Star Schema

Star Schema


Task 2

mydata = read.csv(file="data/Scoring.csv")
head(mydata)
#Extracting the status Column
Status = mydata$Status 
#Calling the status Column
Status
   [1] good good bad  good good good good good good bad  good good good good bad  good good good bad  good bad  good bad  good good good good good bad  good bad  good good good good good good bad  good bad  good good
  [43] bad  bad  good good good bad  good good good good good good bad  good good good good good good bad  good good good good good good good good good good good good good good good good good good good bad  good good
  [85] good good good bad  bad  good bad  good good good good bad  good good good good good good bad  bad  good bad  bad  good bad  good good bad  bad  good bad  bad  good good good good good bad  good good good bad 
 [127] good good good good bad  good good good good good bad  good good bad  good good good good bad  bad  good good good good bad  good bad  bad  good good good good good good good good good good bad  good bad  good
 [169] good good good good bad  good good bad  good good good bad  good good good good good good bad  good bad  good good good good bad  good good good good good good good good good good good good bad  good good good
 [211] good bad  bad  good bad  good good good good good good good good good good good good good bad  good good bad  good good good good good good bad  bad  good good good bad  bad  good good bad  good good good good
 [253] good good good good good bad  good good good good good good good good bad  good good good good good bad  good good bad  good good good good good good good good good good good good good good good good good bad 
 [295] bad  good good good bad  good good bad  good bad  bad  bad  good good bad  bad  good good bad  good good bad  good good bad  good bad  good good good good good bad  good good good bad  bad  good good good good
 [337] bad  good good good good good good good bad  bad  bad  good good good bad  good good bad  good bad  good good bad  good good bad  good bad  good good good good good good good good bad  good good good good bad 
 [379] good good good bad  good good good good good bad  good good bad  bad  bad  good good bad  good bad  bad  good bad  good bad  good good good good good bad  good good good good good bad  bad  good good good bad 
 [421] good bad  good bad  bad  good bad  good good bad  good good good bad  good good bad  good good good good bad  good good good bad  good good good bad  bad  good good good good good good good bad  good bad  good
 [463] good good bad  good good good good good good good good good good good good good good good bad  bad  bad  good good good good good bad  good good good good bad  bad  bad  good bad  bad  good bad  good bad  good
 [505] good good good bad  good bad  good good bad  good good good good good good good good bad  good good good good good good good good good bad  bad  good good good good good good good good good good good good bad 
 [547] bad  bad  good good good good good good bad  good bad  bad  good good good good bad  good bad  good good good good bad  good bad  bad  good bad  bad  good bad  bad  bad  good good good good good bad  good good
 [589] good good good bad  good good good good bad  good good good good bad  good good bad  bad  good good bad  good good good good good good good good good bad  good good bad  good bad  good good good bad  good good
 [631] bad  good good good good bad  good good good good bad  good good bad  good good bad  good bad  good bad  bad  bad  good good bad  good good good good good good good good good good good good good bad  bad  good
 [673] good good good bad  good good good bad  good bad  good good good good bad  good good good good good good bad  good good bad  bad  bad  good good good good good good bad  good bad  good good good bad  bad  bad 
 [715] good good good good good bad  good bad  good good good bad  good good bad  bad  bad  bad  bad  bad  good good good bad  good good good good bad  bad  good bad  good good good good good bad  good good good bad 
 [757] good good good bad  bad  good good good bad  bad  good bad  bad  good good good good good bad  good good good good good bad  good bad  good good good good good good bad  good good good good bad  bad  good good
 [799] good good good good good good bad  good good bad  bad  good good bad  bad  good good bad  good good bad  bad  bad  bad  good good good bad  good good good bad  good bad  good good good good good good bad  good
 [841] good good good good good good bad  good good good good good good good good bad  good good good good good bad  good good good good good bad  good bad  bad  good good bad  good bad  good bad  bad  good good bad 
 [883] good bad  good good bad  good bad  good bad  good good good good good good bad  good good good good good good good good good good good good bad  good good good good good good good good good bad  good good good
 [925] good good good good good good good bad  good good good good bad  good bad  bad  good good good bad  good good bad  bad  bad  good good good good good good good bad  good good bad  good bad  good bad  good bad 
 [967] good good bad  good good bad  good good good good good good good bad  good bad  good good good bad  good good good good good good good good bad  good good bad  good bad 
 [ reached getOption("max.print") -- omitted 3446 entries ]
Levels: bad good
#Extracting the Savings Column and Assets Column
Savings = mydata$Savings
Assets = mydata$Assets
#Calling the Savings Column
Savings
   [1]  4.2000000  4.9800000  1.9800000  7.9333333  7.0838710 12.8307692  1.8750000  2.7000000  0.8500000 -0.4000000  2.7130435  3.3784615  3.9600000  5.5440000  0.6750000  1.4933333  4.7200000  4.6000000  3.7090909
  [20]  4.8960000  2.4400000 15.2181818  0.2000000  4.1684211  4.3555556  3.6000000  6.3000000  3.5200000  0.4000000  3.1418182  6.9300000  6.5600000  2.7000000  4.4181818  2.5371429  7.8240000  2.4000000  1.6484211
  [39]  4.0000000  1.6984615  4.1333333 12.3157895  3.2160000 -0.1600000  4.4347826  4.3714286  5.1360000  6.4000000  4.3200000  2.8125000  1.0000000  9.8000000  4.5200000  2.1600000  0.7200000  3.9000000  3.3000000
  [58]  3.8000000 18.7500000  5.7377049  2.6181818  2.4500000  2.7600000  2.7720000  2.2666667  3.1800000  6.2500000  8.8235294  2.4900000  7.1200000  2.8200000 12.4000000 13.3200000  0.6171429  1.3200000  9.8400000
  [77]  0.0000000  3.7028571  2.9333333  0.3600000  5.8909091  0.4235294 13.6800000  7.5000000  0.6240000  7.3000000  2.7349229  0.5769231  5.1600000  2.2105263  2.8187919 14.9760000  8.5950000  7.2000000  4.5000000
  [96] 13.3920000  2.8421053  2.1120000  3.6000000  0.4160000  3.1090909  3.8000000  5.6492308  2.5846154 14.4000000  3.5200000 11.7500000  2.8500000  7.6114286  6.6947368  2.2720000  8.2835821  1.5120000 13.8268657
 [115]  0.6600000  7.4250000  3.8347826  2.4757895 13.7142857  5.0000000  3.8666667  1.8333333  6.8307692 15.0545455  9.1764706  2.5714286  4.8387097  1.8461538  2.2320000  4.1052632  0.6428571  4.8461538  7.5000000
 [134] 11.5714286  7.7076923  4.6666667  2.8695652  2.4545455  2.9040000  5.4750000  1.2600000  1.6421053  5.0040000 20.2353333  3.0461538 -0.1270588 16.2857143  2.2000000  4.6000000 14.4000000  2.3040000  8.4545455
 [153]  0.0000000  7.2857143  0.7840000  4.0400000  1.3600000 12.8571429  1.7760000  2.3225806  3.4036364  8.6160000 16.0200000  3.7800000 17.5483871  1.6000000  3.0000000  2.5600000  0.5076923  6.7200000  3.9111111
 [172]  1.4823529  2.7428571  9.0000000  2.1378579  7.9000000  5.2000000 20.6250000  2.6000000  1.6000000  4.4336842  0.4285714  5.3520000  2.5000000  3.1714286  5.4562909  2.2500000  2.1000000  2.2971429  5.2800000
 [191]  6.4800000  5.1000000  1.6800000  0.9900000  2.1000000  0.6315789  1.6822430  9.6413793  1.7500000  1.8285714  2.7840000  8.9294118  8.0914286  6.0000000 -1.1280000  5.9600000  1.8000000  3.7800000  1.5300000
 [210]  3.7080000  3.3000000  1.0080000  2.5440000  4.7500000  5.6000000  1.2545455  3.0240000  3.7200000  4.4727273  6.0000000  8.1473684  3.3722628  3.5040000  7.0121951  6.2280000  7.0000000  2.9100000  4.7666667
 [229]  3.0600000  2.2000000  0.0000000  4.7400000  2.8695652  3.6000000  2.5714286  3.1800000  2.9647059 12.1000000  6.6171429  2.6222222  3.8400000  3.6000000 11.4600000  6.9529412  1.2631579  9.9000000 14.2500000
 [248]  1.3333333  4.8311688  4.7500000  4.4571429  4.5500000  3.1309091  4.5000000  3.6000000  4.2923077 15.1404000  2.0160000  5.7085714  6.3000000 11.2400000  2.6891566  4.9200000  9.2880000  7.0129870  6.4285714
 [267]  1.6800000  8.4960000  5.8200000  1.7684211  3.4800000  2.8200000  4.2000000  2.5440000  4.5333333 -0.3000000  4.6153846 11.3400000  1.9200000  3.4690909  6.1600000  3.7800000  0.5294118 13.9636364  6.8000000
 [286]  3.5000000  5.0181818  6.5400000  6.5700000  5.9142857  2.1600000  0.1200000  3.1456311  1.5000000  4.5257143  0.8640000  8.2200000  0.6720000  0.3157895  5.4857143  1.8514286 -0.9913043 -0.2000000  2.1600000
 [305]  1.5230769  7.4400000  2.0057143 -0.1440000  0.7000000  0.9415385 10.8461539  1.4400000  3.9085714  2.3571429  3.1200000  0.8000000 14.5600000  2.4500000  1.2218182  6.1714286  3.0000000  7.7700000  7.1092437
 [324]  2.0347826  2.6896552 14.3684211 -0.9000000 12.7800000  4.0727273  0.3888889  4.9578947 -1.6013592  7.1250000 13.2857143  3.3458824  2.7716129  3.0000000  4.0800000  2.9200000  3.1090909  5.6400000 -0.6250000
 [343]  5.6290909  5.5457143 -1.8162162 -1.4117647 -7.2000000  7.6800000  1.4400000  2.6040000  5.7303371 -1.8000000  8.8800000  2.0250000  1.4400000  3.0580645  4.0909091 14.9600000  3.6000000  6.4285714  4.3333333
 [362]  0.1200000  5.6000000  2.3400000  2.6511628  7.5420000  4.8000000 -0.4800000  5.9250000 15.0000000  7.9800000  3.0923077  3.7384615  2.6400000  1.5545455 -4.0806000  2.7600000  5.5200000  4.1280000  2.6800000
 [381]  5.1120000  1.9200000 10.2000000 13.5000000  1.6615385  4.3058824  5.2800000  4.8000000  8.4720000  6.6000000  5.4705882 -0.6720000  2.7428571 -1.1868132  4.5600000  6.7200000  3.5000000  7.6363636  1.8000000
 [400]  3.7500000  3.7777778  4.8500000  2.8486957  4.9285714  3.1285714  3.4971429  2.0800000  2.2560000  4.4210526  7.9462500  4.5428571  4.0320000  3.0514286  0.2278481  0.0900000 -5.8800000  1.3043478  5.3000000
 [419]  5.5200000  3.9927273  4.2666667 -0.5672727  2.0571429  1.2705882  2.1857143  4.4800000  2.0088106  2.3595506  6.7090909  2.7600000  7.4541176  7.8000000  8.1000000  7.8923077  1.3642105  7.0720000  1.3440000
 [438]  4.0000000  9.9840000 -0.1714286 12.8571429  1.9869767  2.3294118  4.7454545  1.7837838  0.3582090  5.2363636  0.4266667  1.0344828  8.3454545  2.8285714  3.6000000  7.3000000  6.2400000  6.0857143  1.6363636
 [457]  3.2275862  7.4000000  5.5555556  5.4800000  1.2681638  3.0000000  3.0428571  0.4444444  3.4800000  1.6363636  4.5818182  2.4000000  0.2571429  2.8588235  1.0000000  1.1500000  6.5000000  8.9760000 12.5250000
 [476]  5.2500000 -0.5866667 12.1714286  3.1600000  1.9800000  3.7800000 -0.7200000  0.7285714  1.8461538  2.9160000  2.3400000  5.5466667  2.2800000  2.3555556  4.0714286  5.8200000  4.2162162  1.6695652  2.5894737
 [495]  3.6000000  8.4000000  2.3333333  1.5000000  1.4000000  0.3600000  4.1600000  4.4800000  1.8720000  4.0800000  5.9294118  5.5875000  0.7200000  5.7000000  1.6363636  5.7402062  1.9090909  3.6000000 12.1371429
 [514]  2.2000000  7.2461538  2.4272727  6.9750000  1.8200000  2.3040000  5.6000000 30.4200000  4.0000000 20.8615385 10.7500000  5.3333333  1.6800000  2.6742857  6.2769231  3.2400000  7.1563636  2.9880000  0.2076923
 [533]  3.4560000  2.8800000  1.6524590  3.6000000  6.1764706  7.8400000  5.7240000  3.0500000 10.6666667  7.0400000  3.4800000 -0.5625000  0.4698947  0.4137931  3.2231405  7.4000000  7.3200000  2.6400000  2.9600000
 [552]  0.3469880 -1.0285714  6.8363636 -0.9062500 -0.1800000  6.6705882  2.4705882  3.4941176  6.5142857  1.1200000  2.0640000  1.3200000  9.9000000  0.2571429  5.0800000  2.8581818  2.6619718  6.6470588  1.8800000
 [571]  2.5405091  1.1840000  2.6500000  8.6117647  2.9200000  7.9000000  3.3600000  0.1551724  3.4800000  2.8500000  1.9636364  1.7454545  3.3517241 10.5000000  2.8800000  7.7400000  8.7000000  1.4769231  6.6428571
 [590]  2.9454545  1.5750000  0.5454545  1.7280000  1.9800000  1.3636364  3.3600000  4.1632653  3.1428571  6.7320000  4.0145455  0.1200000  2.3333333 20.2800000  2.3791304  8.2285714 13.3200000  3.0000000  0.0000000
 [609]  0.8000000  5.1000000 13.5000000  3.0000000  3.6955200  0.6776471  4.5176471  2.4000000  1.8947368  6.5167883  0.6776471  3.1418182  3.6000000 -0.1500000  7.2000000  2.4000000  2.2666667  6.6461538  3.9600000
 [628]  2.7818182  2.1600000 10.7368421 17.2444444  2.3261538  9.0000000  0.3818182  8.2000000  1.5000000  2.4000000  3.1090909  3.6428571  0.9692308  0.1125000 -1.3333333  3.7846154  2.6142857 -0.2571429  2.9280000
 [647]  3.0260870  3.3646154  1.5384615 10.8000000  1.2240000  2.7500000  0.1125000  9.0600000  8.7000000  9.8313253  6.3473684  5.5862069  1.3800000  2.9217391  7.2000000  9.2142857  0.3000000  4.5000000  7.9000000
 [666] 12.4000000  4.1071429  7.5000000  3.2400000 -0.4861091  0.9000000  3.6750000  5.4276923  7.0451613 -0.2173913  3.7107692  3.4457143 16.4000000  2.9090909  0.9000000  7.7142857 14.8800000  6.1565217  4.8648649
 [685]  1.0800000  1.3440000  2.1818182 18.9000000  3.5625000  0.2817391  3.7894737  3.1680000  8.4600000  7.0200000  7.7777778  3.4500000  3.2533333  7.0666667  0.6338028  0.4400000  6.0000000  6.5505882 -0.4258065
 [704]  0.7200000  3.3000000  3.5733333  5.1840000  2.1000000  3.5368421  5.0769231  4.8800000  1.2672000 -1.4786730  2.3142857 -0.1476923  1.2857143  0.6857143  2.3400000  6.9000000  5.8125000  2.3680000  3.3517241
 [723]  3.7894737  5.3866667  4.2545455 -0.3750000  0.7363636  6.1333333  3.3000000  1.8000000  3.7371429  2.5285714 11.0571429  6.6240000  2.3400000  1.1320755  4.2500000  1.9569231  3.3912000  2.9008000  7.7760000
 [742]  4.0444444  2.4000000  4.8947368  0.9000000 -0.5760000  3.7333333  2.0914286  5.2500000  6.7200000  0.1200000  1.2396694 23.1000000  3.3692308 -1.6000000  5.1330363  6.1333333  2.8000000  6.5000000  2.8235294
 [761]  3.0600000  3.2727273  2.2500000  3.2000000  0.5450000  3.4560000  2.2500000  0.3428571  0.8000000  2.8000000  9.1764706 20.4857143  4.8240000  6.1714286  3.2727273  9.5142857  0.6222222 11.7000000 -0.6600000
 [780]  1.1700000 -0.3375000  3.8000000  1.0028571  2.4428571  1.6740000 12.7358491  4.5000000  2.7230769  3.4285714  1.6800000 11.5000000  2.2950000  0.2400000  2.7600000  1.9200000  2.3333333  6.7800000  4.1400000
 [799]  5.4171429  4.5333333  1.1040000  4.2070588  5.3739130  3.7136842 18.7200000  2.9557895 -0.4200000  5.6914286  4.7154000  8.3200000 13.6666667  3.6809816 10.0884956  1.6500000  5.8500000  6.0000000  2.9400000
 [818]  9.0000000  4.7076923  3.4285714  3.6545455  2.7600000 -2.7000000  4.3200000  3.0600000 -1.4608696  1.4040000  5.3333333  3.5345455 -0.0800000  1.8991304  4.1142857  2.9760000  9.0000000  1.9920000  3.4200000
 [837] 30.2000000  6.9176471  0.9000000  4.0500000 10.5000000  3.4560000  5.9563636  6.1600000  1.9200000  3.8964706  0.2880000 -0.9000000  1.5300000  3.9000000  7.0819672  4.6200000  2.0600000  7.5789474  0.9913043
 [856]  4.1538462  4.4526316  2.1666667  5.3142857  0.5454545  2.8333333  2.1853659 -1.2960000 -1.0800000  3.0000000  6.0000000  2.1767442  2.1000000  3.6981818  4.7040000  9.4615385  2.9333333  5.2800000 -1.9200000
 [875]  4.3405714  6.6514286  5.1958763  2.5875000  3.5345455  0.7800000  1.2800000  2.0000000  3.0000000  3.1200000 -1.0588235  6.4500000 -0.3450000  3.6000000  3.5200000  3.3600000  5.0400000  3.7800000  5.0666667
 [894]  2.5600000  1.8897638  5.3076923  3.7166667  2.2702703  0.3085714  1.0200000  7.6909091  3.0000000  7.5085714  2.3750000  4.2000000  2.8421053  3.1200000  2.5548387  4.0800000  4.3200000  1.5840000  3.1680000
 [913]  4.5942857  1.6581818  3.7800000  7.6153846 26.0000000 16.2576923  2.7000000  2.4000000  1.8782609  3.8571429  1.0800000  8.0000000  1.5000000  3.7120000  2.2702703  7.4880000  2.2560000  5.3742857  2.2758621
 [932] -0.3900000  8.0616333  2.9364706  1.9285714  0.0000000 -2.8000000  8.0000000  5.4109091  7.2000000  0.2470588 -0.5142857  0.1107692  2.5699482  5.1428571  8.2568807  0.9375000 -1.6744186 -0.5400000 11.6000000
 [951]  2.1600000  3.0000000  0.9120000  6.5454545  4.7040000  2.5200000  5.4000000  2.8595745 -8.1600000  8.5371429  4.6200000  1.8500000  3.1058824  1.7431579  6.8347826  0.5714286  3.3600000  6.3529412  2.6000000
 [970]  3.7800000  3.0000000  0.9600000  4.0800000  8.4600000  2.0625000 11.2000000 13.0285714 10.6666667  1.9200000 -1.2500000  4.2201290  1.2600000  2.2105263  5.5333333  1.4100000  1.3764706  4.0800000  1.4500000
 [989]  7.8000000  2.4000000  1.8000000  6.0000000  4.8413793  2.4000000  9.6120000  2.8200000  5.1264000  3.2470588  2.0100000  1.5000000
 [ reached getOption("max.print") -- omitted 3446 entries ]
Assets
   [1]      0      0   3000   2500      0   3500  10000      0  15000      0   4000   3000   5000   3500      0   4162  16500   5000    750      0      0  10000   2000      0   3500   4000   4000   4000   5000   5000
  [31]   2500   1000   3000      0   8500  13500   3000      0  14000      0   4000  50000   7000   3000      0  15900   3500      0  15000   4000   4000      0   2100    500      0      0   5000   4000   5000      0
  [61]      0      0   3000   3000   3000   4000   3000   2500   7500      0   5500   9000   9000   3000      0   4000      0  30000   3000   4000      0   4500   2500   9000   6000      0  10000      0      0      0
  [91]      0   6000  25000      0   3000      0   4000  15000   4000  12000      0   6000      0      0   4500      0   7000   5000      0      0   9000  12500   4000   3000   1500  10000   3500  10000   4000   5500
 [121]      0   4000      0      0 200000      0  12000      0      0   3000      0   4000  24000      0      0   5000      0   3500   2000      0   6700 150000  50000   6000      0   5200  10000      0   6000   4000
 [151]      0  11000      0      0  12000      0   4000      0   4000  15000   3500  16000      0      0  86000   5000   6000      0   4900   5000      0   7000      0   5000   3500  25300   6550   6500  15000   2000
 [181]      0   8000   4000   5000   3500   2500      0      0      0   3000   5000   6000   7500      0   8000   5500      0      0   4000      0  12000   8000   4500   4000   9500      0   3000   2000  10000   3000
 [211]   4000      0      0      0   2000   2500   3000 100000   3000   4000   7000   6300   4000   9000   9000   1434   5000   9500      0      0  30000      0      0      0   4000      0   9000   7000      0      0
 [241]   4500   2500   3500   6000      0   4000      0   1500   7000   3000      0      0   2500  23000   5000   4000   3500      0   6000      0   4500  12000   6000   5000   5000      0  16000   8500  15000  16000
 [271]   3500      0   7000   5500      0      0      0   4000      0   2500   9000  40000   6000  35000  14000      0   6000   6500   5000  13500   6000  75000      0   3000  12500  12000   4000   4000      0   4000
 [301]      0   3000   4500      0      0      0   3000   2000      0  15000   9000  22000      0      0   8000      0   3000  22000      0   3500      0  12000      0   3000   3000   3500   3000  10000   6000   6500
 [331]  13500   3000      0      0  14000   2500   5000   6000   9500   5000   3000   3500   7000   4600      0   4000      0   4000  14500   4000   1000   4000   4000      0   2000   2200   3000  10000   6100   2000
 [361]      0   4500   6000   1150   4000      0   4000   7000      0   3500   3000   2000   3500   2500   5000   4000   1000   2000      0      0   4000      0   1800   2700   4000      0      0      0  32000      0
 [391]   4000 100000   9000  10000   3500   3000 100000      0      0   4500   5000  12000      0      0   2600  20000      0   1500      0   6000   4500      0  20000      0      0   5000      0      0      0  15000
 [421]      0      0      0      0      0   7000      0   3000      0  10000      0      0   1800   2500      0   4300      0   2500      0   5000   2000      0   4000  15000      0      0      0      0   3000   2500
 [451]      0      0   3000   3000   2000   2000   5000   8000   2500   7000   4000   3000   5000   6000      0   4500   6000   3000   7000   3000   3000      0   5500   3000      0      0   5000   1500  16000   8000
 [481]      0   5000      0  10000   3500      0   5000      0   3500   4500   3500  18000   2500   6000      0   8500      0   7500  10000   4000      0      0      0      0  12000   7000      0   3000  11500      0
 [511]   4000   3000      0      0  10000      0   5000   3000      0   4000      0      0      0  10000   6000   6000   2000   4000      0  10000      0   4000      0      0   3000   4000   6000   3000      0   2500
 [541]   4500   3500   3500   4000   8500   3500      0   2500   6000      0   8000  10000  30000   1500   2500   2000   8000      0   5000   4000  20000   3000      0      0      0   2100  21500  15000   2000      0
 [571]   4000      0   3000   4000      0   2000   4000   5500      0      0  10000   4500   4000  15500  13000   3000   4000   3000   8000   5000      0   3500   7000   4000   3000      0      0   3500   5000   7000
 [601]      0   5000   8000   5500      0   4000      0   4000  10000      0  11000  30000   4000      0   4000    500   3500  20500      0      0      0   5000   4000      0   2500   6000      0      0   4030  12000
 [631]      0      0   6000      0      0   3000      0      0   4000      0      0  27000   5000      0   4100  90000   2700      0      0   7000      0   4500      0   6500      0  12000      0   6000   9000  15000
 [661]   4000  14000  16000      0  97000      0      0  14000      0   3572      0   4000  10000   7500   4000  11700      0      0      0      0      0   4000   5000      0      0   2000      0      0      0  20000
 [691]      0   4000   4500   5000   2500  32000   3000      0      0      0   3500   6000      0      0      0  20000   7500      0   4000   6000   7000      0   1750      0   4000  18000   2000      0      0  11000
 [721]   4000      0   3500   2500   3500   5000  16000   8000      0      0      0      0     42   7700   5000      0   6000      0   9000   3500      0   4000   1600      0  15000      0      0      0      0  15000
 [751]   4000   3500  18000   2500   4000      0      0   3000   5000   7000  30000   2500      0   2250   4800   9000   3500   3500      0      0  13000      0   1500      0      0   9800   5200   4000  16000      0
 [781]   2500      0   2000   6000   9500   8000      0      0  30000      0   8000      0   3000   7750      0      0   5000      0   3000   4000      0   5000   1500  10000   2000  12000      0      0   4500      0
 [811]  20000   4000      0   4000   5000   9000  12000  14000      0  16000      0   2000  10000   7000      0      0  16000      0      0   2500      0      0   4700   4100  30000  16500  22000   8000      0      0
 [841]  10000      0  30000      0  15000  10000   7000   5000   4000      0   8000   5050   7000   1000      0      0   3000   6000   2000   4750   9000   5500      0   3500   3000   8000   5000  12000  14000      0
 [871] 100000   5000      0      0   8000  40000   3000      0   2000   2500      0      0   5000  13000   9000   3200      0   3500      0      0   7000      0    500      0   3000   3500   4000      0      0      0
 [901]      0   3000  12000   6500  10000      0      0   6000      0      0      0   3500   3500   3000      0   3000      0  25000      0      0   1500      0      0   3000      0   6500   6000   4000      0   2500
 [931]      0      0   4000   1200   6000   2500   3500   3500      0   2500      0   2500      0      0      0      0  15000   5000  10000   7500      0   4500      0   6500   3000   2000      0   2500   3600      0
 [961]  70000      0   4000      0      0   7000   9000      0      0      0      0   1500   5000      0      0   9000      0   8000   6000      0   5000   2000   3000   5500   2500      0   3000      0  12000   5000
 [991]   5000      0  10000   3000      0   4000   2500      0   2000   7000
 [ reached getOption("max.print") -- omitted 3446 entries ]
#Find the average of the savings, assets, and debt columns.
meanSavings = mean(Savings)
meanAssets = mean(Assets)
Debt = mydata$Debt
meanDebt = mean(Debt)
#Call mean savings, assets, and debt.
meanSavings
[1] 3.860083
meanAssets
[1] 5354.949
meanDebt
[1] 342.2571
#Find the standard deviation of savings, assets, and debt columns
sdSavings = sd(Savings)
sdAssets = sd(Assets)
sdDebt = sd(Debt)
sdSavings
[1] 3.726292
sdAssets
[1] 11534.33
sdDebt
[1] 1244.695
#Find the snr of the savings, assets, and debt
snr_Savings = meanSavings/sdSavings
snr_Assets = meanAssets/sdAssets
snr_Debt = meanDebt/sdDebt
#Call snr_Saving
snr_Savings
[1] 1.035905
snr_Assets
[1] 0.4642619
snr_Debt
[1] 0.2749728

Of the Checking and Savings, which has a higher SNR? Why do you think that is? Savings because in a traditional checking accounts money is moving in and out more often than in a savings account.


Task 3

Watson

Watson

LS0tDQp0aXRsZTogIkJ1c2luZXNzIEFuYWx5dGljcyBMYWIgV29ya3NoZWV0IDAxIg0KYXV0aG9yOiAiTWFyayBHcnVobGtlIg0KZGF0ZTogIlN1bW1lciAyMDE3Ig0Kb3V0cHV0Og0KICBodG1sX25vdGVib29rOiBkZWZhdWx0DQogIGh0bWxfZG9jdW1lbnQ6IGRlZmF1bHQNCiAgcGRmX2RvY3VtZW50OiBkZWZhdWx0DQpzdWJ0aXRsZTogQ01FIEdyb3VwIEZvdW5kYXRpb24gQnVzaW5lc3MgQW5hbHl0aWNzIExhYg0KLS0tDQoNCiFbU3RhciBTY2hlbWFdKGltZ3MvU2NvcmluZ19TdGFyX1NjaGVtYS5wbmcpDQoNCi0tLS0tLS0tLS0tLS0NCg0KIyMjIFRhc2sgMg0KDQoNCmBgYHtyfQ0KbXlkYXRhID0gcmVhZC5jc3YoZmlsZT0iZGF0YS9TY29yaW5nLmNzdiIpDQpoZWFkKG15ZGF0YSkNCmBgYA0KDQoNCg0KYGBge3J9DQojRXh0cmFjdGluZyB0aGUgc3RhdHVzIENvbHVtbg0KU3RhdHVzID0gbXlkYXRhJFN0YXR1cyANCg0KI0NhbGxpbmcgdGhlIHN0YXR1cyBDb2x1bW4NClN0YXR1cw0KYGBgDQoNCg0KDQpgYGB7cn0NCiNFeHRyYWN0aW5nIHRoZSBTYXZpbmdzIENvbHVtbiBhbmQgQXNzZXRzIENvbHVtbg0KU2F2aW5ncyA9IG15ZGF0YSRTYXZpbmdzDQpBc3NldHMgPSBteWRhdGEkQXNzZXRzDQoNCiNDYWxsaW5nIHRoZSBTYXZpbmdzIENvbHVtbg0KU2F2aW5ncw0KQXNzZXRzDQpgYGANCg0KDQoNCmBgYHtyfQ0KI0ZpbmQgdGhlIGF2ZXJhZ2Ugb2YgdGhlIHNhdmluZ3MsIGFzc2V0cywgYW5kIGRlYnQgY29sdW1ucy4NCm1lYW5TYXZpbmdzID0gbWVhbihTYXZpbmdzKQ0KbWVhbkFzc2V0cyA9IG1lYW4oQXNzZXRzKQ0KRGVidCA9IG15ZGF0YSREZWJ0DQptZWFuRGVidCA9IG1lYW4oRGVidCkNCg0KI0NhbGwgbWVhbiBzYXZpbmdzLCBhc3NldHMsIGFuZCBkZWJ0Lg0KbWVhblNhdmluZ3MNCm1lYW5Bc3NldHMNCm1lYW5EZWJ0DQpgYGANCg0KDQoNCmBgYHtyfQ0KI0ZpbmQgdGhlIHN0YW5kYXJkIGRldmlhdGlvbiBvZiBzYXZpbmdzLCBhc3NldHMsIGFuZCBkZWJ0IGNvbHVtbnMNCnNkU2F2aW5ncyA9IHNkKFNhdmluZ3MpDQpzZEFzc2V0cyA9IHNkKEFzc2V0cykNCnNkRGVidCA9IHNkKERlYnQpDQoNCnNkU2F2aW5ncw0Kc2RBc3NldHMNCnNkRGVidA0KYGBgDQoNCg0KDQpgYGB7cn0NCiNGaW5kIHRoZSBzbnIgb2YgdGhlIHNhdmluZ3MsIGFzc2V0cywgYW5kIGRlYnQNCnNucl9TYXZpbmdzID0gbWVhblNhdmluZ3Mvc2RTYXZpbmdzDQpzbnJfQXNzZXRzID0gbWVhbkFzc2V0cy9zZEFzc2V0cw0Kc25yX0RlYnQgPSBtZWFuRGVidC9zZERlYnQNCg0KI0NhbGwgc25yX1NhdmluZw0Kc25yX1NhdmluZ3MNCnNucl9Bc3NldHMNCnNucl9EZWJ0DQoNCmBgYA0KDQpPZiB0aGUgQ2hlY2tpbmcgYW5kIFNhdmluZ3MsIHdoaWNoIGhhcyBhIGhpZ2hlciBTTlI/IFdoeSBkbyB5b3UgdGhpbmsgdGhhdCBpcz8NClNhdmluZ3MgYmVjYXVzZSBpbiBhIHRyYWRpdGlvbmFsIGNoZWNraW5nIGFjY291bnRzIG1vbmV5IGlzIG1vdmluZyBpbiBhbmQgb3V0IG1vcmUgb2Z0ZW4gdGhhbiBpbiBhIHNhdmluZ3MgYWNjb3VudC4NCg0KLS0tLS0tLS0tLS0tDQoNCiMjIyBUYXNrIDMNCg0KIVtXYXRzb25dKGltZ3MvV2F0c29uX2xhYl8wMS5wbmcpDQoNCg==