0.9169, Adjusted R-squared: 0.9168
## F-statistic: 7872 on 21 and 14978 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = full.model.1, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.92171 -0.26017 0.00719 0.23676 1.37169
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0201724 0.0028533 7.070 1.62e-12 ***
## size 0.8182892 0.0030627 267.180 < 2e-16 ***
## seed 0.0599909 0.0032696 18.348 < 2e-16 ***
## V1 0.0009132 0.0027028 0.338 0.73545
## V2 -0.0403634 0.0027040 -14.927 < 2e-16 ***
## V3 -0.4527314 0.0027022 -167.540 < 2e-16 ***
## V4 -0.2517639 0.0027026 -93.154 < 2e-16 ***
## size:seed 0.0917989 0.0039864 23.028 < 2e-16 ***
## size:V1 -0.0022883 0.0027751 -0.825 0.40962
## size:V2 0.0053234 0.0027761 1.918 0.05519 .
## size:V3 -0.0480828 0.0027752 -17.326 < 2e-16 ***
## size:V4 -0.0661479 0.0027745 -23.842 < 2e-16 ***
## seed:V1 -0.0032970 0.0027751 -1.188 0.23483
## seed:V2 0.0088427 0.0027761 3.185 0.00145 **
## seed:V3 -0.0032614 0.0027752 -1.175 0.23993
## seed:V4 -0.0073291 0.0027745 -2.642 0.00826 **
## V1:V2 0.0017700 0.0026720 0.662 0.50769
## V1:V3 0.0024471 0.0026901 0.910 0.36302
## V1:V4 -0.0023670 0.0027022 -0.876 0.38108
## V2:V3 -0.0028374 0.0026868 -1.056 0.29096
## V2:V4 -0.0022735 0.0026458 -0.859 0.39020
## V3:V4 -0.0438039 0.0026673 -16.422 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3306 on 14978 degrees of freedom
## Multiple R-squared: 0.8909, Adjusted R-squared: 0.8907
## F-statistic: 5822 on 21 and 14978 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = full.model.1, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.6822 -0.2761 0.0414 0.2196 6.1798
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0231042 0.0028503 8.106 5.63e-16 ***
## size 0.8535617 0.0030595 278.992 < 2e-16 ***
## seed 0.0284813 0.0032661 8.720 < 2e-16 ***
## V1 -0.0589125 0.0026999 -21.820 < 2e-16 ***
## V2 -0.0508927 0.0027012 -18.841 < 2e-16 ***
## V3 -0.3839776 0.0026994 -142.248 < 2e-16 ***
## V4 -0.2246853 0.0026998 -83.223 < 2e-16 ***
## size:seed 0.1036888 0.0039822 26.038 < 2e-16 ***
## size:V1 -0.0007503 0.0027722 -0.271 0.786658
## size:V2 0.0010226 0.0027732 0.369 0.712321
## size:V3 -0.0522021 0.0027723 -18.830 < 2e-16 ***
## size:V4 -0.0588215 0.0027715 -21.223 < 2e-16 ***
## seed:V1 0.0182755 0.0027722 6.592 4.47e-11 ***
## seed:V2 0.0056371 0.0027732 2.033 0.042098 *
## seed:V3 0.0007225 0.0027723 0.261 0.794395
## seed:V4 -0.0015289 0.0027715 -0.552 0.581204
## V1:V2 0.0090777 0.0026691 3.401 0.000673 ***
## V1:V3 0.0099382 0.0026873 3.698 0.000218 ***
## V1:V4 -0.0108288 0.0026993 -4.012 6.06e-05 ***
## V2:V3 0.0004178 0.0026840 0.156 0.876300
## V2:V4 0.0047573 0.0026430 1.800 0.071892 .
## V3:V4 -0.0301194 0.0026645 -11.304 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3302 on 14978 degrees of freedom
## Multiple R-squared: 0.8911, Adjusted R-squared: 0.8909
## F-statistic: 5836 on 21 and 14978 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = full.model.1, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.8993 -0.2716 -0.0033 0.2265 10.6228
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.017467 0.003512 4.973 6.66e-07 ***
## size 0.785233 0.003770 208.282 < 2e-16 ***
## seed 0.037066 0.004025 9.210 < 2e-16 ***
## V1 -0.063573 0.003327 -19.108 < 2e-16 ***
## V2 -0.043986 0.003329 -13.215 < 2e-16 ***
## V3 -0.438340 0.003326 -131.779 < 2e-16 ***
## V4 -0.229977 0.003327 -69.128 < 2e-16 ***
## size:seed 0.079560 0.004907 16.213 < 2e-16 ***
## size:V1 0.003807 0.003416 1.114 0.265115
## size:V2 0.001446 0.003417 0.423 0.672287
## size:V3 -0.049665 0.003416 -14.538 < 2e-16 ***
## size:V4 -0.062563 0.003415 -18.319 < 2e-16 ***
## seed:V1 0.021395 0.003416 6.263 3.88e-10 ***
## seed:V2 0.007564 0.003417 2.213 0.026888 *
## seed:V3 -0.002231 0.003416 -0.653 0.513775
## seed:V4 -0.009726 0.003415 -2.848 0.004409 **
## V1:V2 0.006568 0.003289 1.997 0.045861 *
## V1:V3 0.012083 0.003311 3.649 0.000264 ***
## V1:V4 -0.020166 0.003326 -6.063 1.37e-09 ***
## V2:V3 0.001361 0.003307 0.411 0.680761
## V2:V4 0.007897 0.003257 2.425 0.015335 *
## V3:V4 -0.048814 0.003283 -14.867 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.407 on 14978 degrees of freedom
## Multiple R-squared: 0.8346, Adjusted R-squared: 0.8344
## F-statistic: 3600 on 21 and 14978 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = full.model.1, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.2815 -0.1040 0.0155 0.0784 23.9920
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.006406 0.008485 0.755 0.450311
## size -0.038709 0.009108 -4.250 2.15e-05 ***
## seed -0.035347 0.009723 -3.635 0.000279 ***
## V1 -0.042922 0.008038 -5.340 9.42e-08 ***
## V2 -0.057785 0.008041 -7.186 6.99e-13 ***
## V3 -0.028207 0.008036 -3.510 0.000449 ***
## V4 0.028821 0.008037 3.586 0.000337 ***
## size:seed 0.036438 0.011855 3.074 0.002118 **
## size:V1 0.051580 0.008253 6.250 4.21e-10 ***
## size:V2 0.069408 0.008256 8.407 < 2e-16 ***
## size:V3 0.031685 0.008253 3.839 0.000124 ***
## size:V4 -0.038284 0.008251 -4.640 3.51e-06 ***
## seed:V1 0.051595 0.008253 6.252 4.17e-10 ***
## seed:V2 0.070212 0.008256 8.505 < 2e-16 ***
## seed:V3 0.032368 0.008253 3.922 8.82e-05 ***
## seed:V4 -0.040215 0.008251 -4.874 1.10e-06 ***
## V1:V2 0.052892 0.007946 6.656 2.90e-11 ***
## V1:V3 0.029522 0.008000 3.690 0.000225 ***
## V1:V4 -0.015340 0.008036 -1.909 0.056295 .
## V2:V3 0.031619 0.007990 3.957 7.62e-05 ***
## V2:V4 -0.036781 0.007868 -4.675 2.97e-06 ***
## V3:V4 -0.026664 0.007932 -3.361 0.000777 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9831 on 14978 degrees of freedom
## Multiple R-squared: 0.03477, Adjusted R-squared: 0.03342
## F-statistic: 25.7 on 21 and 14978 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = full.model.1, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.2215 -0.3801 0.0192 0.2465 7.8683
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.024478 0.006313 3.878 0.000106 ***
## size -0.267113 0.006776 -39.421 < 2e-16 ***
## seed -0.310234 0.007234 -42.888 < 2e-16 ***
## V1 -0.271191 0.005980 -45.353 < 2e-16 ***
## V2 -0.223520 0.005982 -37.363 < 2e-16 ***
## V3 -0.063553 0.005978 -10.630 < 2e-16 ***
## V4 0.034944 0.005979 5.844 5.20e-09 ***
## size:seed 0.117958 0.008820 13.375 < 2e-16 ***
## size:V1 0.197536 0.006140 32.174 < 2e-16 ***
## size:V2 0.167890 0.006142 27.335 < 2e-16 ***
## size:V3 0.047594 0.006140 7.752 9.65e-15 ***
## size:V4 -0.024199 0.006138 -3.942 8.10e-05 ***
## seed:V1 0.256282 0.006140 41.742 < 2e-16 ***
## seed:V2 0.204824 0.006142 33.349 < 2e-16 ***
## seed:V3 0.056305 0.006140 9.170 < 2e-16 ***
## seed:V4 -0.028917 0.006138 -4.711 2.49e-06 ***
## V1:V2 0.083143 0.005911 14.065 < 2e-16 ***
## V1:V3 0.038400 0.005952 6.452 1.14e-10 ***
## V1:V4 -0.010799 0.005978 -1.806 0.070890 .
## V2:V3 0.025003 0.005944 4.206 2.61e-05 ***
## V2:V4 -0.021236 0.005854 -3.628 0.000287 ***
## V3:V4 -0.007430 0.005901 -1.259 0.208016
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7314 on 14978 degrees of freedom
## Multiple R-squared: 0.4658, Adjusted R-squared: 0.465
## F-statistic: 621.9 on 21 and 14978 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = full.model.1, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.2815 -0.1040 0.0155 0.0784 23.9920
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.006406 0.008485 0.755 0.450311
## size -0.038709 0.009108 -4.250 2.15e-05 ***
## seed -0.035347 0.009723 -3.635 0.000279 ***
## V1 -0.042922 0.008038 -5.340 9.42e-08 ***
## V2 -0.057785 0.008041 -7.186 6.99e-13 ***
## V3 -0.028207 0.008036 -3.510 0.000449 ***
## V4 0.028821 0.008037 3.586 0.000337 ***
## size:seed 0.036438 0.011855 3.074 0.002118 **
## size:V1 0.051580 0.008253 6.250 4.21e-10 ***
## size:V2 0.069408 0.008256 8.407 < 2e-16 ***
## size:V3 0.031685 0.008253 3.839 0.000124 ***
## size:V4 -0.038284 0.008251 -4.640 3.51e-06 ***
## seed:V1 0.051595 0.008253 6.252 4.17e-10 ***
## seed:V2 0.070212 0.008256 8.505 < 2e-16 ***
## seed:V3 0.032368 0.008253 3.922 8.82e-05 ***
## seed:V4 -0.040215 0.008251 -4.874 1.10e-06 ***
## V1:V2 0.052892 0.007946 6.656 2.90e-11 ***
## V1:V3 0.029522 0.008000 3.690 0.000225 ***
## V1:V4 -0.015340 0.008036 -1.909 0.056295 .
## V2:V3 0.031619 0.007990 3.957 7.62e-05 ***
## V2:V4 -0.036781 0.007868 -4.675 2.97e-06 ***
## V3:V4 -0.026664 0.007932 -3.361 0.000777 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9831 on 14978 degrees of freedom
## Multiple R-squared: 0.03477, Adjusted R-squared: 0.03342
## F-statistic: 25.7 on 21 and 14978 DF, p-value: < 2.2e-16