Sensitivity Results for Duration of Infection

Note: For base and Var 1 models, I define duration of infection as the time any animal is infectious. For Var2 models, I define duration of infection as the time any animal is either in the C or I stage.

Histograms: all parameters together

Baseruns

Variation 1: (duration I only)

Variation 2 blood: (duration I or C )

Variation 2 nasal: (duration I or C )

Variation 2 probang: (duration I or C)

Scatterplots for herdsizes of 10000 head and infection seeded with 100 head

Baseruns Density Dependent

Baseruns Frequency Dependent

Var 1 DD

Var 1 FD

Var 2b DD

Var 2b FD

Var 2n DD

Var 2n FD

Var 2o DD

Var 2o FD

Clay’s sensitivity method

For report, we should put the axes on the same scale and add some threashold where the coefficeint is biologically relevant.

Dataset

Base run DD

## 
## Call:
## lm(formula = full.model.1, data = df)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.64201 -0.21249  0.00259  0.16880  1.51072 
## 
## Coefficients:
##               Estimate Std. Error  t value Pr(>|t|)    
## (Intercept)  1.834e-02  2.364e-03    7.758 9.21e-15 ***
## size         6.661e-01  2.540e-03  262.226  < 2e-16 ***
## seed         2.071e-02  2.712e-03    7.636 2.37e-14 ***
## V1          -5.112e-03  2.239e-03   -2.283   0.0225 *  
## V2          -5.792e-01  2.239e-03 -258.656  < 2e-16 ***
## V3          -3.894e-01  2.239e-03 -173.903  < 2e-16 ***
## size:seed    7.717e-02  3.306e-03   23.341  < 2e-16 ***
## size:V1      4.013e-04  2.301e-03    0.174   0.8615    
## size:V2     -1.573e-01  2.301e-03  -68.384  < 2e-16 ***
## size:V3     -2.020e-03  2.301e-03   -0.878   0.3799    
## seed:V1     -7.068e-05  2.301e-03   -0.031   0.9755    
## seed:V2     -1.942e-03  2.301e-03   -0.844   0.3987    
## seed:V3      6.264e-04  2.301e-03    0.272   0.7854    
## V1:V2       -3.715e-04  2.220e-03   -0.167   0.8671    
## V1:V3        2.108e-03  2.231e-03    0.945   0.3447    
## V2:V3        4.709e-02  2.230e-03   21.118  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2742 on 14984 degrees of freedom
## Multiple R-squared:  0.9249, Adjusted R-squared:  0.9248 
## F-statistic: 1.23e+04 on 15 and 14984 DF,  p-value: < 2.2e-16

## 
## Call:
## lm(formula = full.model.1, data = df)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.77009 -0.19945 -0.00964  0.17697  1.63884 
## 
## Coefficients:
##               Estimate Std. Error  t value Pr(>|t|)    
## (Intercept)  0.0152575  0.0024604    6.201 5.75e-10 ***
## size         0.5871473  0.0026435  222.113  < 2e-16 ***
## seed         0.0139518  0.0028220    4.944 7.74e-07 ***
## V1          -0.0044044  0.0023306   -1.890 0.058799 .  
## V2          -0.6330918  0.0023303 -271.678  < 2e-16 ***
## V3          -0.4203738  0.0023305 -180.377  < 2e-16 ***
## size:seed    0.0638179  0.0034407   18.548  < 2e-16 ***
## size:V1      0.0004084  0.0023941    0.171 0.864534    
## size:V2     -0.1411391  0.0023942  -58.951  < 2e-16 ***
## size:V3      0.0010652  0.0023942    0.445 0.656406    
## seed:V1      0.0004855  0.0023941    0.203 0.839299    
## seed:V2      0.0023273  0.0023942    0.972 0.331023    
## seed:V3     -0.0086036  0.0023942   -3.593 0.000327 ***
## V1:V2       -0.0012038  0.0023107   -0.521 0.602402    
## V1:V3        0.0002124  0.0023220    0.091 0.927119    
## V2:V3        0.0475908  0.0023206   20.508  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2853 on 14984 degrees of freedom
## Multiple R-squared:  0.9187, Adjusted R-squared:  0.9186 
## F-statistic: 1.128e+04 on 15 and 14984 DF,  p-value: < 2.2e-16

Base run FD

## 
## Call:
## lm(formula = full.model.1, data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.5820 -0.2260 -0.0238  0.1632  8.8999 
## 
## Coefficients:
##               Estimate Std. Error  t value Pr(>|t|)    
## (Intercept)  0.0091192  0.0041576    2.193  0.02830 *  
## size         0.6112822  0.0044670  136.845  < 2e-16 ***
## seed        -0.0197660  0.0047687   -4.145 3.42e-05 ***
## V1          -0.1648596  0.0039382  -41.861  < 2e-16 ***
## V2          -0.4993635  0.0039378 -126.813  < 2e-16 ***
## V3          -0.3211822  0.0039382  -81.556  < 2e-16 ***
## size:seed    0.0373123  0.0058142    6.417 1.43e-10 ***
## size:V1     -0.0625920  0.0040456  -15.472  < 2e-16 ***
## size:V2     -0.1343139  0.0040457  -33.199  < 2e-16 ***
## size:V3      0.0120380  0.0040458    2.975  0.00293 ** 
## seed:V1      0.0126363  0.0040456    3.124  0.00179 ** 
## seed:V2     -0.0012588  0.0040457   -0.311  0.75569    
## seed:V3      0.0068420  0.0040458    1.691  0.09083 .  
## V1:V2        0.0004039  0.0039047    0.103  0.91762    
## V1:V3        0.0095695  0.0039237    2.439  0.01474 *  
## V2:V3        0.0356709  0.0039215    9.096  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4822 on 14984 degrees of freedom
## Multiple R-squared:  0.7677, Adjusted R-squared:  0.7675 
## F-statistic:  3302 on 15 and 14984 DF,  p-value: < 2.2e-16

## 
## Call:
## lm(formula = full.model.1, data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.4368 -0.2755 -0.0741  0.1499  8.2290 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.004647   0.005347   0.869  0.38477    
## size         0.473832   0.005745  82.480  < 2e-16 ***
## seed        -0.049140   0.006133  -8.012 1.21e-15 ***
## V1          -0.254528   0.005065 -50.254  < 2e-16 ***
## V2          -0.467662   0.005064 -92.346  < 2e-16 ***
## V3          -0.293129   0.005065 -57.877  < 2e-16 ***
## size:seed    0.020464   0.007477   2.737  0.00621 ** 
## size:V1     -0.054528   0.005203 -10.480  < 2e-16 ***
## size:V2     -0.106690   0.005203 -20.505  < 2e-16 ***
## size:V3      0.017034   0.005203   3.274  0.00106 ** 
## seed:V1      0.044763   0.005203   8.604  < 2e-16 ***
## seed:V2     -0.002016   0.005203  -0.387  0.69845    
## seed:V3     -0.005505   0.005203  -1.058  0.29003    
## V1:V2       -0.026255   0.005022  -5.228 1.73e-07 ***
## V1:V3       -0.014659   0.005046  -2.905  0.00368 ** 
## V2:V3        0.022045   0.005043   4.371 1.24e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6201 on 14984 degrees of freedom
## Multiple R-squared:  0.6158, Adjusted R-squared:  0.6155 
## F-statistic:  1601 on 15 and 14984 DF,  p-value: < 2.2e-16

Var1 DD

## 
## Call:
## lm(formula = full.model.1, data = df)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.67967 -0.21945  0.00226  0.17656  1.61735 
## 
## Coefficients:
##               Estimate Std. Error  t value Pr(>|t|)    
## (Intercept)  0.0173899  0.0024604    7.068 1.64e-12 ***
## size         0.6808540  0.0026421  257.697  < 2e-16 ***
## seed         0.0240075  0.0028205    8.512  < 2e-16 ***
## V1          -0.0017472  0.0023323   -0.749   0.4538    
## V2          -0.5166783  0.0023315 -221.608  < 2e-16 ***
## V3          -0.0672410  0.0023298  -28.861  < 2e-16 ***
## V4          -0.4374955  0.0023306 -187.720  < 2e-16 ***
## size:seed    0.0755108  0.0034389   21.958  < 2e-16 ***
## size:V1      0.0010574  0.0023938    0.442   0.6587    
## size:V2     -0.1328319  0.0023943  -55.479  < 2e-16 ***
## size:V3     -0.0022827  0.0023933   -0.954   0.3402    
## size:V4     -0.0044436  0.0023928   -1.857   0.0633 .  
## seed:V1      0.0005934  0.0023938    0.248   0.8042    
## seed:V2     -0.0042939  0.0023943   -1.793   0.0729 .  
## seed:V3     -0.0033937  0.0023933   -1.418   0.1562    
## seed:V4      0.0010182  0.0023928    0.426   0.6705    
## V1:V2        0.0048711  0.0023357    2.085   0.0370 *  
## V1:V3       -0.0045766  0.0023076   -1.983   0.0474 *  
## V1:V4       -0.0008721  0.0023121   -0.377   0.7060    
## V2:V3        0.0006890  0.0023005    0.299   0.7646    
## V2:V4        0.0484986  0.0022945   21.136  < 2e-16 ***
## V3:V4        0.0133119  0.0023051    5.775 7.85e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2852 on 14978 degrees of freedom
## Multiple R-squared:  0.9188, Adjusted R-squared:  0.9187 
## F-statistic:  8068 on 21 and 14978 DF,  p-value: < 2.2e-16

## 
## Call:
## lm(formula = full.model.1, data = df)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.83399 -0.21670 -0.01237  0.18840  1.54594 
## 
## Coefficients:
##              Estimate Std. Error  t value Pr(>|t|)    
## (Intercept)  0.016697   0.002645    6.314 2.80e-10 ***
## size         0.596445   0.002840  210.028  < 2e-16 ***
## seed        -0.009811   0.003032   -3.236  0.00121 ** 
## V1          -0.001165   0.002507   -0.465  0.64225    
## V2          -0.634977   0.002506 -253.381  < 2e-16 ***
## V3          -0.206584   0.002504  -82.495  < 2e-16 ***
## V4          -0.320462   0.002505 -127.928  < 2e-16 ***
## size:seed    0.068001   0.003696   18.397  < 2e-16 ***
## size:V1      0.002833   0.002573    1.101  0.27081    
## size:V2     -0.118970   0.002573  -46.229  < 2e-16 ***
## size:V3      0.004655   0.002572    1.810  0.07038 .  
## size:V4     -0.004548   0.002572   -1.768  0.07700 .  
## seed:V1     -0.001198   0.002573   -0.466  0.64154    
## seed:V2     -0.004691   0.002573   -1.823  0.06834 .  
## seed:V3      0.007434   0.002572    2.890  0.00386 ** 
## seed:V4     -0.007449   0.002572   -2.896  0.00378 ** 
## V1:V2        0.004200   0.002511    1.673  0.09435 .  
## V1:V3       -0.004967   0.002480   -2.002  0.04525 *  
## V1:V4       -0.003604   0.002485   -1.450  0.14706    
## V2:V3        0.025155   0.002473   10.173  < 2e-16 ***
## V2:V4        0.019458   0.002466    7.890 3.24e-15 ***
## V3:V4       -0.045615   0.002478  -18.410  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3065 on 14978 degrees of freedom
## Multiple R-squared:  0.9062, Adjusted R-squared:  0.906 
## F-statistic:  6888 on 21 and 14978 DF,  p-value: < 2.2e-16

## 
## Call:
## lm(formula = full.model.1, data = df)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.80982 -0.21621 -0.04308  0.14569  2.79259 
## 
## Coefficients:
##               Estimate Std. Error  t value Pr(>|t|)    
## (Intercept) -0.0009018  0.0031331   -0.288   0.7735    
## size         0.0019351  0.0033645    0.575   0.5652    
## seed        -0.0019836  0.0035918   -0.552   0.5808    
## V1           0.0001062  0.0029701    0.036   0.9715    
## V2          -0.3311349  0.0029690 -111.531  < 2e-16 ***
## V3           0.6064725  0.0029668  204.418  < 2e-16 ***
## V4          -0.6080937  0.0029678 -204.896  < 2e-16 ***
## size:seed    0.0017106  0.0043792    0.391   0.6961    
## size:V1      0.0024104  0.0030483    0.791   0.4291    
## size:V2      0.0066915  0.0030489    2.195   0.0282 *  
## size:V3     -0.0013421  0.0030477   -0.440   0.6597    
## size:V4     -0.0131665  0.0030471   -4.321 1.56e-05 ***
## seed:V1      0.0006734  0.0030483    0.221   0.8252    
## seed:V2      0.0026772  0.0030489    0.878   0.3799    
## seed:V3     -0.0003043  0.0030477   -0.100   0.9205    
## seed:V4      0.0004371  0.0030471    0.143   0.8859    
## V1:V2        0.0054658  0.0029743    1.838   0.0661 .  
## V1:V3       -0.0043692  0.0029385   -1.487   0.1371    
## V1:V4       -0.0036457  0.0029443   -1.238   0.2157    
## V2:V3       -0.1111495  0.0029295  -37.942  < 2e-16 ***
## V2:V4        0.0323967  0.0029219   11.087  < 2e-16 ***
## V3:V4       -0.0941938  0.0029354  -32.089  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3632 on 14978 degrees of freedom
## Multiple R-squared:  0.8683, Adjusted R-squared:  0.8681 
## F-statistic:  4702 on 21 and 14978 DF,  p-value: < 2.2e-16

Var1 FD

## 
## Call:
## lm(formula = full.model.1, data = df)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.45609 -0.26920  0.03059  0.22718  0.41074 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  5.657e-03  2.509e-03   2.255   0.0242 *  
## size         9.370e-01  2.694e-03 347.794  < 2e-16 ***
## seed        -8.878e-02  2.876e-03 -30.868  < 2e-16 ***
## V1           4.599e-16  2.378e-03   0.000   1.0000    
## V2           2.014e-16  2.377e-03   0.000   1.0000    
## V3           2.743e-17  2.376e-03   0.000   1.0000    
## V4           2.308e-16  2.376e-03   0.000   1.0000    
## size:seed    2.464e-02  3.507e-03   7.028 2.19e-12 ***
## size:V1      8.178e-16  2.441e-03   0.000   1.0000    
## size:V2      3.985e-16  2.441e-03   0.000   1.0000    
## size:V3     -2.224e-17  2.440e-03   0.000   1.0000    
## size:V4      3.510e-16  2.440e-03   0.000   1.0000    
## seed:V1      2.632e-16  2.441e-03   0.000   1.0000    
## seed:V2      1.134e-16  2.441e-03   0.000   1.0000    
## seed:V3     -1.710e-17  2.440e-03   0.000   1.0000    
## seed:V4      1.388e-16  2.440e-03   0.000   1.0000    
## V1:V2        2.228e-16  2.382e-03   0.000   1.0000    
## V1:V3        9.890e-17  2.353e-03   0.000   1.0000    
## V1:V4        6.839e-17  2.358e-03   0.000   1.0000    
## V2:V3        7.277e-17  2.346e-03   0.000   1.0000    
## V2:V4        2.450e-16  2.340e-03   0.000   1.0000    
## V3:V4        1.750e-17  2.350e-03   0.000   1.0000    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2908 on 14978 degrees of freedom
## Multiple R-squared:  0.9156, Adjusted R-squared:  0.9154 
## F-statistic:  7733 on 21 and 14978 DF,  p-value: < 2.2e-16

## 
## Call:
## lm(formula = full.model.1, data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.7048 -0.2283  0.0365  0.1422  0.7353 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -1.575e-02  2.791e-03  -5.644 1.69e-08 ***
## size         8.452e-01  2.997e-03 282.022  < 2e-16 ***
## seed        -2.554e-01  3.199e-03 -79.818  < 2e-16 ***
## V1           4.030e-15  2.646e-03   0.000        1    
## V2          -6.191e-17  2.645e-03   0.000        1    
## V3           7.952e-16  2.643e-03   0.000        1    
## V4           3.097e-15  2.644e-03   0.000        1    
## size:seed   -6.862e-02  3.901e-03 -17.591  < 2e-16 ***
## size:V1      7.457e-15  2.715e-03   0.000        1    
## size:V2      1.424e-18  2.716e-03   0.000        1    
## size:V3      1.323e-15  2.715e-03   0.000        1    
## size:V4      5.717e-15  2.714e-03   0.000        1    
## seed:V1      2.249e-15  2.715e-03   0.000        1    
## seed:V2     -2.340e-17  2.716e-03   0.000        1    
## seed:V3      4.103e-16  2.715e-03   0.000        1    
## seed:V4      1.698e-15  2.714e-03   0.000        1    
## V1:V2        5.672e-16  2.649e-03   0.000        1    
## V1:V3       -6.984e-16  2.617e-03   0.000        1    
## V1:V4       -3.626e-15  2.623e-03   0.000        1    
## V2:V3        1.666e-16  2.609e-03   0.000        1    
## V2:V4        6.167e-16  2.603e-03   0.000        1    
## V3:V4       -8.727e-16  2.615e-03   0.000        1    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3235 on 14978 degrees of freedom
## Multiple R-squared:  0.8955, Adjusted R-squared:  0.8954 
## F-statistic:  6112 on 21 and 14978 DF,  p-value: < 2.2e-16

Var2b DD

## 
## Call:
## lm(formula = full.model.1, data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.7896 -0.2404 -0.0013  0.2062  1.2407 
## 
## Coefficients:
##               Estimate Std. Error  t value Pr(>|t|)    
## (Intercept)  0.0191786  0.0027516    6.970 3.30e-12 ***
## size         0.7216257  0.0029536  244.322  < 2e-16 ***
## seed         0.0164280  0.0031531    5.210 1.91e-07 ***
## V1          -0.0059435  0.0026065   -2.280  0.02261 *  
## V2          -0.6057970  0.0026077 -232.313  < 2e-16 ***
## V3          -0.1654399  0.0026060  -63.485  < 2e-16 ***
## V4          -0.1138885  0.0026064  -43.696  < 2e-16 ***
## size:seed    0.0897467  0.0038444   23.345  < 2e-16 ***
## size:V1      0.0009153  0.0026763    0.342  0.73236    
## size:V2     -0.0811626  0.0026772  -30.316  < 2e-16 ***
## size:V3     -0.0120565  0.0026763   -4.505 6.69e-06 ***
## size:V4     -0.0231301  0.0026756   -8.645  < 2e-16 ***
## seed:V1      0.0005598  0.0026763    0.209  0.83433    
## seed:V2     -0.0005234  0.0026772   -0.195  0.84502    
## seed:V3      0.0004307  0.0026763    0.161  0.87216    
## seed:V4     -0.0016649  0.0026756   -0.622  0.53378    
## V1:V2        0.0063878  0.0025768    2.479  0.01319 *  
## V1:V3       -0.0002714  0.0025943   -0.105  0.91668    
## V1:V4       -0.0005978  0.0026059   -0.229  0.81855    
## V2:V3       -0.0283731  0.0025911  -10.950  < 2e-16 ***
## V2:V4       -0.0219895  0.0025516   -8.618  < 2e-16 ***
## V3:V4       -0.0081797  0.0025723   -3.180  0.00148 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3188 on 14978 degrees of freedom
## Multiple R-squared:  0.8985, Adjusted R-squared:  0.8984 
## F-statistic:  6314 on 21 and 14978 DF,  p-value: < 2.2e-16

## 
## Call:
## lm(formula = full.model.1, data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.0802 -0.2652 -0.0209  0.2359  1.6378 
## 
## Coefficients:
##               Estimate Std. Error  t value Pr(>|t|)    
## (Intercept)  1.471e-02  3.206e-03    4.588 4.50e-06 ***
## size         5.981e-01  3.442e-03  173.794  < 2e-16 ***
## seed         1.019e-02  3.674e-03    2.773  0.00557 ** 
## V1          -4.749e-03  3.037e-03   -1.564  0.11792    
## V2          -6.975e-01  3.039e-03 -229.558  < 2e-16 ***
## V3          -1.588e-01  3.037e-03  -52.284  < 2e-16 ***
## V4          -1.034e-01  3.037e-03  -34.052  < 2e-16 ***
## size:seed    7.308e-02  4.480e-03   16.314  < 2e-16 ***
## size:V1     -1.404e-03  3.119e-03   -0.450  0.65267    
## size:V2     -8.090e-02  3.120e-03  -25.932  < 2e-16 ***
## size:V3     -1.168e-02  3.119e-03   -3.747  0.00018 ***
## size:V4     -1.787e-02  3.118e-03   -5.731 1.02e-08 ***
## seed:V1     -2.494e-03  3.119e-03   -0.800  0.42382    
## seed:V2     -3.474e-03  3.120e-03   -1.114  0.26550    
## seed:V3     -3.475e-03  3.119e-03   -1.114  0.26523    
## seed:V4     -1.033e-03  3.118e-03   -0.331  0.74045    
## V1:V2        8.530e-03  3.003e-03    2.841  0.00451 ** 
## V1:V3        2.488e-05  3.023e-03    0.008  0.99343    
## V1:V4       -1.706e-03  3.037e-03   -0.562  0.57431    
## V2:V3       -4.322e-02  3.019e-03  -14.315  < 2e-16 ***
## V2:V4       -3.339e-02  2.973e-03  -11.230  < 2e-16 ***
## V3:V4       -8.596e-03  2.997e-03   -2.868  0.00414 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3715 on 14978 degrees of freedom
## Multiple R-squared:  0.8622, Adjusted R-squared:  0.862 
## F-statistic:  4462 on 21 and 14978 DF,  p-value: < 2.2e-16

Var2b FD

## 
## Call:
## lm(formula = full.model.1, data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.6569 -0.2470 -0.0350  0.1687 19.0973 
## 
## Coefficients:
##              Estimate Std. Error  t value Pr(>|t|)    
## (Intercept)  0.009552   0.004527    2.110  0.03489 *  
## size         0.611848   0.004859  125.910  < 2e-16 ***
## seed        -0.049877   0.005188   -9.615  < 2e-16 ***
## V1          -0.165255   0.004288  -38.536  < 2e-16 ***
## V2          -0.526479   0.004290 -122.714  < 2e-16 ***
## V3          -0.152415   0.004287  -35.549  < 2e-16 ***
## V4          -0.083966   0.004288  -19.581  < 2e-16 ***
## size:seed    0.049319   0.006325    7.797 6.73e-15 ***
## size:V1     -0.013583   0.004403   -3.085  0.00204 ** 
## size:V2     -0.071204   0.004405  -16.165  < 2e-16 ***
## size:V3     -0.014116   0.004403   -3.206  0.00135 ** 
## size:V4     -0.012579   0.004402   -2.858  0.00428 ** 
## seed:V1      0.043936   0.004403    9.978  < 2e-16 ***
## seed:V2      0.003905   0.004405    0.887  0.37533    
## seed:V3      0.001930   0.004403    0.438  0.66118    
## seed:V4     -0.001822   0.004402   -0.414  0.67901    
## V1:V2        0.032253   0.004239    7.608 2.95e-14 ***
## V1:V3        0.025981   0.004268    6.087 1.18e-09 ***
## V1:V4       -0.019633   0.004287   -4.579 4.71e-06 ***
## V2:V3       -0.009568   0.004263   -2.244  0.02482 *  
## V2:V4       -0.004597   0.004198   -1.095  0.27353    
## V3:V4       -0.021985   0.004232   -5.195 2.08e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5245 on 14978 degrees of freedom
## Multiple R-squared:  0.7252, Adjusted R-squared:  0.7249 
## F-statistic:  1883 on 21 and 14978 DF,  p-value: < 2.2e-16

## 
## Call:
## lm(formula = full.model.1, data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.9872 -0.2663 -0.0509  0.1739 15.1995 
## 
## Coefficients:
##               Estimate Std. Error  t value Pr(>|t|)    
## (Intercept)  0.0073116  0.0056469    1.295  0.19541    
## size         0.4496813  0.0060613   74.188  < 2e-16 ***
## seed        -0.0528226  0.0064708   -8.163 3.52e-16 ***
## V1          -0.1653061  0.0053490  -30.904  < 2e-16 ***
## V2          -0.5491412  0.0053515 -102.615  < 2e-16 ***
## V3          -0.1380156  0.0053479  -25.807  < 2e-16 ***
## V4          -0.0591625  0.0053488  -11.061  < 2e-16 ***
## size:seed    0.0403288  0.0078895    5.112 3.23e-07 ***
## size:V1      0.0009456  0.0054922    0.172  0.86331    
## size:V2     -0.0592175  0.0054942  -10.778  < 2e-16 ***
## size:V3     -0.0084604  0.0054924   -1.540  0.12348    
## size:V4     -0.0116665  0.0054909   -2.125  0.03363 *  
## seed:V1      0.0463306  0.0054922    8.436  < 2e-16 ***
## seed:V2      0.0053076  0.0054942    0.966  0.33404    
## seed:V3      0.0034996  0.0054924    0.637  0.52403    
## seed:V4     -0.0033387  0.0054909   -0.608  0.54317    
## V1:V2        0.0295239  0.0052881    5.583 2.40e-08 ***
## V1:V3        0.0352096  0.0053240    6.613 3.88e-11 ***
## V1:V4       -0.0343795  0.0053479   -6.429 1.33e-10 ***
## V2:V3       -0.0166293  0.0053174   -3.127  0.00177 ** 
## V2:V4       -0.0022352  0.0052364   -0.427  0.66949    
## V3:V4       -0.0299385  0.0052789   -5.671 1.44e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6543 on 14978 degrees of freedom
## Multiple R-squared:  0.5725, Adjusted R-squared:  0.5719 
## F-statistic: 955.2 on 21 and 14978 DF,  p-value: < 2.2e-16

Var2n DD

## 
## Call:
## lm(formula = full.model.1, data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.7896 -0.2404 -0.0013  0.2062  1.2407 
## 
## Coefficients:
##               Estimate Std. Error  t value Pr(>|t|)    
## (Intercept)  0.0191786  0.0027516    6.970 3.30e-12 ***
## size         0.7216257  0.0029536  244.322  < 2e-16 ***
## seed         0.0164280  0.0031531    5.210 1.91e-07 ***
## V1          -0.0059435  0.0026065   -2.280  0.02261 *  
## V2          -0.6057970  0.0026077 -232.313  < 2e-16 ***
## V3          -0.1654399  0.0026060  -63.485  < 2e-16 ***
## V4          -0.1138885  0.0026064  -43.696  < 2e-16 ***
## size:seed    0.0897467  0.0038444   23.345  < 2e-16 ***
## size:V1      0.0009153  0.0026763    0.342  0.73236    
## size:V2     -0.0811626  0.0026772  -30.316  < 2e-16 ***
## size:V3     -0.0120565  0.0026763   -4.505 6.69e-06 ***
## size:V4     -0.0231301  0.0026756   -8.645  < 2e-16 ***
## seed:V1      0.0005598  0.0026763    0.209  0.83433    
## seed:V2     -0.0005234  0.0026772   -0.195  0.84502    
## seed:V3      0.0004307  0.0026763    0.161  0.87216    
## seed:V4     -0.0016649  0.0026756   -0.622  0.53378    
## V1:V2        0.0063878  0.0025768    2.479  0.01319 *  
## V1:V3       -0.0002714  0.0025943   -0.105  0.91668    
## V1:V4       -0.0005978  0.0026059   -0.229  0.81855    
## V2:V3       -0.0283731  0.0025911  -10.950  < 2e-16 ***
## V2:V4       -0.0219895  0.0025516   -8.618  < 2e-16 ***
## V3:V4       -0.0081797  0.0025723   -3.180  0.00148 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3188 on 14978 degrees of freedom
## Multiple R-squared:  0.8985, Adjusted R-squared:  0.8984 
## F-statistic:  6314 on 21 and 14978 DF,  p-value: < 2.2e-16

## 
## Call:
## lm(formula = full.model.1, data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.0802 -0.2652 -0.0209  0.2359  1.6378 
## 
## Coefficients:
##               Estimate Std. Error  t value Pr(>|t|)    
## (Intercept)  1.471e-02  3.206e-03    4.588 4.50e-06 ***
## size         5.981e-01  3.442e-03  173.794  < 2e-16 ***
## seed         1.019e-02  3.674e-03    2.773  0.00557 ** 
## V1          -4.749e-03  3.037e-03   -1.564  0.11792    
## V2          -6.975e-01  3.039e-03 -229.558  < 2e-16 ***
## V3          -1.588e-01  3.037e-03  -52.284  < 2e-16 ***
## V4          -1.034e-01  3.037e-03  -34.052  < 2e-16 ***
## size:seed    7.308e-02  4.480e-03   16.314  < 2e-16 ***
## size:V1     -1.404e-03  3.119e-03   -0.450  0.65267    
## size:V2     -8.090e-02  3.120e-03  -25.932  < 2e-16 ***
## size:V3     -1.168e-02  3.119e-03   -3.747  0.00018 ***
## size:V4     -1.787e-02  3.118e-03   -5.731 1.02e-08 ***
## seed:V1     -2.494e-03  3.119e-03   -0.800  0.42382    
## seed:V2     -3.474e-03  3.120e-03   -1.114  0.26550    
## seed:V3     -3.475e-03  3.119e-03   -1.114  0.26523    
## seed:V4     -1.033e-03  3.118e-03   -0.331  0.74045    
## V1:V2        8.530e-03  3.003e-03    2.841  0.00451 ** 
## V1:V3        2.488e-05  3.023e-03    0.008  0.99343    
## V1:V4       -1.706e-03  3.037e-03   -0.562  0.57431    
## V2:V3       -4.322e-02  3.019e-03  -14.315  < 2e-16 ***
## V2:V4       -3.339e-02  2.973e-03  -11.230  < 2e-16 ***
## V3:V4       -8.596e-03  2.997e-03   -2.868  0.00414 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3715 on 14978 degrees of freedom
## Multiple R-squared:  0.8622, Adjusted R-squared:  0.862 
## F-statistic:  4462 on 21 and 14978 DF,  p-value: < 2.2e-16

Var2n FD

## 
## Call:
## lm(formula = full.model.1, data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.6569 -0.2470 -0.0350  0.1687 19.0973 
## 
## Coefficients:
##              Estimate Std. Error  t value Pr(>|t|)    
## (Intercept)  0.009552   0.004527    2.110  0.03489 *  
## size         0.611848   0.004859  125.910  < 2e-16 ***
## seed        -0.049877   0.005188   -9.615  < 2e-16 ***
## V1          -0.165255   0.004288  -38.536  < 2e-16 ***
## V2          -0.526479   0.004290 -122.714  < 2e-16 ***
## V3          -0.152415   0.004287  -35.549  < 2e-16 ***
## V4          -0.083966   0.004288  -19.581  < 2e-16 ***
## size:seed    0.049319   0.006325    7.797 6.73e-15 ***
## size:V1     -0.013583   0.004403   -3.085  0.00204 ** 
## size:V2     -0.071204   0.004405  -16.165  < 2e-16 ***
## size:V3     -0.014116   0.004403   -3.206  0.00135 ** 
## size:V4     -0.012579   0.004402   -2.858  0.00428 ** 
## seed:V1      0.043936   0.004403    9.978  < 2e-16 ***
## seed:V2      0.003905   0.004405    0.887  0.37533    
## seed:V3      0.001930   0.004403    0.438  0.66118    
## seed:V4     -0.001822   0.004402   -0.414  0.67901    
## V1:V2        0.032253   0.004239    7.608 2.95e-14 ***
## V1:V3        0.025981   0.004268    6.087 1.18e-09 ***
## V1:V4       -0.019633   0.004287   -4.579 4.71e-06 ***
## V2:V3       -0.009568   0.004263   -2.244  0.02482 *  
## V2:V4       -0.004597   0.004198   -1.095  0.27353    
## V3:V4       -0.021985   0.004232   -5.195 2.08e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5245 on 14978 degrees of freedom
## Multiple R-squared:  0.7252, Adjusted R-squared:  0.7249 
## F-statistic:  1883 on 21 and 14978 DF,  p-value: < 2.2e-16

## 
## Call:
## lm(formula = full.model.1, data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.9872 -0.2663 -0.0509  0.1739 15.1995 
## 
## Coefficients:
##               Estimate Std. Error  t value Pr(>|t|)    
## (Intercept)  0.0073116  0.0056469    1.295  0.19541    
## size         0.4496813  0.0060613   74.188  < 2e-16 ***
## seed        -0.0528226  0.0064708   -8.163 3.52e-16 ***
## V1          -0.1653061  0.0053490  -30.904  < 2e-16 ***
## V2          -0.5491412  0.0053515 -102.615  < 2e-16 ***
## V3          -0.1380156  0.0053479  -25.807  < 2e-16 ***
## V4          -0.0591625  0.0053488  -11.061  < 2e-16 ***
## size:seed    0.0403288  0.0078895    5.112 3.23e-07 ***
## size:V1      0.0009456  0.0054922    0.172  0.86331    
## size:V2     -0.0592175  0.0054942  -10.778  < 2e-16 ***
## size:V3     -0.0084604  0.0054924   -1.540  0.12348    
## size:V4     -0.0116665  0.0054909   -2.125  0.03363 *  
## seed:V1      0.0463306  0.0054922    8.436  < 2e-16 ***
## seed:V2      0.0053076  0.0054942    0.966  0.33404    
## seed:V3      0.0034996  0.0054924    0.637  0.52403    
## seed:V4     -0.0033387  0.0054909   -0.608  0.54317    
## V1:V2        0.0295239  0.0052881    5.583 2.40e-08 ***
## V1:V3        0.0352096  0.0053240    6.613 3.88e-11 ***
## V1:V4       -0.0343795  0.0053479   -6.429 1.33e-10 ***
## V2:V3       -0.0166293  0.0053174   -3.127  0.00177 ** 
## V2:V4       -0.0022352  0.0052364   -0.427  0.66949    
## V3:V4       -0.0299385  0.0052789   -5.671 1.44e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6543 on 14978 degrees of freedom
## Multiple R-squared:  0.5725, Adjusted R-squared:  0.5719 
## F-statistic: 955.2 on 21 and 14978 DF,  p-value: < 2.2e-16

Var2o DD

## 
## Call:
## lm(formula = full.model.1, data = df)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.64792 -0.26891  0.05404  0.22697  0.81265 
## 
## Coefficients:
##               Estimate Std. Error  t value Pr(>|t|)    
## (Intercept)  2.605e-02  2.489e-03   10.464   <2e-16 ***
## size         8.745e-01  2.672e-03  327.267   <2e-16 ***
## seed         5.475e-02  2.853e-03   19.193   <2e-16 ***
## V1          -1.305e-03  2.358e-03   -0.553    0.580    
## V2          -4.024e-02  2.359e-03  -17.058   <2e-16 ***
## V3          -3.901e-01  2.358e-03 -165.466   <2e-16 ***
## V4          -2.365e-01  2.358e-03 -100.318   <2e-16 ***
## size:seed    1.161e-01  3.478e-03   33.379   <2e-16 ***
## size:V1      7.087e-06  2.421e-03    0.003    0.998    
## size:V2      1.709e-03  2.422e-03    0.706    0.480    
## size:V3     -5.500e-02  2.421e-03  -22.716   <2e-16 ***
## size:V4     -6.221e-02  2.421e-03  -25.701   <2e-16 ***
## seed:V1     -2.652e-04  2.421e-03   -0.110    0.913    
## seed:V2      3.607e-03  2.422e-03    1.489    0.136    
## seed:V3     -7.943e-04  2.421e-03   -0.328    0.743    
## seed:V4     -1.269e-03  2.421e-03   -0.524    0.600    
## V1:V2        3.431e-03  2.331e-03    1.472    0.141    
## V1:V3        1.042e-03  2.347e-03    0.444    0.657    
## V1:V4        3.709e-04  2.358e-03    0.157    0.875    
## V2:V3       -2.539e-03  2.344e-03   -1.083    0.279    
## V2:V4       -4.308e-04  2.308e-03   -0.187    0.852    
## V3:V4       -2.456e-02  2.327e-03  -10.551   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2884 on 14978 degrees of freedom
## Multiple R-squared:  0.9169, Adjusted R-squared:  0.9168 
## F-statistic:  7872 on 21 and 14978 DF,  p-value: < 2.2e-16

## 
## Call:
## lm(formula = full.model.1, data = df)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.92171 -0.26017  0.00719  0.23676  1.37169 
## 
## Coefficients:
##               Estimate Std. Error  t value Pr(>|t|)    
## (Intercept)  0.0201724  0.0028533    7.070 1.62e-12 ***
## size         0.8182892  0.0030627  267.180  < 2e-16 ***
## seed         0.0599909  0.0032696   18.348  < 2e-16 ***
## V1           0.0009132  0.0027028    0.338  0.73545    
## V2          -0.0403634  0.0027040  -14.927  < 2e-16 ***
## V3          -0.4527314  0.0027022 -167.540  < 2e-16 ***
## V4          -0.2517639  0.0027026  -93.154  < 2e-16 ***
## size:seed    0.0917989  0.0039864   23.028  < 2e-16 ***
## size:V1     -0.0022883  0.0027751   -0.825  0.40962    
## size:V2      0.0053234  0.0027761    1.918  0.05519 .  
## size:V3     -0.0480828  0.0027752  -17.326  < 2e-16 ***
## size:V4     -0.0661479  0.0027745  -23.842  < 2e-16 ***
## seed:V1     -0.0032970  0.0027751   -1.188  0.23483    
## seed:V2      0.0088427  0.0027761    3.185  0.00145 ** 
## seed:V3     -0.0032614  0.0027752   -1.175  0.23993    
## seed:V4     -0.0073291  0.0027745   -2.642  0.00826 ** 
## V1:V2        0.0017700  0.0026720    0.662  0.50769    
## V1:V3        0.0024471  0.0026901    0.910  0.36302    
## V1:V4       -0.0023670  0.0027022   -0.876  0.38108    
## V2:V3       -0.0028374  0.0026868   -1.056  0.29096    
## V2:V4       -0.0022735  0.0026458   -0.859  0.39020    
## V3:V4       -0.0438039  0.0026673  -16.422  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3306 on 14978 degrees of freedom
## Multiple R-squared:  0.8909, Adjusted R-squared:  0.8907 
## F-statistic:  5822 on 21 and 14978 DF,  p-value: < 2.2e-16

Var2o FD

## 
## Call:
## lm(formula = full.model.1, data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.6822 -0.2761  0.0414  0.2196  6.1798 
## 
## Coefficients:
##               Estimate Std. Error  t value Pr(>|t|)    
## (Intercept)  0.0231042  0.0028503    8.106 5.63e-16 ***
## size         0.8535617  0.0030595  278.992  < 2e-16 ***
## seed         0.0284813  0.0032661    8.720  < 2e-16 ***
## V1          -0.0589125  0.0026999  -21.820  < 2e-16 ***
## V2          -0.0508927  0.0027012  -18.841  < 2e-16 ***
## V3          -0.3839776  0.0026994 -142.248  < 2e-16 ***
## V4          -0.2246853  0.0026998  -83.223  < 2e-16 ***
## size:seed    0.1036888  0.0039822   26.038  < 2e-16 ***
## size:V1     -0.0007503  0.0027722   -0.271 0.786658    
## size:V2      0.0010226  0.0027732    0.369 0.712321    
## size:V3     -0.0522021  0.0027723  -18.830  < 2e-16 ***
## size:V4     -0.0588215  0.0027715  -21.223  < 2e-16 ***
## seed:V1      0.0182755  0.0027722    6.592 4.47e-11 ***
## seed:V2      0.0056371  0.0027732    2.033 0.042098 *  
## seed:V3      0.0007225  0.0027723    0.261 0.794395    
## seed:V4     -0.0015289  0.0027715   -0.552 0.581204    
## V1:V2        0.0090777  0.0026691    3.401 0.000673 ***
## V1:V3        0.0099382  0.0026873    3.698 0.000218 ***
## V1:V4       -0.0108288  0.0026993   -4.012 6.06e-05 ***
## V2:V3        0.0004178  0.0026840    0.156 0.876300    
## V2:V4        0.0047573  0.0026430    1.800 0.071892 .  
## V3:V4       -0.0301194  0.0026645  -11.304  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3302 on 14978 degrees of freedom
## Multiple R-squared:  0.8911, Adjusted R-squared:  0.8909 
## F-statistic:  5836 on 21 and 14978 DF,  p-value: < 2.2e-16

## 
## Call:
## lm(formula = full.model.1, data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.8993 -0.2716 -0.0033  0.2265 10.6228 
## 
## Coefficients:
##              Estimate Std. Error  t value Pr(>|t|)    
## (Intercept)  0.017467   0.003512    4.973 6.66e-07 ***
## size         0.785233   0.003770  208.282  < 2e-16 ***
## seed         0.037066   0.004025    9.210  < 2e-16 ***
## V1          -0.063573   0.003327  -19.108  < 2e-16 ***
## V2          -0.043986   0.003329  -13.215  < 2e-16 ***
## V3          -0.438340   0.003326 -131.779  < 2e-16 ***
## V4          -0.229977   0.003327  -69.128  < 2e-16 ***
## size:seed    0.079560   0.004907   16.213  < 2e-16 ***
## size:V1      0.003807   0.003416    1.114 0.265115    
## size:V2      0.001446   0.003417    0.423 0.672287    
## size:V3     -0.049665   0.003416  -14.538  < 2e-16 ***
## size:V4     -0.062563   0.003415  -18.319  < 2e-16 ***
## seed:V1      0.021395   0.003416    6.263 3.88e-10 ***
## seed:V2      0.007564   0.003417    2.213 0.026888 *  
## seed:V3     -0.002231   0.003416   -0.653 0.513775    
## seed:V4     -0.009726   0.003415   -2.848 0.004409 ** 
## V1:V2        0.006568   0.003289    1.997 0.045861 *  
## V1:V3        0.012083   0.003311    3.649 0.000264 ***
## V1:V4       -0.020166   0.003326   -6.063 1.37e-09 ***
## V2:V3        0.001361   0.003307    0.411 0.680761    
## V2:V4        0.007897   0.003257    2.425 0.015335 *  
## V3:V4       -0.048814   0.003283  -14.867  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.407 on 14978 degrees of freedom
## Multiple R-squared:  0.8346, Adjusted R-squared:  0.8344 
## F-statistic:  3600 on 21 and 14978 DF,  p-value: < 2.2e-16

Length I and not C for Var 2 models

Var2b

## 
## Call:
## lm(formula = full.model.1, data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.2815 -0.1040  0.0155  0.0784 23.9920 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.006406   0.008485   0.755 0.450311    
## size        -0.038709   0.009108  -4.250 2.15e-05 ***
## seed        -0.035347   0.009723  -3.635 0.000279 ***
## V1          -0.042922   0.008038  -5.340 9.42e-08 ***
## V2          -0.057785   0.008041  -7.186 6.99e-13 ***
## V3          -0.028207   0.008036  -3.510 0.000449 ***
## V4           0.028821   0.008037   3.586 0.000337 ***
## size:seed    0.036438   0.011855   3.074 0.002118 ** 
## size:V1      0.051580   0.008253   6.250 4.21e-10 ***
## size:V2      0.069408   0.008256   8.407  < 2e-16 ***
## size:V3      0.031685   0.008253   3.839 0.000124 ***
## size:V4     -0.038284   0.008251  -4.640 3.51e-06 ***
## seed:V1      0.051595   0.008253   6.252 4.17e-10 ***
## seed:V2      0.070212   0.008256   8.505  < 2e-16 ***
## seed:V3      0.032368   0.008253   3.922 8.82e-05 ***
## seed:V4     -0.040215   0.008251  -4.874 1.10e-06 ***
## V1:V2        0.052892   0.007946   6.656 2.90e-11 ***
## V1:V3        0.029522   0.008000   3.690 0.000225 ***
## V1:V4       -0.015340   0.008036  -1.909 0.056295 .  
## V2:V3        0.031619   0.007990   3.957 7.62e-05 ***
## V2:V4       -0.036781   0.007868  -4.675 2.97e-06 ***
## V3:V4       -0.026664   0.007932  -3.361 0.000777 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9831 on 14978 degrees of freedom
## Multiple R-squared:  0.03477,    Adjusted R-squared:  0.03342 
## F-statistic:  25.7 on 21 and 14978 DF,  p-value: < 2.2e-16

## 
## Call:
## lm(formula = full.model.1, data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.2215 -0.3801  0.0192  0.2465  7.8683 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.024478   0.006313   3.878 0.000106 ***
## size        -0.267113   0.006776 -39.421  < 2e-16 ***
## seed        -0.310234   0.007234 -42.888  < 2e-16 ***
## V1          -0.271191   0.005980 -45.353  < 2e-16 ***
## V2          -0.223520   0.005982 -37.363  < 2e-16 ***
## V3          -0.063553   0.005978 -10.630  < 2e-16 ***
## V4           0.034944   0.005979   5.844 5.20e-09 ***
## size:seed    0.117958   0.008820  13.375  < 2e-16 ***
## size:V1      0.197536   0.006140  32.174  < 2e-16 ***
## size:V2      0.167890   0.006142  27.335  < 2e-16 ***
## size:V3      0.047594   0.006140   7.752 9.65e-15 ***
## size:V4     -0.024199   0.006138  -3.942 8.10e-05 ***
## seed:V1      0.256282   0.006140  41.742  < 2e-16 ***
## seed:V2      0.204824   0.006142  33.349  < 2e-16 ***
## seed:V3      0.056305   0.006140   9.170  < 2e-16 ***
## seed:V4     -0.028917   0.006138  -4.711 2.49e-06 ***
## V1:V2        0.083143   0.005911  14.065  < 2e-16 ***
## V1:V3        0.038400   0.005952   6.452 1.14e-10 ***
## V1:V4       -0.010799   0.005978  -1.806 0.070890 .  
## V2:V3        0.025003   0.005944   4.206 2.61e-05 ***
## V2:V4       -0.021236   0.005854  -3.628 0.000287 ***
## V3:V4       -0.007430   0.005901  -1.259 0.208016    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7314 on 14978 degrees of freedom
## Multiple R-squared:  0.4658, Adjusted R-squared:  0.465 
## F-statistic: 621.9 on 21 and 14978 DF,  p-value: < 2.2e-16

Var2n

## 
## Call:
## lm(formula = full.model.1, data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.2815 -0.1040  0.0155  0.0784 23.9920 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.006406   0.008485   0.755 0.450311    
## size        -0.038709   0.009108  -4.250 2.15e-05 ***
## seed        -0.035347   0.009723  -3.635 0.000279 ***
## V1          -0.042922   0.008038  -5.340 9.42e-08 ***
## V2          -0.057785   0.008041  -7.186 6.99e-13 ***
## V3          -0.028207   0.008036  -3.510 0.000449 ***
## V4           0.028821   0.008037   3.586 0.000337 ***
## size:seed    0.036438   0.011855   3.074 0.002118 ** 
## size:V1      0.051580   0.008253   6.250 4.21e-10 ***
## size:V2      0.069408   0.008256   8.407  < 2e-16 ***
## size:V3      0.031685   0.008253   3.839 0.000124 ***
## size:V4     -0.038284   0.008251  -4.640 3.51e-06 ***
## seed:V1      0.051595   0.008253   6.252 4.17e-10 ***
## seed:V2      0.070212   0.008256   8.505  < 2e-16 ***
## seed:V3      0.032368   0.008253   3.922 8.82e-05 ***
## seed:V4     -0.040215   0.008251  -4.874 1.10e-06 ***
## V1:V2        0.052892   0.007946   6.656 2.90e-11 ***
## V1:V3        0.029522   0.008000   3.690 0.000225 ***
## V1:V4       -0.015340   0.008036  -1.909 0.056295 .  
## V2:V3        0.031619   0.007990   3.957 7.62e-05 ***
## V2:V4       -0.036781   0.007868  -4.675 2.97e-06 ***
## V3:V4       -0.026664   0.007932  -3.361 0.000777 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9831 on 14978 degrees of freedom
## Multiple R-squared:  0.03477,    Adjusted R-squared:  0.03342 
## F-statistic:  25.7 on 21 and 14978 DF,  p-value: < 2.2e-16

Var2o

Paper figure 1: Base model