Task 1

Rotten Tomatoes Data

mydata = read.csv(file="data/rottentomatoes.csv")
head(mydata)

Gross Data

gross = mydata$gross
gross
   [1] 760505847 309404152 200074175 448130642        NA  73058679 336530303 200807262
   [9] 458991599 301956980 330249062 200069408 168368427 423032628  89289910 291021565
  [17] 141614023 623279547 241063875 179020854 255108370 262030663 105219735 258355354
  [25]  70083519 218051260 658672302 407197282  65173160 652177271 304360277 373377893
  [33] 408992272 334185206 234360014 268488329 402076689 245428137 234903076 202853933
  [41] 172051787 191450875 116593191 414984497 125320003 350034110 202351611 233914986
  [49] 228756232  65171860 144812796  90755643 101785482 352358779 317011114 123070338
  [57] 237282182 130468626 223806889 140080850 166112167 137850096  47375327 124051759
  [65] 291709845 154985087 533316061 292979556 198332128 318298180  73820094 113745408
  [73] 102176165 161087183 100289690 100189501  88246220 150167630 356454367 362645141
  [81] 312057433 155111815 241407328 208543795        NA  38297305 259746958 238371987
  [89]  93417865 222487711 189412677    665426 102315545 217387997 150350192 333130696
  [97] 187991439 292568851        NA 303001229 144512310 127490802 146405371 281666058
 [105]  63143812  60655503  76846624 320706665  46978995  89732035 104383624 198539855
 [113] 318759914  34293771 292000866 289994397 227946274 256386216 206456431 206435493
 [121] 205343774 179982968 177243721 179883016 139259759 400736600 281492479 206360018
 [129] 153629485 133375846 181015141 114053579 119420252  83640426  79711678 195000874
 [137]  61937495 124051759 126597121 165230261 131564731 133382309  73103784  21379315
 [145]  64459316  34964818 111505642 133228348 216366733 160201106 118099659 201573391
 [153] 190418803  82161969 143523463 209364921 103400692 110332737 111110575  65007045
 [161] 257704099 403706375 176997107  31141074  31704416 107503316 129734803 132122995
 [169] 122512052  68642452  32131830 176636816 126930660  93926386 292298923  63992328
 [177] 134518390        NA  52792307 183635922  83024900 123207194  83348920 227137090
 [185] 215395021 180191634 424645577 292298923 177343675 234277056 138396624 149234747
 [193] 118311368 101160529  77564037 249358727  49551662  60522097 137748063        NA
 [201] 113733726 148337537 317557891  33592415        NA 305388685        NA 337103873
 [209] 217536138 131536019 214948780 209805005 186830669 163192114 119412921  32694788
 [217] 113165635 107285004 260031035 186739919 215397307 182618434 131920333 124976634
 [225] 115802596 108521835 100685880 126464904  64736114  93050117  57637485  58607007
 [233]  43929341  30212620  76418654  89021735 380262555 310675583 289907418 132550960
 [241] 474544677 187165546        NA  40911830  47952020 190871240 274084951  67155742
 [249]  81638674  56114221 250863268 155181732 125332007 113330342 125531634 186336103
 [257] 129995817 102608827  42776259  98780042        NA 106369117 142614158  50026353
 [265]  66002193  85463309  71017784  48068396  61656849 134520804 313837577  24004159
 [273]  58183966 100446895 144795350  47396698 140015224 104374107 228430993        NA
 [281]  35799026   6712451 101643008 187670866 132014112 261970615 167007184 180011740
 [289] 204843350  97030725 130127620 146282411  65452312 148383780 119219978 101228120
 [297] 162804648 100117603  89296573  85017401 173005002  75030163  77222184  34964818
 [305] 107515297  67631157  66862068  57366262 116866727 184031112  54700065  27098580
 [313]  55673333  40198710  72660029  38120554  49392095  39292022  28772222  17010646
 [321]  24985612   4411102  35024475 130174897  10200000 202007640  77679638      9213
 [329]  58867694  59475623 108638745  86897182  63540020  95328937  50802661 161317423
 [337] 201148159  43982842 380838870 377019252 340478898  17176900 131144183  23014504
 [345] 181166115 176740650  71148699  67344392  22406362 261437578  11000000  88761720
 [353] 250147615 245823397  81557479 226138454 155370362 124870275 196573705  58229120
 [361] 125305545 132373442 120618403 110416702 102515793 100012500 209019489        NA
 [369]  84037039  85884815  83077470 100018837  78747585  78616689  75817994 100853835
 [377]  73209340  72515360  68558662  65653758  64685359  61355436     26871  60874615
 [385] 143618384  58220776  47474112  42877165  35168677  56114221  37567440  61644321
 [393]    190562 120147445 241688385 144512310 233630478 197992827 176049130 172620724
 [401] 183405771  20315324 148313048 127706877        NA 126149655  66941559  78009155
 [409]  63224849 111544445 112703470 117144465  84303558 150832203  51396781  47592825
 [417]  50016394  57010853  62494975  46440491  44606335  40048332        NA  64933670
 [425]  31494270  31111260 123307945 153288182  13401683 137340146        NA  43575716
 [433]  80170146  75754670  33048353  34543701 242589580 102981571 180965237 407999255
 [441] 254455986 162831698 155019340 145771527  82506325 140459099  53215979 158115031
 [449] 133103929 133668525 130313314 124590960 127968405 120136047 128200012 112225777
 [457] 109993847 104054514 103028109        NA 101087161 101111837  95632614  94822707
 [465]  92969824  91188905  90443603  82226474  79363785  76081498  85707116  74329966
 [473] 100169068  73215310  80360866  69102910  65948711    821997 169692572        NA
 [481]  60507228  56684819  50628009  69772969  45356386  55350897  39442871  37899638
 [489]  37754208        NA  27779888  38542418  34566746  32885565  36073232  21471685
 [497]  20950820  19673424  19480739  17593391  18318000  27356090  17473245  15131330
 [505]  19406406   1891821  23219748        NA 170708996 422783777 103812241 119793567
 [513]  92930005  67286731  74158157 127083765   1339152  15071514  26000610 323505540
 [521]  66462600 368049635 306124059 229074524 193136719  35286428 157299717 134568845
 [529] 134006721 195329763 120776832 118823091  41814863  97360069 117698894 162001186
 [537]  77032279        NA  73023275  68473360  66636385 160762022 103338338        NA
 [545]  55808744  47379090  43426961  47000485  45434443  42044321  73661010  41523271
 [553]  37600435  39251128  83503161  34636443  22751979  30013346  14567883     90820
 [561]   5409517  21009180  94999143 336029560  36381716  55585389  36976367 107225164
 [569]  70224196  51814190  47456450 148213377 112950721  75600000  62647540 183132370
 [577]  27796042  32616869  18947630 114195633 144156464 227965690 436471036 244052771
 [585] 152149590 141204016 162495848 136448821 120523073 119654900  72660029 117541000
 [593] 116643346        NA 100614858  42272747  80281096 219613391  78120196  98895417
 [601]  70117571  83552429  66257002  65012000  79883359  78031620  54222000  52474616
 [609]  55942830  40932372  38345403  37901509  48430355  30157016  28031250  33105600
 [617]  62321039  38509342  19076815  25093607  18990542  14294842  19819494  13596911
 [625]   8460990   7097125  37760080   5851188  25121291  18821279 118471320 300523113
 [633]  71069884 251501645  35324232  81257500    617840  29655590  45045037  28965197
 [641]  27550735  39380442  72980108  37516013  87704396        NA  83892374   5932060
 [649] 216119491  43568507 182805123 176387405  33685268 182204440 171383253 172071312
 [657] 119412921 139225854 148775460 115731542 100468793  93771072 100448498 115603980
 [665]  90454043  84049211  70450000  69688384  70236496  63695760  59617068  55637680
 [673]  85911262  53846915  54758461  52397389        NA  38966057  42345531  36064910
 [681]  33328051  32598931  28045540  37023395  43532294        NA  17218080  10014234
 [689]  19059018   1987287  24407944  13750556  31054924  43247140   2208939 213079163
 [697]  19548064 356784000  25052000 122012710     72413  58255287  77086030  65000000
 [705]  32178777  15738632  54116191 118153533 108012170 210592590 279167575 143151473
 [713] 136801374 168213584 135381507 167735396 121468960 106635996 102678089 125603360
 [721] 101217900 104148781  75573300  93375151 106126012  93307796  90646554 109176215
 [729]  82670733  82569532  81687587  80574010  75764085  90356857  75530832  75370763
 [737] 100003492  90341670  74540762  80033643  73648142  71844424  75638743  66734992
 [745]  75280058  64505912  77862546  61112916  88200225  60573641  59035104  56702901
 [753]  55994557  54910560  53789313  51045801  50818750        NA  50189179  50024083
 [761]  50549107  56443482  62401264  47748610  46975183  50807639  46611204 257756197
 [769]  48472213  43060566  45996718  43337279  37479778  36965395  40559930  36830057
 [777]  36279230  42194060  43119879  35096190  35754555  43290977  33927476  32122249
 [785]  40076438  32940507  31670931  30695227  32522352  28424210  26082914  29136626
 [793]  26288320  26616590 623279547  30063805  22518325  13082288  18208078  14218868
 [801]     22451  31165421  11802056  25472967  22362500  17281832  19781879   7605668
 [809]   4535117   4426297        NA  10166502 363024263  12065985 350123553  80021740
 [817]        NA  48291624  35231365  53715611  31199215        NA  29580087  44665963
 [825]  60128566  49875589        NA  60984028  36931089  51317350  28328132  51774002
 [833]  25528495        NA 113006880  45860039 329691196 217326336 166225040 141600000
 [841] 134218018 128769345 177575142 105263257 104354205 107100855  98711404 100328194
 [849] 101530738  93815117  91400000 162586036  89706988  83000000  78745923  70098138
 [857]  66365290        NA  66207920  63408614  58422650  56932305  68750000  68218041
 [865]  25040293  55747724  55473600  49994804  41609593  38553833  76137505  34350553
 [873]  34238611  34098563  33828318  33472850  31051126  35707327  20550712  18573791
 [881]  51225796  16264475  25857987  12870569  11466088  16088610  51178893   6768055
 [889]  39440655   6167817        NA        NA  81645152  69951824   9483821  66676062
 [897]  26838389  75604320 108200000   5660084   7221458  70327868  58297830  57386369
 [905]  45207112  62563543  33574332  73343413  25031037  22843047   5755286 164435221
 [913]  95720716 118683135 143704210 110476776  80270227  36385763  37035845  34580635
 [921]  42438300  23324666  23020488  90567722  72601713  35092918 296623634 267652016
 [929]  62453315 165500000 153620822 218628680 147637474 135014968   2175312 126203320
 [937] 126975169 125548685 105807520 191616238 105264608  97680195 126088877  91030827
 [945] 150315155 127997349  88504640  81517441  81022333  75621915  79948113  88658172
 [953]  75888270  84244877  75367693  73701902  75605492  67823573  91439400  67128202
 [961]  70496802  60470220        NA  58336565  66002004  54997476  55682070  52752475
 [969]  55092830  50815288  52822418  50150619  48745150  50007168  48154732  48265581
 [977]  46982632  44737059  56724080  44484065  47553512  42610000  41482207  47105085
 [985]  41256277  50740078  40203020  40905277  38590500  39177541  39778599  37486138
 [993]  38105077  35168395        NA  32800000  33643461  32741596  31874869  30306268
 [ reached getOption("max.print") -- omitted 4043 entries ]
#Max Sales
grossmax = max(gross, na.rm = TRUE)
grossmax
[1] 760505847
#Min Sales
grossmin = min(gross, na.rm = TRUE)
grossmin
[1] 162
#Range
grossrange = grossmax-grossmin
grossrange
[1] 760505685
#Mean
grossmean = mean(gross, na.rm = TRUE)
grossmean
[1] 48468408
#Standard Deviation
grosssd = sd(gross, na.rm = TRUE)
grosssd
[1] 68452990
#Variance
grossvar = var(gross, na.rm = TRUE)
grossvar
[1] 4.685812e+15

Users Votes Data

users_votes = mydata$users_votes
users_votes
   [1]  886204  471220  275868 1144337       8  212204  383056  294810  462669  321795  371639
  [12]  240396  330784  522040  181792  548573  149922  995415  370704  268154  354228  451803
  [23]  211765  483540  149019  316018  793059  272670  202382  418214  522030  411164  557489
  [34]  306320  383427  235025  323207  242420  175409  321227  264183  101178  223393  544884
  [45]  286095  278232  465019  514125  395573  106416  362912  222403  381148  326180  333847
  [56]   62836  273556   53607  718837  121084  283418   72809  139593   42372  286506  148379
  [67] 1676169  665575  114553  696338  245333  129601  117927  118992  115099  431620  144337
  [78]  174578  345198  106072  522371  228554  252257  317542    2138  116994  496749  138661
  [89]  128306  279093  272534  120798   58137  485430  305340  682155  928227 1468200     374
 [100]  637246  272223  459346  518537  166137  124185   82380   21352  211971  111609  188457
 [111]  106446  254111  513158  138863  355137  385670  343648  530870  320284  473887  980946
 [122]  146019  130272  361924  364948  421658  421818  414070  552503  207839  536314  146766
 [133]   33042  152826  199039  232187   89442   42372  105902  182718  118951  256695  164238
 [144]   17590   85086   39956   47900  381672  119213  169914   69757  322395  270207  142440
 [155]   64322  365104  123553  110788  317166  128682  504419  544665  221128   51892   45455
 [166]  392474  127497  212106  146352   77673   72259  508818  157519  168207  185394   32399
 [177]  326286   16769   12572  406020   62424  183208   60230  491077  307029  313866  498397
 [188]  185394   70121  334345  178126  114287  245621  200022  177383  382255  102338  158720
 [199]   38438     381   67223  172754  444683   91640     374  809474     252  305008  314253
 [210]   58498  405973  284792  338635  229679  240241  101411  229823  189855  141414  333248
 [221]  242188  133076  213275  440084  182661   40123  100821  456260   36471  338087  183909
 [232]  182899   57873   35066  148280  387436  520104  464310  585659  328067  534658  150618
 [243]   20567   55994   37750  167085  582917   62271   17533  110486  234480  147497  149680
 [254]  207613  284852  348861  154621  264318   53160  136019   25402  225273   66593   13581
 [265]   44296  254841   27257   60573  184561  336235 1238746   68720   79186   36033  387632
 [276]  217373   94172   89351  472488       6  263329    4102  218341  982637  399651  387616
 [287]  470483  177725  744891  230931  324671  190439  149998   85531  189806   84424  955174
 [298]  102933  128285  246803  255447  108076   87677   39956   85833  176598   89509  400292
 [309]  780588  190786  221521  284825   65785   87451  115687   71527   52029  127258   33953
 [320]   40751   71782   20295  110364   27918   18697  248045  314033   38690   54077   49739
 [331]  292022  106790  343274   59581   58300  145321  103737  125109  692482 1215718 1100446
 [342]   54501  157016  172707  219501  403836   68935  165618   16832  479166   21102  141179
 [353]  403014  385871  149947  160440   98403  152601  166791  236421  145350  873649  171792
 [364]  307539  330152  299258  477300      57   72591    9418  183247  156348   89770  238747
 [375]   32049  200556  101834   86152   86627  102747   40862   52136  121259   60467  165333
 [386]   87785   58227   45602   49311  110486  113065  148238    2508   57661  144053  272223
 [397]  394317  132501  348232  146134  402645   88542  164148  142496  159910  166693   26413
 [408]  110073  182757  188116   69860  256928   65270  341058  188887   82731  106528  119286
 [419]  179500   35446  169023   61417   19228   70838  273921   77029   39391   71424  203458
 [430]  246492   29932   10233  243053  208422  301279  100001  296904  270226  300542  701607
 [441]  375879  215255  127345  117212   27838  135601  125036  130070   22838  107817  168172
 [452]   91092  786092   48500  103022  283967   72326  200359  172878  213483  225282  150764
 [463]  118483  227072   63625   58184  112167   65499  139423   76099  303185   60910   16385
 [474]   44143   44662   58402   86422     666   56501   11427   27543  103787   22955  155532
 [485]   71574   83560   80639   98472  172217     979   55913  151424   45231   53132    8913
 [496]   65464   24183   37446   53057   56403   24868   58752   47612   25843    7630   16474
 [507]   84508     230  610568  644348   67296   64387  204063   67856   60370  191912   28276
 [518]   65037   16611   24407  141533  286877  430055  278362  266636  361767  452928  299852
 [529]  259492  194249  266103   98693   28635   36491  447979  181443  303864   36919   16271
 [540]   49536   88451  132415   55901   29450   59435  176936   93494   72867  175960   65668
 [551]   71137   57038   55350   31080  138190   93790   52244   31293   44248   35510   14280
 [562]   45815  245152  142403  197584   64121   81611   27130   59352  100837  101386  130776
 [573]   33884  736638  143525  259083   45031   34435   11798  193770   74343  271592  314630
 [584]  263853   74274  142569   34359   98989  885175  182802  115687  269858  119807   49049
 [595]  206776   78635  143628   31649  103241  203154   56741  154955  350698   43559  116159
 [606]  102248  131217   84118  138582   58023  212085   96385   43709   39659   88146   41663
 [617]  117096   61995   43651  105556   22264   16761   26893   25572    5116   38983   72868
 [628]   31124  177653   44891   86504  184637  101899  385943   32224  117739   52496   53970
 [639]  103230  133526   27481  174248   80338  128629   88132   15114   85720   29285  881236
 [650]  136954  158864  328159   75573  197412 1217752  208817  240241   34561  243834  151812
 [661]  212499  135404  272789  103589   60165   96096   77390   34473   67395   61490  213863
 [672]  227071   24735  149337  147641  132954   41776   23940  104831  166610   60508   49300
 [683]   67707 1347461   46951    8739   43376    8560   65709   25474   71202  111102   17025
 [694]  134625  190490  162909   25681  613473   35314   69663   11584   39471   65297   43027
 [705]   43300   38076  272839  129995   24089  607235  211296  116681  782610   99989   63912
 [716]  569841  407601  199025   42705  667983   91093   49486  156898   46031  285623   85673
 [727]  124641   83506   60476   42737  138246   63493   85844  238916   97047   32353  293662
 [738]  102129   48753  226570   99043   33158  180479   23476  143121  163130  266310   14888
 [749]  120795   68406  244566   23302   72287   88225   89816   11370   31209   26404   61966
 [760]   35918   99035   75329   69484  170179  256213   40883   55749  246698   51252  107859
 [771]  173530   76770  124222  113295   41727   10883   42144   41259   58450   76560   47954
 [782]   75201   19176   69319   73368   54314   44099   45296  207287   27517   51349   97089
 [793]   36144  120416  995415   31788   63363   35565   57100   14596   41288  107028   31640
 [804]   44966   35599   60232   53864   47320   38398   22570    1212   18209  479047   16260
 [815]  325264   47968   24420   82819   15517   92106   27664   27019   29523  159931  131447
 [826]   28807   80025  259519   70681   78343   38298   87745   28099   26992   66308   53118
 [837] 1251222   57276  260442  119675  126357   86556  244840   56168  162331  323353  127571
 [848]   85903  229574   68417   81026  338383  126746   36587   94407  735784   56874   63982
 [859]  512749   75365   78974   96690   40858   67191   88049   18042  207686   29205  145422
 [870]   46239   49207  104066   35830   27191   44453   67005   36877  199056   40346   38533
 [881]   96654   54787  110614   13215    8983   10417   24285   11148   61680   62607   67822
 [892]   19706  158267  232710   39247  267980   58658   68417   76331   41620   20740   58416
 [903]   86347  224013   21283  115216  101221  217480  155496    6082   18310  525801  216032
 [914]  102167  145974   95437   66382  138941  136680  100743  333542   97775   42324  185878
 [925]   21396   15740  220758  467113  200035  145257  189923  471644  224671   80580  131227
 [936]  110432  287822  135246  156717  258186  239752  271691   33354   46482   54010  101178
 [947]  273108  111368   34471  111003  186879   58412   71153  375456   58961   27548  283563
 [958]   91176  200647   43328  791783   81444    1824   12845   36431   40362  159868   63067
 [969]  195043  109188   47764   45580   50170   39529   60326  261069  172792   48322  172112
 [980]  107227   54101   60293   68428  136973   46451  151580   74315   45895   17997   20310
 [991]  176169   30890   58349   26034    4438   34896   11257   80140   43574   62981
 [ reached getOption("max.print") -- omitted 4043 entries ]
#Max Users Votes
usersvotesmax = max(users_votes, na.rm = TRUE)
usersvotesmax
[1] 1689764
#Min Users Votes
usersvotesmin = min(users_votes, na.rm = TRUE)
usersvotesmin
[1] 5
#Range
usersvotesrange = usersvotesmax-usersvotesmin
usersvotesrange
[1] 1689759
#Mean
usersvotesmean = mean(users_votes, na.rm = TRUE)
usersvotesmean
[1] 83668.16
#Standard Deviation
usersvotessd = sd(users_votes, na.rm = TRUE)
usersvotessd
[1] 138485.3
#Variance
usersvotesvar = var(users_votes, na.rm = TRUE)
usersvotesvar
[1] 19178166353

Total Cast Likes Data

total_cast_likes = mydata$total_cast_likes
total_cast_likes
   [1]   4834  48350  11700 106759    143   1873  46055   2036  92000  58753  24450  29991
  [13]   2023  48486  45757  20495  22697  87697  54083  12572   9152  28489   3244   9152
  [25]  24106   7123  45223  64798  26679   8458   2039  43388  30426  79957  21714  14863
  [37]   3218   3988  73441  28631  25550   4482  17657  19085  27468  79150  32392  91434
  [49]  21411   1766  29770  16149  19166   2593  14959    696   5005   1327   2975   1125
  [61]   2144  48878  47334  21175   1317  49684  57802   2635   2579  39252  36017  15870
  [73]   9131  11287 108016  12652   1004  26683   2944  32921  48638  72881  15516  14363
  [85]   1982  20965  36188   4628   5046   2963   4451  16264   3233  20453   1769  32438
  [97]  31488  81115    699   9152  45327  13333  50983  81385  13388  92456  80806   4705
 [109]   5505  38873    764   5401   2333  24598  33433  53413  21584  13076  57844   4764
 [121]  59558   3285  54039  40054   1062   2582    534  59803  40025  16948  60059  20007
 [133]   2217  16184  80849  21840  13071  21175   6576  21015   2857  34817  18204   2652
 [145]  35161  21393   5810  17944   2444   2538   2097  26029  14823  31523  36095  21768
 [157]  20645   1997  11945  26490  39284  40484  23378  19769   2705   2530   6171   1814
 [169]  31958  13073  15015  19761   2037   1205  59177  62644   5811   1687   1950  57108
 [181]  17416  43291  19963  17369  12754   5730  49355  59177  17883  12758  12954   5046
 [193]  12406  32355   4631  33284    921  14168   2945  11036  53587  46120  13191  31549
 [205]    699  48184  14719  81385  16008   1031  20952  55345  22403  18003   1441   1815
 [217]  12175   2699   4146  20553  11930   2684  15302   2121  14017  13752   4046  24098
 [229]   2682  17689  17159  14161    902    993  12731  22004  44042  42990  15013  23755
 [241]  37723  43286   1609  15046  46719   2690     87   1569   8306   1261  55486  16718
 [253]   2958  19454  19359  22722  22622  34582   1173  13391   1655  10583    692  13607
 [265]  12452  22254    914   2027  12908  13961  22342   3175  14196   2762  12068  19600
 [277]   3382   2480  14831      5  34839   3133  29069   6521  12546  35672   9125   2776
 [289]   2829  64599  20354   4528  19906  24082  20233   3454  40978   4842   2039  57881
 [301]  13679   4487   1738  21393  14552  55175   3903  33160  46057   2880   2031  22686
 [313]   4286   3144  16235  26940  10552  52610   3962   1195  28328   6161  13761    309
 [325]   1722  15972  47657  23240  25590  13748   4270   9271  39319   4555   3372  25354
 [337]   4671   2370   5641   6434  23052  17098  12150  54031   2574  13118   1614  15481
 [349]   5780   1901   3611  14024  12998  21275  25780    664  12890   1227   1258   5095
 [361]  15419  45648   4478  23484  20388  14274  23996  13379  15237  38450  14165  13446
 [373]  35367   6217   2622  12289   2356   2100  10882  33154  23031    475  12499   4902
 [385]  12071  55254   5062  26088  15149   1261   2024   2523   2728  13808  26239  45327
 [397]  15838  70996  14161  23603  13028  27694  37142    662    996  36237   4182   3768
 [409]  17423  11951  15226  43499   6081  22226   5103  16930   2407   2380   1235   2707
 [421]  23950   1460   1476  11454  12687   1439   2818   6355    578  12700   2662   3326
 [433]  21863   3632  36928   5839  21276  46355  12760  49942  16143   2899  22813   3112
 [445]  23907  22750  25220  13693   4073  39269  44798  22679  29585   9913   1804  17087
 [457]  12831  16828  16325    581  15362   5637  61110  44797  50005  17786  15001   1267
 [469]  22194   8355  20411  12729   4394  14261   5392  12186  20056   1753  26839   2614
 [481]    814   1919  10731  25942   2864  49631  25190  27114  22590     54  14831  18132
 [493]   1825  25126   1971    971   5593    619  43887   4346   2521  16922      2    683
 [505]    152   1890   1099    370   2827   6458  27842    848  35867  36925  27405  25296
 [517]  30230   2323  28050   4782   4714  11905  16785   1635   1777  16479  21397  25763
 [529]  15999   1815  12952   1673   1970   5320  13312  28497  16199   1990   5174   3424
 [541]  60646  63165   2856    504  15889   2529  16580  25206  15735  12522  17299  13934
 [553]   1695    804  16691 103354  15857  14028   2542   4368   5580   4397  33645  13616
 [565]   7067  15269   1044  24350  13827  11852   5187  12410   3287   1976  15850   3086
 [577]   4310  14780     55   7273   4166   1675   1148   4905  12790  14790   5217   3667
 [589]  36741  64259  16235  16595  14486   1430  11458   5609   3222   5227   6181  31782
 [601]   6207   4001  16138   1439  46726  27674   4074   1579   5178  32563  16034  12226
 [613]  18510  12993  13517   1576   5861    712  15916  49608   2763   1846  13628   3734
 [625]   6946  28129  12871   1899  15708   1520  12556  52547  32871  11608   1132  30010
 [637]   1829   3986   3393  18216   3524  29824  10419   8281   1302   2465   4230  14625
 [649]  44998   7081   5838   5437  12194  25517  18563  17171   1441   5265  46204  17768
 [661]  11264  12396  23018   2938  17771  15229   2913  16452  14421  12850   1375  11424
 [673]   4796  11943  29808  19764   3860   1409  17913  28643   1531   1013  32232  13209
 [685]  12088   3537  15944   3580   3165    450   7048  49433  16710   2131    253   2725
 [697]  23365   2129   5708  14178     58   6334  14931   2668   6658  14536  49912  13232
 [709]   2558  32360  24938   4811  17716   1412   2252   4348  13249   1784   2321   3698
 [721]   1195   4050  20148   4171  35084   2636  25788   8172  14006  20348   2517  20440
 [733]  16646  24928  20761  20683  13581  14611   4496  16385   3697    679  13634   1233
 [745]    647  13654  20454  24664   3943   4530   1112   4713  13597  38227   3637   3653
 [757]  13403   2064   2018   2318   1411  75793  20276   3090   1640   3151   4294  22128
 [769]   4305  53024  34738  12258  24458  19776  10623   2151   1352  22668  31224   1395
 [781]  17871   7053   1976  22889  38809  16536  23745  34774  36897  14918    993   1417
 [793]  11301   2525  87697   2109  22833  12634   3012   1262  22447  10247   1865   1467
 [805]  15275   5329  20881  42683  26564  12947   1026  12133  18239   2367  16277   5497
 [817]   2433   2876   6299  14574    589  36167   3150   5081  16098   4416   2558  45271
 [829]  16484   2710   9814  16121  23325   4115  16884  14146  15700   2847  24286  26754
 [841]  12940   3155  13426   4518   5713  16281  39822   2638  37605   7184  30132  11036
 [853]   2287   3888  13905   3983  22458   1359   1959  14432  25599    939   2916   2820
 [865]   7247   3104   1543    164  24270   1752   3697   2488   2248  13406  14036  10026
 [877]   6254  12840  31014  24618  20660  16899  10185   1671   3952   3742   6089   2260
 [889]   4315    405   1403  15803  15371  14727  25418  16949  12700    847   2908    286
 [901]  27614  26527   6017   2601  13390  63769  24468  22517  22186   2397  26334  48153
 [913]   2759   8315  26002  45696   2297   1937  28045    209  24183    488   2422   1711
 [925]   2055   5468  64040    275  14607  38518  12182  21773   1474  74382  28176  26826
 [937]   3388  10003  14087  19428  25697  29505  14569   9988  10886  62837  19148   3148
 [949]   1761  36873  13421  37967  10163  57426  13430   6729  53094  30383  16967  14007
 [961]  22417    428   1816  11124   2177   3341  11946   2583  15608  14747   3580  19513
 [973] 101383  19139  15569   1397   1933  24024   8398  20152   1367   1093  19610  30183
 [985]   1289  16791  15634  19739   1860  14899  29461   2052    701  25469    344   3016
 [997]  20061  14344  34606  58528
 [ reached getOption("max.print") -- omitted 4043 entries ]
#Max Total Cast Likes
totalcastlikesmax = max(total_cast_likes, na.rm = TRUE)
totalcastlikesmax
[1] 656730
#Min Total Cast Likes
totalcastlikesmin = min(total_cast_likes, na.rm = TRUE)
totalcastlikesmin
[1] 0
#Range
totalcastlikesrange = totalcastlikesmax-totalcastlikesmin
totalcastlikesrange
[1] 656730
#Mean
totalcastlikesmean = mean(total_cast_likes, na.rm = TRUE)
totalcastlikesmean
[1] 9699.064
#Standard Deviation
totalcastlikessd = sd(total_cast_likes, na.rm = TRUE)
totalcastlikessd
[1] 18163.8
#Variance
totalcastlikesvar = var(total_cast_likes, na.rm = TRUE)
totalcastlikesvar
[1] 329923599

Director FB Likes Data

director_fb_likes = mydata$director_fb_likes
director_fb_likes
   [1]     0   563     0 22000   131   475     0    15     0   282     0     0   395   563
  [15]   563     0    80     0   252   188     0   464     0     0   129     0     0    94
  [29]   532   365     0     0  1000 13000   420    37     0     0     0   464   364   487
  [43]   258   125   368     0   395     0 14000     0  1000   179     0     0 14000   113
  [57]    56   681   475   420   776     0     0   282    80     0 22000     0    11  4000
  [71] 17000   188   357   452   293   218    58   208     0  4000  4000   274   171   198
  [85]   596    47    94    31   663    38    66     0   776   255    84   571 22000 22000
  [99]    28     0   357 21000   905   508   226   249    33    50     0   230   150     0
 [113]     0     0   282   179   532   508 13000   663 22000    35   189   151     0    69
 [127]     0   230   750  2000     0    59    12   473 13000   188   394   282    58    90
 [141]     0 14000   776    25    42   456    50   249    35    93   176     0   188     0
 [155]     5   663    52    23   380     0 14000     0   255   295   357     0   503     0
 [169]   209    42     6   394   150   608   386   750   255    NA 14000     0    13   563
 [183]    35   521    54   235   508   386    12 14000     0    50   176     0 14000     0
 [197]  1000     0     0     0   189    96     0   124    28   563     0   508  2000   107
 [211]     0   681     0   255   719   323   209   541  2000   776   610   249   167     0
 [225]   160   521   368     0    50   662   123   294     0   274   446   364     0     0
 [239]     0   446     0    16     0   610    19   473     0    79    13   128   189    62
 [253]    55   776     0   218   124 17000    11  1000    NA   263    67     6   124   189
 [267]    67   101   151   235     0   153     0    34   295     0    50    63     0     0
 [281]     0    23    57     0 14000     0   258 13000     0     0     0     0 12000    80
 [295]   285    55 16000    21    10   165   226    14     0   456    77   207     0   380
 [309] 17000   541   719   670     0    26   420    63    52   385    19     6  2000    31
 [323]   521    20   342   208 17000   611     9     0     0   116     0   127    10    20
 [337]     0     0   475     0     0    44   165     0   394    81    70   212   102   663
 [351]   212     0   188   487 12000   420     0    97   107     0   368 17000     7     0
 [365] 21000   323     0   335    21    12     0   221     0 14000    50     0   719   521
 [379]    87   101   209   176 12000     0   107     0    81    79     0   128   468  2000
 [393]    96   378   101   357     0   750   521   249     0   545   266    36    NA    79
 [407]    36   420   278 12000   278     0    28   168   218   532   323   252   681     6
 [421]   102    99   189   763  1000    36    88    67    38   153     0    62   218     0
 [435] 21000    55   293 13000     0   378   480 13000    12   255    56    75    23    88
 [449]    31   221    88   278 17000    91    77   610   163     0   221    NA   165   154
 [463]   333   117    10   101    30   189   301   503   452   425    40    21   153    81
 [477]   438    69   266    NA    11    25    31    57   258    25    65     0 13000    92
 [491]    93    84    79   357    43    64   287   252   503     0   750    42    14     0
 [505]    63     0   545     0  2000    28    62    18   420   394   221   309    54   101
 [519]     5    11    45   275   776 14000    35     0     0   335     0   107    88   163
 [533]   212    16   255   221 14000    NA    87   258     0    10   386    NA   473 14000
 [547]   845   126     0   274    27   272   109    72   763    17   383    41   545    10
 [561]   253   212     0    22     0     0   272     6    72     0   532   285    41     0
 [575]     0    30     0   212   218     0    84     0    80   487     0   357     5  2000
 [589] 16000 14000   420   212    69    NA   488     0   545    84   130   845   906   473
 [603] 13000     0 14000     0     0     0    28   380   905   218  2000   541    43    84
 [617]    24   163    40     5   323     8    13   101     6     0    14   105   101   212
 [631]    31   171     0   275    29  3000   448    18   101     0    44     0   116   335
 [645]    36    NA    38     4 14000    76   278    77   759 14000     0  2000   719    54
 [659]     0     0   285   258   480 11000 16000   212   610   226     0   179   119     0
 [673]    87    43   368   687   468     0   545   545   212   138  4000 21000   368    NA
 [687]    36     0    72  2000    38   436   521   175   670   116    42 14000   759   176
 [701]    10   322    84     0    12    11 16000     8    25     0   116    64     0    12
 [715]    10 21000   218   258   165   608    59    41   175     6   473    30    35     0
 [729] 12000   163    47   708   420   124     0     0     0    55    13   188   212   197
 [743]     0    18   253     0 12000    48   480    32     0   234    28   105   610    50
 [757]    18    NA    11    14     0   737    24     0   845     7   165    97    11    38
 [771]   181 11000 16000   162   209    80    69     2    53     0    39   258     0 11000
 [785]    50    17   456     0   488    25    93   124     0   545     0   293     0    23
 [799]    37   394   167    91    48   179  2000    34   436   192   892   258     3   131
 [813]    84    65 16000    11    NA    70    32    10     0   153    30   189   545   143
 [827]    NA   138    51   357   420    83   108    NA   163    10     0    25   116    12
 [841]   503   293    72    39    58   521   189    52   845    61 12000   125   124   272
 [855]    52 16000     0    NA 16000    96     0     9    53    70    50    39 21000   317
 [869]   287    81    17    82   607   226   101     3    91 16000    99 12000   541   159
 [883]    45    33     0    11    33   906    59     0     0    13     0   125   394     0
 [897]   488    94    44   102   234   309   383  1000    17   108 16000   473     0   438
 [911]   161 14000     0   235    58     0   422     0    71   869 17000   180    13   101
 [925]   176    14   129    80    53    58   488  3000   274   293   285    65 14000     0
 [939]    80    97   277   235    43     0    51   252     0   241   155   488   295     9
 [953]    62    43    12   148   152   249   174    99   160    71    NA     5    23    39
 [967]    75   213   154    79     0    34    12 16000     0 21000    50    41    22   473
 [981]    77   644   287    71    75    38    17    73     0     0     0     0   160     0
 [995]    NA    31     9 16000    58   503
 [ reached getOption("max.print") -- omitted 4043 entries ]
#Max Director FB Likes
directorfblikesmax = max(director_fb_likes, na.rm = TRUE)
directorfblikesmax
[1] 23000
#Min Director FB Likes
directorfblikesmin = min(director_fb_likes, na.rm = TRUE)
directorfblikesmin
[1] 0
#Range
directorfblikesrange = directorfblikesmax-directorfblikesmin
directorfblikesrange
[1] 23000
#Mean
directorfblikesmean = mean(director_fb_likes, na.rm = TRUE)
directorfblikesmean
[1] 686.5092
#Standard Deviation
directorfblikessd = sd(director_fb_likes, na.rm = TRUE)
directorfblikessd
[1] 2813.329
#Variance
directorfblikesvar = var(director_fb_likes, na.rm = TRUE)
directorfblikesvar
[1] 7914818

Critc Reviews Data

critic_reviews = mydata$critic_reviews
critic_reviews
#Max Critic Reviews
criticreviewsmax = max(critic_reviews, na.rm = TRUE)
criticreviewsmax

#Min Critic Reviews
criticreviewsmin = min(critic_reviews, na.rm = TRUE)
criticreviewsmin

#Range
criticreviewsrange = criticreviewsmax-criticreviewsmin
criticreviewsrange

#Mean
criticreviewsmean = mean(critic_reviews, na.rm = TRUE)
criticreviewsmean

#Standard Deviation
criticreviewssd = sd(critic_reviews, na.rm = TRUE)
criticreviewssd

#Variance
criticreviewsvar = var(critic_reviews, na.rm = TRUE)
criticreviewsvar

Task 2

Summary of Data

summary(mydata)
                        title                       genres                 director   
 Ben-Hur                  :   3   Drama               : 236                   : 104  
 Halloween                :   3   Comedy              : 209   Steven Spielberg:  26  
 Home                     :   3   Comedy|Drama        : 191   Woody Allen     :  22  
 King Kong                :   3   Comedy|Drama|Romance: 187   Clint Eastwood  :  20  
 Pan                      :   3   Comedy|Romance      : 158   Martin Scorsese :  20  
 The Fast and the Furious :   3   Drama|Romance       : 152   Ridley Scott    :  17  
 (Other)                   :5025   (Other)             :3910   (Other)         :4834  
               actor1                 actor2                actor3         length     
 Robert De Niro   :  49   Morgan Freeman :  20                 :  23   Min.   :  7.0  
 Johnny Depp      :  41   Charlize Theron:  15   Ben Mendelsohn:   8   1st Qu.: 93.0  
 Nicolas Cage     :  33   Brad Pitt      :  14   John Heard    :   8   Median :103.0  
 J.K. Simmons     :  31                  :  13   Steve Coogan  :   8   Mean   :107.2  
 Bruce Willis     :  30   James Franco   :  11   Anne Hathaway :   7   3rd Qu.:118.0  
 Denzel Washington:  30   Meryl Streep   :  11   Jon Gries     :   7   Max.   :511.0  
 (Other)          :4829   (Other)        :4959   (Other)       :4982   NA's   :15     
     budget          director_fb_likes actor1_fb_likes  actor2_fb_likes  actor3_fb_likes  
 Min.   :2.180e+02   Min.   :    0.0   Min.   :     0   Min.   :     0   Min.   :    0.0  
 1st Qu.:6.000e+06   1st Qu.:    7.0   1st Qu.:   614   1st Qu.:   281   1st Qu.:  133.0  
 Median :2.000e+07   Median :   49.0   Median :   988   Median :   595   Median :  371.5  
 Mean   :3.975e+07   Mean   :  686.5   Mean   :  6560   Mean   :  1652   Mean   :  645.0  
 3rd Qu.:4.500e+07   3rd Qu.:  194.5   3rd Qu.: 11000   3rd Qu.:   918   3rd Qu.:  636.0  
 Max.   :1.222e+10   Max.   :23000.0   Max.   :640000   Max.   :137000   Max.   :23000.0  
 NA's   :492         NA's   :104       NA's   :7        NA's   :13       NA's   :23       
 total_cast_likes    fb_likes      critic_reviews  users_reviews     users_votes     
 Min.   :     0   Min.   :     0   Min.   :  1.0   Min.   :   1.0   Min.   :      5  
 1st Qu.:  1411   1st Qu.:     0   1st Qu.: 50.0   1st Qu.:  65.0   1st Qu.:   8594  
 Median :  3090   Median :   166   Median :110.0   Median : 156.0   Median :  34359  
 Mean   :  9699   Mean   :  7526   Mean   :140.2   Mean   : 272.8   Mean   :  83668  
 3rd Qu.: 13756   3rd Qu.:  3000   3rd Qu.:195.0   3rd Qu.: 326.0   3rd Qu.:  96309  
 Max.   :656730   Max.   :349000   Max.   :813.0   Max.   :5060.0   Max.   :1689764  
                                   NA's   :50      NA's   :21                        
     score        aspect_ratio       gross                year     
 Min.   :1.600   Min.   : 1.18   Min.   :      162   Min.   :1916  
 1st Qu.:5.800   1st Qu.: 1.85   1st Qu.:  5340988   1st Qu.:1999  
 Median :6.600   Median : 2.35   Median : 25517500   Median :2005  
 Mean   :6.442   Mean   : 2.22   Mean   : 48468408   Mean   :2002  
 3rd Qu.:7.200   3rd Qu.: 2.35   3rd Qu.: 62309438   3rd Qu.:2011  
 Max.   :9.500   Max.   :16.00   Max.   :760505847   Max.   :2016  
                 NA's   :329     NA's   :884         NA's   :108   

Gross Plot

plot(gross)

Increasing Gross Plot

#xlab labels the x axis, ylab labels the y axis
plot(gross, type="b", xlab = "Case Number", ylab = "Gross in $1,000") 

Comparative Data Graphs

#Layout allows us to see all 4 graphs on one screen
layout(matrix(1:4,2,2))
#Example of how to plot the gross variable
plot(gross, type="b", xlab = "Case Number", ylab = "Gross in $1,000") 
#Plot of Users Votes
plot(users_votes, type="b", xlab = "Case Number", ylab = "Users Votes in $1,000")
#Plot of Total Cast Likes
plot(total_cast_likes, type="b", xlab = "Case Number", ylab = "Total Cast Likes in $1,000")
#Plot of Director FB Likes
plot(director_fb_likes, type="b", xlab = "Case Number", ylab = "Director FB Likes in $1,000")

#Plot of Critic Reviews
plot(critic_reviews, type="b", xlab = "Case Number", ylab = "Critic Reviews in $1,000")

Reordering Data

newdata = mydata[order(-gross),]
newgross = newdata$gross
newdata = mydata[order(-users_votes),]
newusersvotes = newdata$users_votes
newdata = mydata[order(-total_cast_likes),]
newtotalcastlikes = newdata$total_cast_likes
newdata = mydata[order(-director_fb_likes),]
newdirectorfblikes = newdata$director_fb_likes
newdata = mydata[order(-critic_reviews),]
newcriticreviews = newdata$critic_reviews

New Data Plots

#Layout allows us to see all 4 graphs on one screen
layout(matrix(1:4,2,2))
#Example of how to plot the sales variable
plot(newgross, type="b", xlab = "Case Number", ylab = "Gross in $1,000") 
#Example of how to plot the sales variable
plot(newusersvotes, type="b", xlab = "Case Number", ylab = "Users Votes in $1,000") 
#Example of how to plot the sales variable
plot(newtotalcastlikes, type="b", xlab = "Case Number", ylab = "Total Cast Likes in $1,000") 
#Example of how to plot the sales variable
plot(newdirectorfblikes, type="b", xlab = "Case Number", ylab = "Director FB Likes in $1,000") 

#Example of how to plot the sales variable
plot(newcriticreviews, type="b", xlab = "Case Number", ylab = "Critic Reviews in $1,000") 


Task 3

Given a total gross value of 10214013, calculate the corresponding z-value or z-score using the mean and standard deviation calculations conducted in task 1.

zscore = (10214013 - grossmean)/grosssd
zscore
[1] -0.5588418

Based on the z-values, how would you rate a $10214013 gross value: poor, average, good, or very good performance? Explain your logic.

Well our zscore for gross is negative which indicates that it falls below the mean by .5 . I can conclude that because gross fell below the mean, I would rate it as poor performace.

LS0tCnRpdGxlOiAiQnVzaW5lc3MgQW5hbHl0aWNzIExhYiBXb3Jrc2hlZXQgMDMiCmF1dGhvcjogIkthdGllIEtvdXZlbGlzIgpkYXRlOiAiSnVseSAxOSIKb3V0cHV0OgogIGh0bWxfbm90ZWJvb2s6IGRlZmF1bHQKICBodG1sX2RvY3VtZW50OiBkZWZhdWx0CiAgcGRmX2RvY3VtZW50OiBkZWZhdWx0CnN1YnRpdGxlOiBDTUUgR3JvdXAgRm91bmRhdGlvbiBCdXNpbmVzcyBBbmFseXRpY3MgTGFiCi0tLQoKCi0tLS0tLS0tLS0KCiMjIyBUYXNrIDEKCiMjIyNSb3R0ZW4gVG9tYXRvZXMgRGF0YQoKYGBge3J9Cm15ZGF0YSA9IHJlYWQuY3N2KGZpbGU9ImRhdGEvcm90dGVudG9tYXRvZXMuY3N2IikKaGVhZChteWRhdGEpCmBgYAoKCiMjIyNHcm9zcyBEYXRhIApgYGB7cn0KZ3Jvc3MgPSBteWRhdGEkZ3Jvc3MKZ3Jvc3MKI01heCBHcm9zcwpncm9zc21heCA9IG1heChncm9zcywgbmEucm0gPSBUUlVFKQpncm9zc21heAoKI01pbiBHcm9zcwpncm9zc21pbiA9IG1pbihncm9zcywgbmEucm0gPSBUUlVFKQpncm9zc21pbgoKI1JhbmdlCmdyb3NzcmFuZ2UgPSBncm9zc21heC1ncm9zc21pbgpncm9zc3JhbmdlCgojTWVhbgpncm9zc21lYW4gPSBtZWFuKGdyb3NzLCBuYS5ybSA9IFRSVUUpCmdyb3NzbWVhbgoKI1N0YW5kYXJkIERldmlhdGlvbgpncm9zc3NkID0gc2QoZ3Jvc3MsIG5hLnJtID0gVFJVRSkKZ3Jvc3NzZAoKI1ZhcmlhbmNlCmdyb3NzdmFyID0gdmFyKGdyb3NzLCBuYS5ybSA9IFRSVUUpCmdyb3NzdmFyCgpgYGAKCgojIyMjVXNlcnMgVm90ZXMgRGF0YSAKYGBge3J9CnVzZXJzX3ZvdGVzID0gbXlkYXRhJHVzZXJzX3ZvdGVzCnVzZXJzX3ZvdGVzCiNNYXggVXNlcnMgVm90ZXMKdXNlcnN2b3Rlc21heCA9IG1heCh1c2Vyc192b3RlcywgbmEucm0gPSBUUlVFKQp1c2Vyc3ZvdGVzbWF4CgojTWluIFVzZXJzIFZvdGVzCnVzZXJzdm90ZXNtaW4gPSBtaW4odXNlcnNfdm90ZXMsIG5hLnJtID0gVFJVRSkKdXNlcnN2b3Rlc21pbgoKI1JhbmdlCnVzZXJzdm90ZXNyYW5nZSA9IHVzZXJzdm90ZXNtYXgtdXNlcnN2b3Rlc21pbgp1c2Vyc3ZvdGVzcmFuZ2UKCiNNZWFuCnVzZXJzdm90ZXNtZWFuID0gbWVhbih1c2Vyc192b3RlcywgbmEucm0gPSBUUlVFKQp1c2Vyc3ZvdGVzbWVhbgoKI1N0YW5kYXJkIERldmlhdGlvbgp1c2Vyc3ZvdGVzc2QgPSBzZCh1c2Vyc192b3RlcywgbmEucm0gPSBUUlVFKQp1c2Vyc3ZvdGVzc2QKCiNWYXJpYW5jZQp1c2Vyc3ZvdGVzdmFyID0gdmFyKHVzZXJzX3ZvdGVzLCBuYS5ybSA9IFRSVUUpCnVzZXJzdm90ZXN2YXIKCmBgYAojIyMjVG90YWwgQ2FzdCBMaWtlcyBEYXRhIApgYGB7cn0KdG90YWxfY2FzdF9saWtlcyA9IG15ZGF0YSR0b3RhbF9jYXN0X2xpa2VzCnRvdGFsX2Nhc3RfbGlrZXMKI01heCBUb3RhbCBDYXN0IExpa2VzCnRvdGFsY2FzdGxpa2VzbWF4ID0gbWF4KHRvdGFsX2Nhc3RfbGlrZXMsIG5hLnJtID0gVFJVRSkKdG90YWxjYXN0bGlrZXNtYXgKCiNNaW4gVG90YWwgQ2FzdCBMaWtlcwp0b3RhbGNhc3RsaWtlc21pbiA9IG1pbih0b3RhbF9jYXN0X2xpa2VzLCBuYS5ybSA9IFRSVUUpCnRvdGFsY2FzdGxpa2VzbWluCgojUmFuZ2UKdG90YWxjYXN0bGlrZXNyYW5nZSA9IHRvdGFsY2FzdGxpa2VzbWF4LXRvdGFsY2FzdGxpa2VzbWluCnRvdGFsY2FzdGxpa2VzcmFuZ2UKCiNNZWFuCnRvdGFsY2FzdGxpa2VzbWVhbiA9IG1lYW4odG90YWxfY2FzdF9saWtlcywgbmEucm0gPSBUUlVFKQp0b3RhbGNhc3RsaWtlc21lYW4KCiNTdGFuZGFyZCBEZXZpYXRpb24KdG90YWxjYXN0bGlrZXNzZCA9IHNkKHRvdGFsX2Nhc3RfbGlrZXMsIG5hLnJtID0gVFJVRSkKdG90YWxjYXN0bGlrZXNzZAoKI1ZhcmlhbmNlCnRvdGFsY2FzdGxpa2VzdmFyID0gdmFyKHRvdGFsX2Nhc3RfbGlrZXMsIG5hLnJtID0gVFJVRSkKdG90YWxjYXN0bGlrZXN2YXIKCmBgYAoKIyMjI0RpcmVjdG9yIEZCIExpa2VzIERhdGEgCmBgYHtyfQpkaXJlY3Rvcl9mYl9saWtlcyA9IG15ZGF0YSRkaXJlY3Rvcl9mYl9saWtlcwpkaXJlY3Rvcl9mYl9saWtlcwojTWF4IERpcmVjdG9yIEZCIExpa2VzCmRpcmVjdG9yZmJsaWtlc21heCA9IG1heChkaXJlY3Rvcl9mYl9saWtlcywgbmEucm0gPSBUUlVFKQpkaXJlY3RvcmZibGlrZXNtYXgKCiNNaW4gRGlyZWN0b3IgRkIgTGlrZXMKZGlyZWN0b3JmYmxpa2VzbWluID0gbWluKGRpcmVjdG9yX2ZiX2xpa2VzLCBuYS5ybSA9IFRSVUUpCmRpcmVjdG9yZmJsaWtlc21pbgoKI1JhbmdlCmRpcmVjdG9yZmJsaWtlc3JhbmdlID0gZGlyZWN0b3JmYmxpa2VzbWF4LWRpcmVjdG9yZmJsaWtlc21pbgpkaXJlY3RvcmZibGlrZXNyYW5nZQoKI01lYW4KZGlyZWN0b3JmYmxpa2VzbWVhbiA9IG1lYW4oZGlyZWN0b3JfZmJfbGlrZXMsIG5hLnJtID0gVFJVRSkKZGlyZWN0b3JmYmxpa2VzbWVhbgoKI1N0YW5kYXJkIERldmlhdGlvbgpkaXJlY3RvcmZibGlrZXNzZCA9IHNkKGRpcmVjdG9yX2ZiX2xpa2VzLCBuYS5ybSA9IFRSVUUpCmRpcmVjdG9yZmJsaWtlc3NkCgojVmFyaWFuY2UKZGlyZWN0b3JmYmxpa2VzdmFyID0gdmFyKGRpcmVjdG9yX2ZiX2xpa2VzLCBuYS5ybSA9IFRSVUUpCmRpcmVjdG9yZmJsaWtlc3ZhcgoKYGBgCiMjIyNDcml0YyBSZXZpZXdzIERhdGEgCmBgYHtyfQpjcml0aWNfcmV2aWV3cyA9IG15ZGF0YSRjcml0aWNfcmV2aWV3cwpjcml0aWNfcmV2aWV3cwojTWF4IENyaXRpYyBSZXZpZXdzCmNyaXRpY3Jldmlld3NtYXggPSBtYXgoY3JpdGljX3Jldmlld3MsIG5hLnJtID0gVFJVRSkKY3JpdGljcmV2aWV3c21heAoKI01pbiBDcml0aWMgUmV2aWV3cwpjcml0aWNyZXZpZXdzbWluID0gbWluKGNyaXRpY19yZXZpZXdzLCBuYS5ybSA9IFRSVUUpCmNyaXRpY3Jldmlld3NtaW4KCiNSYW5nZQpjcml0aWNyZXZpZXdzcmFuZ2UgPSBjcml0aWNyZXZpZXdzbWF4LWNyaXRpY3Jldmlld3NtaW4KY3JpdGljcmV2aWV3c3JhbmdlCgojTWVhbgpjcml0aWNyZXZpZXdzbWVhbiA9IG1lYW4oY3JpdGljX3Jldmlld3MsIG5hLnJtID0gVFJVRSkKY3JpdGljcmV2aWV3c21lYW4KCiNTdGFuZGFyZCBEZXZpYXRpb24KY3JpdGljcmV2aWV3c3NkID0gc2QoY3JpdGljX3Jldmlld3MsIG5hLnJtID0gVFJVRSkKY3JpdGljcmV2aWV3c3NkCgojVmFyaWFuY2UKY3JpdGljcmV2aWV3c3ZhciA9IHZhcihjcml0aWNfcmV2aWV3cywgbmEucm0gPSBUUlVFKQpjcml0aWNyZXZpZXdzdmFyCmBgYAotLS0tLS0tLS0tCgojIyMgVGFzayAyCgojIyMjU3VtbWFyeSBvZiBEYXRhCgpgYGB7cn0Kc3VtbWFyeShteWRhdGEpCmBgYAoKIyMjI0dyb3NzIFBsb3QKCmBgYHtyfQpwbG90KGdyb3NzKQpgYGAKCiMjIyNJbmNyZWFzaW5nIEdyb3NzIFBsb3QKCmBgYHtyfQojeGxhYiBsYWJlbHMgdGhlIHggYXhpcywgeWxhYiBsYWJlbHMgdGhlIHkgYXhpcwpwbG90KGdyb3NzLCB0eXBlPSJiIiwgeGxhYiA9ICJDYXNlIE51bWJlciIsIHlsYWIgPSAiR3Jvc3MgaW4gJDEsMDAwIikgCmBgYAoKIyMjI0NvbXBhcmF0aXZlIERhdGEgR3JhcGhzCmBgYHtyfQojTGF5b3V0IGFsbG93cyB1cyB0byBzZWUgYWxsIDQgZ3JhcGhzIG9uIG9uZSBzY3JlZW4KbGF5b3V0KG1hdHJpeCgxOjQsMiwyKSkKCiNFeGFtcGxlIG9mIGhvdyB0byBwbG90IHRoZSBncm9zcyB2YXJpYWJsZQpwbG90KGdyb3NzLCB0eXBlPSJiIiwgeGxhYiA9ICJDYXNlIE51bWJlciIsIHlsYWIgPSAiR3Jvc3MgaW4gJDEsMDAwIikgCgojUGxvdCBvZiBVc2VycyBWb3RlcwpwbG90KHVzZXJzX3ZvdGVzLCB0eXBlPSJiIiwgeGxhYiA9ICJDYXNlIE51bWJlciIsIHlsYWIgPSAiVXNlcnMgVm90ZXMgaW4gJDEsMDAwIikKI1Bsb3Qgb2YgVG90YWwgQ2FzdCBMaWtlcwpwbG90KHRvdGFsX2Nhc3RfbGlrZXMsIHR5cGU9ImIiLCB4bGFiID0gIkNhc2UgTnVtYmVyIiwgeWxhYiA9ICJUb3RhbCBDYXN0IExpa2VzIGluICQxLDAwMCIpCiNQbG90IG9mIERpcmVjdG9yIEZCIExpa2VzCnBsb3QoZGlyZWN0b3JfZmJfbGlrZXMsIHR5cGU9ImIiLCB4bGFiID0gIkNhc2UgTnVtYmVyIiwgeWxhYiA9ICJEaXJlY3RvciBGQiBMaWtlcyBpbiAkMSwwMDAiKQojUGxvdCBvZiBDcml0aWMgUmV2aWV3cwpwbG90KGNyaXRpY19yZXZpZXdzLCB0eXBlPSJiIiwgeGxhYiA9ICJDYXNlIE51bWJlciIsIHlsYWIgPSAiQ3JpdGljIFJldmlld3MgaW4gJDEsMDAwIikKYGBgCgojIyMjUmVvcmRlcmluZyBEYXRhIAoKYGBge3J9Cm5ld2RhdGEgPSBteWRhdGFbb3JkZXIoLWdyb3NzKSxdCm5ld2dyb3NzID0gbmV3ZGF0YSRncm9zcwpuZXdkYXRhID0gbXlkYXRhW29yZGVyKC11c2Vyc192b3RlcyksXQpuZXd1c2Vyc3ZvdGVzID0gbmV3ZGF0YSR1c2Vyc192b3RlcwpuZXdkYXRhID0gbXlkYXRhW29yZGVyKC10b3RhbF9jYXN0X2xpa2VzKSxdCm5ld3RvdGFsY2FzdGxpa2VzID0gbmV3ZGF0YSR0b3RhbF9jYXN0X2xpa2VzCm5ld2RhdGEgPSBteWRhdGFbb3JkZXIoLWRpcmVjdG9yX2ZiX2xpa2VzKSxdCm5ld2RpcmVjdG9yZmJsaWtlcyA9IG5ld2RhdGEkZGlyZWN0b3JfZmJfbGlrZXMKbmV3ZGF0YSA9IG15ZGF0YVtvcmRlcigtY3JpdGljX3Jldmlld3MpLF0KbmV3Y3JpdGljcmV2aWV3cyA9IG5ld2RhdGEkY3JpdGljX3Jldmlld3MKYGBgCgojIyMjTmV3IERhdGEgUGxvdHMKYGBge3J9CiNMYXlvdXQgYWxsb3dzIHVzIHRvIHNlZSBhbGwgNCBncmFwaHMgb24gb25lIHNjcmVlbgpsYXlvdXQobWF0cml4KDE6NCwyLDIpKQoKI0V4YW1wbGUgb2YgaG93IHRvIHBsb3QgdGhlIHNhbGVzIHZhcmlhYmxlCnBsb3QobmV3Z3Jvc3MsIHR5cGU9ImIiLCB4bGFiID0gIkNhc2UgTnVtYmVyIiwgeWxhYiA9ICJHcm9zcyBpbiAkMSwwMDAiKSAKI0V4YW1wbGUgb2YgaG93IHRvIHBsb3QgdGhlIHNhbGVzIHZhcmlhYmxlCnBsb3QobmV3dXNlcnN2b3RlcywgdHlwZT0iYiIsIHhsYWIgPSAiQ2FzZSBOdW1iZXIiLCB5bGFiID0gIlVzZXJzIFZvdGVzIGluICQxLDAwMCIpIAojRXhhbXBsZSBvZiBob3cgdG8gcGxvdCB0aGUgc2FsZXMgdmFyaWFibGUKcGxvdChuZXd0b3RhbGNhc3RsaWtlcywgdHlwZT0iYiIsIHhsYWIgPSAiQ2FzZSBOdW1iZXIiLCB5bGFiID0gIlRvdGFsIENhc3QgTGlrZXMgaW4gJDEsMDAwIikgCiNFeGFtcGxlIG9mIGhvdyB0byBwbG90IHRoZSBzYWxlcyB2YXJpYWJsZQpwbG90KG5ld2RpcmVjdG9yZmJsaWtlcywgdHlwZT0iYiIsIHhsYWIgPSAiQ2FzZSBOdW1iZXIiLCB5bGFiID0gIkRpcmVjdG9yIEZCIExpa2VzIGluICQxLDAwMCIpIAojRXhhbXBsZSBvZiBob3cgdG8gcGxvdCB0aGUgc2FsZXMgdmFyaWFibGUKcGxvdChuZXdjcml0aWNyZXZpZXdzLCB0eXBlPSJiIiwgeGxhYiA9ICJDYXNlIE51bWJlciIsIHlsYWIgPSAiQ3JpdGljIFJldmlld3MgaW4gJDEsMDAwIikgCmBgYAoKLS0tLS0tLS0tLQoKIyMjIFRhc2sgMwoKR2l2ZW4gYSB0b3RhbCBncm9zcyB2YWx1ZSBvZiAxMDIxNDAxMywgY2FsY3VsYXRlIHRoZSBjb3JyZXNwb25kaW5nIHotdmFsdWUgb3Igei1zY29yZSB1c2luZyB0aGUgbWVhbiBhbmQgc3RhbmRhcmQgZGV2aWF0aW9uIGNhbGN1bGF0aW9ucyBjb25kdWN0ZWQgaW4gdGFzayAxLiAKCgpgYGB7cn0KenNjb3JlID0gKDEwMjE0MDEzIC0gZ3Jvc3NtZWFuKS9ncm9zc3NkCnpzY29yZQpgYGAKCkJhc2VkIG9uIHRoZSB6LXZhbHVlcywgaG93IHdvdWxkIHlvdSByYXRlIGEgYCQxMDIxNDAxM2AgZ3Jvc3MgdmFsdWU6IHBvb3IsIGF2ZXJhZ2UsIGdvb2QsIG9yIHZlcnkgZ29vZCBwZXJmb3JtYW5jZT8gRXhwbGFpbiB5b3VyIGxvZ2ljLiAKCldlbGwgb3VyIHpzY29yZSBmb3IgZ3Jvc3MgaXMgbmVnYXRpdmUgd2hpY2ggaW5kaWNhdGVzIHRoYXQgaXQgZmFsbHMgYmVsb3cgdGhlIG1lYW4gYnkgLjUgLiBJIGNhbiBjb25jbHVkZSB0aGF0IGJlY2F1c2UgZ3Jvc3MgZmVsbCBiZWxvdyB0aGUgbWVhbiwgSSB3b3VsZCByYXRlIGl0IGFzIHBvb3IgcGVyZm9ybWFjZS4gCg==