기본 제공 데이터 프레임인 모양입니다. 간헐 온천의 분출 시간?
range(duration)
[1] 1.6 5.1
breaks
[1] 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
break 를 만들어서 해당 값들을 정렬할 수 있게 만들어봅시다
cbind(duration.freq)
duration.freq
[1.5,2) 51
[2,2.5) 41
[2.5,3) 5
[3,3.5) 7
[3.5,4) 30
[4,4.5) 73
[4.5,5) 61
[5,5.5) 4

cbind(duration.freq, duration.relfreq)
duration.freq duration.relfreq
[1.5,2) 51 0.18750000
[2,2.5) 41 0.15073529
[2.5,3) 5 0.01838235
[3,3.5) 7 0.02573529
[3.5,4) 30 0.11029412
[4,4.5) 73 0.26838235
[4.5,5) 61 0.22426471
[5,5.5) 4 0.01470588
발생 빈도는 저렇게 nrow() 로 나누면 되겠습니다
cbind(duration.cumfreq)
duration.cumfreq
[1.5,2) 51
[2,2.5) 92
[2.5,3) 97
[3,3.5) 104
[3.5,4) 134
[4,4.5) 207
[4.5,5) 268
[5,5.5) 272
Cumulative Sum : 누적합
말하자면 앞에서부터 더해가면서 계산하는 겁니다. 누적으로 확률을 계산하면 마지막이 되면 전체 합이 나오겠죠.

plot 에 lines() 를 추가하면 선도 같이 출력됩니다.
cbind(duration.cumfreq, duration.cumrelfreq)
duration.cumfreq duration.cumrelfreq
[1.5,2) 51 0.1875000
[2,2.5) 92 0.3382353
[2.5,3) 97 0.3566176
[3,3.5) 104 0.3823529
[3.5,4) 134 0.4926471
[4,4.5) 207 0.7610294
[4.5,5) 268 0.9852941
[5,5.5) 272 1.0000000
이상하게 한 줄이 나왔다 안 나왔다 하지만 넘어가죠
예를 들어 여기도 지금 줄이 안 나오는데


stem(duration)
The decimal point is 1 digit(s) to the left of the |
16 | 070355555588
18 | 000022233333335577777777888822335777888
20 | 00002223378800035778
22 | 0002335578023578
24 | 00228
26 | 23
28 | 080
30 | 7
32 | 2337
34 | 250077
36 | 0000823577
38 | 2333335582225577
40 | 0000003357788888002233555577778
42 | 03335555778800233333555577778
44 | 02222335557780000000023333357778888
46 | 0000233357700000023578
48 | 00000022335800333
50 | 0370
줄기-잎 그래프는 앞의 두 자리 + 맨 뒤의 한 자리를 붙이면 실제 데이터가 되는 식으로 구성한 그래프입니다 (…) 예를 들면 저기 30 | 7 은 307 이라는 의미이고(사실 317일 수도 있지만), 300~320 까지 한 개 있다는 얘기.
filter(du_df, value > 3.00 & value < 3.20)
# A tibble: 1 x 1
value
1 3.067

두 값을 넣어서 plot 을 호출하면 전체 데이터를 뿌리고,
abline(lm) 을 호출해서 선을 그릴 수 있음.
…정확히는 lm 이 linear regression model 을 만들고 abline 은 그 선을 그리는 거고..
LS0tCnRpdGxlOiAiUiBTdHVkeSAyIDogUXVhbnRpdGF0aXZlIERhdGEiCm91dHB1dDogaHRtbF9ub3RlYm9vawotLS0KCuq4sOuzuCDsoJzqs7Ug642w7J207YSwIO2UhOugiOyehOyduCDrqqjslpHsnoXri4jri6QuIOqwhO2XkCDsmKjsspzsnZgg67aE7LacIOyLnOqwhD8KCmBgYHtyfQpoZWFkKGZhaXRoZnVsKQpgYGAKCmBgYHtyfQpkdXJhdGlvbiA9IGZhaXRoZnVsJGVydXB0aW9ucwpyYW5nZShkdXJhdGlvbikKYGBgCgpgYGB7cn0KYnJlYWtzID0gc2VxKDEuNSwgNS41LCBieT0wLjUpICMwLjUg7JSpIOuCmOuIoOyEnCDrk7HquInsnYQg66eM65OsCmJyZWFrcwpgYGAKCmJyZWFrIOulvCDrp4zrk6TslrTshJwg7ZW064u5IOqwkuuTpOydhCDsoJXroKztlaAg7IiYIOyeiOqyjCDrp4zrk6TslrTrtIXsi5zri6QgCgpgYGB7cn0KZHVyYXRpb24uY3V0ID0gY3V0KGR1cmF0aW9uLCBicmVha3MsIHJpZ2h0PUZBTFNFKQpkdXJhdGlvbi5mcmVxID0gdGFibGUoZHVyYXRpb24uY3V0KQpjYmluZChkdXJhdGlvbi5mcmVxKQpgYGAKCmBgYHtyfQpjb2xvcnMgPSBjKCJyZWQiLCAieWVsbG93IiwgImdyZWVuIiwgInZpb2xldCIsICJvcmFuZ2UiLCAiYmx1ZSIsICJwaW5rIiwgImN5YW4iKQpoaXN0KGR1cmF0aW9uLCByaWdodD1GQUxTRSwgY29sPWNvbG9ycywgCiAgICAgbWFpbj0iT2xkIGZhaXRoZnVsIEVydXB0aW9ucyIsCiAgICAgeGxhYj0iRHVyYXRpb24gbWludXRlcyIKICAgICApCmBgYAoKYGBge3J9CmR1cmF0aW9uLnJlbGZyZXEgPSBkdXJhdGlvbi5mcmVxIC8gbnJvdyhmYWl0aGZ1bCkKY2JpbmQoZHVyYXRpb24uZnJlcSwgZHVyYXRpb24ucmVsZnJlcSkKYGBgCuuwnOyDnSDruYjrj4TripQg7KCA66CH6rKMIG5yb3coKSDroZwg64KY64iE66m0IOuQmOqyoOyKteuLiOuLpCAKCmBgYHtyfQpkdXJhdGlvbi5jdW1mcmVxID0gY3Vtc3VtKGR1cmF0aW9uLmZyZXEpCmNiaW5kKGR1cmF0aW9uLmN1bWZyZXEpCmBgYApDdW11bGF0aXZlIFN1bSA6IOuIhOygge2VqSAKCuunkO2VmOyekOuptCDslZ7sl5DshJzrtoDthLAg642U7ZW06rCA66m07IScIOqzhOyCsO2VmOuKlCDqsoHri4jri6QuIOuIhOyggeycvOuhnCDtmZXrpaDsnYQg6rOE7IKw7ZWY66m0IOuniOyngOunieydtCDrkJjrqbQg7KCE7LK0IO2VqeydtCDrgpjsmKTqsqDso6AuCgoKYGBge3IsIGVjaG89VFJVRX0KY3VtZnJlcTAgPSBjKDAsIGN1bXN1bShkdXJhdGlvbi5mcmVxKSkKcGxvdChicmVha3MsIGN1bWZyZXEwLCAKICAgICBtYWluPSJPbGQgRmFpdGhmdWwgRXJ1cHRpb25zIiwKICAgICB4bGFiPSJEdXJhdGlvbiBtaW51dGVzIiwKICAgICB5bGFiPSJDdW11bGF0aXZlIEVydXB0aW9ucyIpOyBsaW5lcyhicmVha3MsIGN1bWZyZXEwKQpgYGAKCnBsb3Qg7JeQIGxpbmVzKCkg66W8IOy2lOqwgO2VmOuptCDshKDrj4Qg6rCZ7J20IOy2nOugpeuQqeuLiOuLpC4gCgpgYGB7cn0KZHVyYXRpb24uY3VtcmVsZnJlcSA9IGR1cmF0aW9uLmN1bWZyZXEgLyBucm93KGZhaXRoZnVsKQpjYmluZChkdXJhdGlvbi5jdW1mcmVxLCBkdXJhdGlvbi5jdW1yZWxmcmVxKQpgYGAK7J207IOB7ZWY6rKMIO2VnCDspITsnbQg64KY7JmU64ukIOyViCDrgpjsmZTri6Qg7ZWY7KeA66eMIOuEmOyWtOqwgOyjoCAKCuyYiOulvCDrk6TslrQg7Jes6riw64+EIOyngOq4iCDspITsnbQg7JWIIOuCmOyYpOuKlOuNsCAKCmBgYHtyIGVjaG89VFJVRX0KY3VtcmVsZnJlcTAgPSBjKDAsIGR1cmF0aW9uLmN1bXJlbGZyZXEpCnBsb3QoYnJlYWtzLCBjdW1yZWxmcmVxMCwgCiAgICAgbWFpbj0iT2xkIEZhaXRoZnVsIEVydXB0aW9ucyIsCiAgICAgeGxhYj0iRHVyYXRpb24gbWludXRlcyIsCiAgICAgeWxhYj0iQ3VtdWxhdGl2ZSBlcnVwdGlvbiBwcm9wb3J0aW9uIgogICAgICk7IGxpbmVzKGJyZWFrcywgY3VtcmVsZnJlcTApCmBgYAoKYGBge3J9CkZuID0gZWNkZihkdXJhdGlvbikKcGxvdChGbikKYGBgCgpgYGB7cn0Kc3RlbShkdXJhdGlvbikKYGBgCuykhOq4sC3sno4g6re4656Y7ZSE64qUIOyVnuydmCDrkZAg7J6Q66asICsg66eoIOuSpOydmCDtlZwg7J6Q66as66W8IOu2meydtOuptCDsi6TsoJwg642w7J207YSw6rCAIOuQmOuKlCDsi53snLzroZwg6rWs7ISx7ZWcIOq3uOuemO2UhOyeheuLiOuLpCAoLi4uKSDsmIjrpbwg65Ok66m0IOyggOq4sCAzMCB8IDcg7J2AIDMwNyDsnbTrnbzripQg7J2Y66+47J206rOgKOyCrOyLpCAzMTfsnbwg7IiY64+EIOyeiOyngOunjCksIDMwMH4zMjAg6rmM7KeAIO2VnCDqsJwg7J6I64uk64qUIOyWmOq4sC4KCj4gZmlsdGVyKGR1X2RmLCB2YWx1ZSA+IDMuMDAgJiB2YWx1ZSA8IDMuMjApIFwKIyBBIHRpYmJsZTogMSB4IDEgXAogIHZhbHVlIFwKICA8ZGJsPiBcCjEgMy4wNjcgXAoKYGBge3J9CnBsb3QoZmFpdGhmdWwkZXJ1cHRpb25zLCBmYWl0aGZ1bCR3YWl0aW5nLAogICAgIHhsYWI9IkVydXB0aW9uIGR1cmF0aW9uIiwKICAgICB5bGFiPSJUaW1lIHdhaXRlZCIKICAgICApOyBhYmxpbmUobG0oZmFpdGhmdWwkd2FpdGluZyB+IGZhaXRoZnVsJGVydXB0aW9ucykpCmBgYArrkZAg6rCS7J2EIOuEo+yWtOyEnCBwbG90IOydhCDtmLjstpztlZjrqbQg7KCE7LK0IOuNsOydtO2EsOulvCDrv4zrpqzqs6AsIFwKYWJsaW5lKGxtKSDsnYQg7Zi47Lac7ZW07IScIOyEoOydhCDqt7jrprQg7IiYIOyeiOydjC4gXAouLi7soJXtmZXtnojripQgbG0g7J20IGxpbmVhciByZWdyZXNzaW9uIG1vZGVsIOydhCDrp4zrk6Tqs6AgYWJsaW5lIOydgCDqt7gg7ISg7J2EIOq3uOumrOuKlCDqsbDqs6AuLgoKCgo=