For week two’s R assignment I selected Prestige which looks at the prestige of various Canadian jobs.
df = read.csv( "https://raw.githubusercontent.com/kaiserxc/CUNY_MSDA/master/Prestige.csv")
summary(df)
## X education income women
## accountants : 1 Min. : 6.380 Min. : 611 Min. : 0.000
## aircraft.repairmen: 1 1st Qu.: 8.445 1st Qu.: 4106 1st Qu.: 3.592
## aircraft.workers : 1 Median :10.540 Median : 5930 Median :13.600
## architects : 1 Mean :10.738 Mean : 6798 Mean :28.979
## athletes : 1 3rd Qu.:12.648 3rd Qu.: 8187 3rd Qu.:52.203
## auto.repairmen : 1 Max. :15.970 Max. :25879 Max. :97.510
## (Other) :96
## prestige census type
## Min. :14.80 Min. :1113 bc :44
## 1st Qu.:35.23 1st Qu.:3120 prof:31
## Median :43.60 Median :5135 wc :23
## Mean :46.83 Mean :5402 NA's: 4
## 3rd Qu.:59.27 3rd Qu.:8312
## Max. :87.20 Max. :9517
##
df %>%
summarise(AverageEducation = mean(education),
MedianEducation = median(education),
AverageIncome = mean(income),
MedianIncome = median(income))
## AverageEducation MedianEducation AverageIncome MedianIncome
## 1 10.73804 10.54 6797.902 5930.5
Quick correlation matrix to see trends.
pairs(df)
# 2) Create a new data frame with a subset of the columns and rows. Make sure to rename it.
df1 = df %>% select(-type, -census)
df1 = rename(df1,Occupation = X, Education = education, Income = income,
Women = women, Prestige = prestige)
summary(df)
## X education income women
## accountants : 1 Min. : 6.380 Min. : 611 Min. : 0.000
## aircraft.repairmen: 1 1st Qu.: 8.445 1st Qu.: 4106 1st Qu.: 3.592
## aircraft.workers : 1 Median :10.540 Median : 5930 Median :13.600
## architects : 1 Mean :10.738 Mean : 6798 Mean :28.979
## athletes : 1 3rd Qu.:12.648 3rd Qu.: 8187 3rd Qu.:52.203
## auto.repairmen : 1 Max. :15.970 Max. :25879 Max. :97.510
## (Other) :96
## prestige census type
## Min. :14.80 Min. :1113 bc :44
## 1st Qu.:35.23 1st Qu.:3120 prof:31
## Median :43.60 Median :5135 wc :23
## Mean :46.83 Mean :5402 NA's: 4
## 3rd Qu.:59.27 3rd Qu.:8312
## Max. :87.20 Max. :9517
##
summary(df1)
## Occupation Education Income Women
## accountants : 1 Min. : 6.380 Min. : 611 Min. : 0.000
## aircraft.repairmen: 1 1st Qu.: 8.445 1st Qu.: 4106 1st Qu.: 3.592
## aircraft.workers : 1 Median :10.540 Median : 5930 Median :13.600
## architects : 1 Mean :10.738 Mean : 6798 Mean :28.979
## athletes : 1 3rd Qu.:12.648 3rd Qu.: 8187 3rd Qu.:52.203
## auto.repairmen : 1 Max. :15.970 Max. :25879 Max. :97.510
## (Other) :96
## Prestige
## Min. :14.80
## 1st Qu.:35.23
## Median :43.60
## Mean :46.83
## 3rd Qu.:59.27
## Max. :87.20
##
df %>%
summarise(AverageEducation = mean(education),
MedianEducation = median(education),
AverageIncome = mean(income),
MedianIncome = median(income))
## AverageEducation MedianEducation AverageIncome MedianIncome
## 1 10.73804 10.54 6797.902 5930.5
df1 %>%
summarise(AverageEducation = mean(Education),
MedianEducation = median(Education),
AverageIncome = mean(Income),
MedianIncome = median(Income))
## AverageEducation MedianEducation AverageIncome MedianIncome
## 1 10.73804 10.54 6797.902 5930.5
Turns out they are the same.
For example, suppose I have 20 values of the letter “e” in one column. Rename those values so that all 20 would show as “excellent”.
(We are going to have to use the original df for this)
df3 = mutate(df, type = ifelse(type == "prof", "Management",
ifelse(type == 'wc', "WhiteCollar", "BlueCollar")))
kable(df3)
| X | education | income | women | prestige | census | type |
|---|---|---|---|---|---|---|
| gov.administrators | 13.11 | 12351 | 11.16 | 68.8 | 1113 | Management |
| general.managers | 12.26 | 25879 | 4.02 | 69.1 | 1130 | Management |
| accountants | 12.77 | 9271 | 15.70 | 63.4 | 1171 | Management |
| purchasing.officers | 11.42 | 8865 | 9.11 | 56.8 | 1175 | Management |
| chemists | 14.62 | 8403 | 11.68 | 73.5 | 2111 | Management |
| physicists | 15.64 | 11030 | 5.13 | 77.6 | 2113 | Management |
| biologists | 15.09 | 8258 | 25.65 | 72.6 | 2133 | Management |
| architects | 15.44 | 14163 | 2.69 | 78.1 | 2141 | Management |
| civil.engineers | 14.52 | 11377 | 1.03 | 73.1 | 2143 | Management |
| mining.engineers | 14.64 | 11023 | 0.94 | 68.8 | 2153 | Management |
| surveyors | 12.39 | 5902 | 1.91 | 62.0 | 2161 | Management |
| draughtsmen | 12.30 | 7059 | 7.83 | 60.0 | 2163 | Management |
| computer.programers | 13.83 | 8425 | 15.33 | 53.8 | 2183 | Management |
| economists | 14.44 | 8049 | 57.31 | 62.2 | 2311 | Management |
| psychologists | 14.36 | 7405 | 48.28 | 74.9 | 2315 | Management |
| social.workers | 14.21 | 6336 | 54.77 | 55.1 | 2331 | Management |
| lawyers | 15.77 | 19263 | 5.13 | 82.3 | 2343 | Management |
| librarians | 14.15 | 6112 | 77.10 | 58.1 | 2351 | Management |
| vocational.counsellors | 15.22 | 9593 | 34.89 | 58.3 | 2391 | Management |
| ministers | 14.50 | 4686 | 4.14 | 72.8 | 2511 | Management |
| university.teachers | 15.97 | 12480 | 19.59 | 84.6 | 2711 | Management |
| primary.school.teachers | 13.62 | 5648 | 83.78 | 59.6 | 2731 | Management |
| secondary.school.teachers | 15.08 | 8034 | 46.80 | 66.1 | 2733 | Management |
| physicians | 15.96 | 25308 | 10.56 | 87.2 | 3111 | Management |
| veterinarians | 15.94 | 14558 | 4.32 | 66.7 | 3115 | Management |
| osteopaths.chiropractors | 14.71 | 17498 | 6.91 | 68.4 | 3117 | Management |
| nurses | 12.46 | 4614 | 96.12 | 64.7 | 3131 | Management |
| nursing.aides | 9.45 | 3485 | 76.14 | 34.9 | 3135 | BlueCollar |
| physio.therapsts | 13.62 | 5092 | 82.66 | 72.1 | 3137 | Management |
| pharmacists | 15.21 | 10432 | 24.71 | 69.3 | 3151 | Management |
| medical.technicians | 12.79 | 5180 | 76.04 | 67.5 | 3156 | WhiteCollar |
| commercial.artists | 11.09 | 6197 | 21.03 | 57.2 | 3314 | Management |
| radio.tv.announcers | 12.71 | 7562 | 11.15 | 57.6 | 3337 | WhiteCollar |
| athletes | 11.44 | 8206 | 8.13 | 54.1 | 3373 | NA |
| secretaries | 11.59 | 4036 | 97.51 | 46.0 | 4111 | WhiteCollar |
| typists | 11.49 | 3148 | 95.97 | 41.9 | 4113 | WhiteCollar |
| bookkeepers | 11.32 | 4348 | 68.24 | 49.4 | 4131 | WhiteCollar |
| tellers.cashiers | 10.64 | 2448 | 91.76 | 42.3 | 4133 | WhiteCollar |
| computer.operators | 11.36 | 4330 | 75.92 | 47.7 | 4143 | WhiteCollar |
| shipping.clerks | 9.17 | 4761 | 11.37 | 30.9 | 4153 | WhiteCollar |
| file.clerks | 12.09 | 3016 | 83.19 | 32.7 | 4161 | WhiteCollar |
| receptionsts | 11.04 | 2901 | 92.86 | 38.7 | 4171 | WhiteCollar |
| mail.carriers | 9.22 | 5511 | 7.62 | 36.1 | 4172 | WhiteCollar |
| postal.clerks | 10.07 | 3739 | 52.27 | 37.2 | 4173 | WhiteCollar |
| telephone.operators | 10.51 | 3161 | 96.14 | 38.1 | 4175 | WhiteCollar |
| collectors | 11.20 | 4741 | 47.06 | 29.4 | 4191 | WhiteCollar |
| claim.adjustors | 11.13 | 5052 | 56.10 | 51.1 | 4192 | WhiteCollar |
| travel.clerks | 11.43 | 6259 | 39.17 | 35.7 | 4193 | WhiteCollar |
| office.clerks | 11.00 | 4075 | 63.23 | 35.6 | 4197 | WhiteCollar |
| sales.supervisors | 9.84 | 7482 | 17.04 | 41.5 | 5130 | WhiteCollar |
| commercial.travellers | 11.13 | 8780 | 3.16 | 40.2 | 5133 | WhiteCollar |
| sales.clerks | 10.05 | 2594 | 67.82 | 26.5 | 5137 | WhiteCollar |
| newsboys | 9.62 | 918 | 7.00 | 14.8 | 5143 | NA |
| service.station.attendant | 9.93 | 2370 | 3.69 | 23.3 | 5145 | BlueCollar |
| insurance.agents | 11.60 | 8131 | 13.09 | 47.3 | 5171 | WhiteCollar |
| real.estate.salesmen | 11.09 | 6992 | 24.44 | 47.1 | 5172 | WhiteCollar |
| buyers | 11.03 | 7956 | 23.88 | 51.1 | 5191 | WhiteCollar |
| firefighters | 9.47 | 8895 | 0.00 | 43.5 | 6111 | BlueCollar |
| policemen | 10.93 | 8891 | 1.65 | 51.6 | 6112 | BlueCollar |
| cooks | 7.74 | 3116 | 52.00 | 29.7 | 6121 | BlueCollar |
| bartenders | 8.50 | 3930 | 15.51 | 20.2 | 6123 | BlueCollar |
| funeral.directors | 10.57 | 7869 | 6.01 | 54.9 | 6141 | BlueCollar |
| babysitters | 9.46 | 611 | 96.53 | 25.9 | 6147 | NA |
| launderers | 7.33 | 3000 | 69.31 | 20.8 | 6162 | BlueCollar |
| janitors | 7.11 | 3472 | 33.57 | 17.3 | 6191 | BlueCollar |
| elevator.operators | 7.58 | 3582 | 30.08 | 20.1 | 6193 | BlueCollar |
| farmers | 6.84 | 3643 | 3.60 | 44.1 | 7112 | NA |
| farm.workers | 8.60 | 1656 | 27.75 | 21.5 | 7182 | BlueCollar |
| rotary.well.drillers | 8.88 | 6860 | 0.00 | 35.3 | 7711 | BlueCollar |
| bakers | 7.54 | 4199 | 33.30 | 38.9 | 8213 | BlueCollar |
| slaughterers.1 | 7.64 | 5134 | 17.26 | 25.2 | 8215 | BlueCollar |
| slaughterers.2 | 7.64 | 5134 | 17.26 | 34.8 | 8215 | BlueCollar |
| canners | 7.42 | 1890 | 72.24 | 23.2 | 8221 | BlueCollar |
| textile.weavers | 6.69 | 4443 | 31.36 | 33.3 | 8267 | BlueCollar |
| textile.labourers | 6.74 | 3485 | 39.48 | 28.8 | 8278 | BlueCollar |
| tool.die.makers | 10.09 | 8043 | 1.50 | 42.5 | 8311 | BlueCollar |
| machinists | 8.81 | 6686 | 4.28 | 44.2 | 8313 | BlueCollar |
| sheet.metal.workers | 8.40 | 6565 | 2.30 | 35.9 | 8333 | BlueCollar |
| welders | 7.92 | 6477 | 5.17 | 41.8 | 8335 | BlueCollar |
| auto.workers | 8.43 | 5811 | 13.62 | 35.9 | 8513 | BlueCollar |
| aircraft.workers | 8.78 | 6573 | 5.78 | 43.7 | 8515 | BlueCollar |
| electronic.workers | 8.76 | 3942 | 74.54 | 50.8 | 8534 | BlueCollar |
| radio.tv.repairmen | 10.29 | 5449 | 2.92 | 37.2 | 8537 | BlueCollar |
| sewing.mach.operators | 6.38 | 2847 | 90.67 | 28.2 | 8563 | BlueCollar |
| auto.repairmen | 8.10 | 5795 | 0.81 | 38.1 | 8581 | BlueCollar |
| aircraft.repairmen | 10.10 | 7716 | 0.78 | 50.3 | 8582 | BlueCollar |
| railway.sectionmen | 6.67 | 4696 | 0.00 | 27.3 | 8715 | BlueCollar |
| electrical.linemen | 9.05 | 8316 | 1.34 | 40.9 | 8731 | BlueCollar |
| electricians | 9.93 | 7147 | 0.99 | 50.2 | 8733 | BlueCollar |
| construction.foremen | 8.24 | 8880 | 0.65 | 51.1 | 8780 | BlueCollar |
| carpenters | 6.92 | 5299 | 0.56 | 38.9 | 8781 | BlueCollar |
| masons | 6.60 | 5959 | 0.52 | 36.2 | 8782 | BlueCollar |
| house.painters | 7.81 | 4549 | 2.46 | 29.9 | 8785 | BlueCollar |
| plumbers | 8.33 | 6928 | 0.61 | 42.9 | 8791 | BlueCollar |
| construction.labourers | 7.52 | 3910 | 1.09 | 26.5 | 8798 | BlueCollar |
| pilots | 12.27 | 14032 | 0.58 | 66.1 | 9111 | Management |
| train.engineers | 8.49 | 8845 | 0.00 | 48.9 | 9131 | BlueCollar |
| bus.drivers | 7.58 | 5562 | 9.47 | 35.9 | 9171 | BlueCollar |
| taxi.drivers | 7.93 | 4224 | 3.59 | 25.1 | 9173 | BlueCollar |
| longshoremen | 8.37 | 4753 | 0.00 | 26.1 | 9313 | BlueCollar |
| typesetters | 10.00 | 6462 | 13.58 | 42.2 | 9511 | BlueCollar |
| bookbinders | 8.55 | 3617 | 70.87 | 35.2 | 9517 | BlueCollar |