anscombe data that is part of the library(datasets) in R. And assign that data to a new object called data.data <- anscombe
fBasics() package!)library(fBasics)
## Loading required package: timeDate
## Loading required package: timeSeries
##
## Rmetrics Package fBasics
## Analysing Markets and calculating Basic Statistics
## Copyright (C) 2005-2014 Rmetrics Association Zurich
## Educational Software for Financial Engineering and Computational Science
## Rmetrics is free software and comes with ABSOLUTELY NO WARRANTY.
## https://www.rmetrics.org --- Mail to: info@rmetrics.org
??fBasics
summary.data.frame(data)
## x1 x2 x3 x4
## Min. : 4.0 Min. : 4.0 Min. : 4.0 Min. : 8
## 1st Qu.: 6.5 1st Qu.: 6.5 1st Qu.: 6.5 1st Qu.: 8
## Median : 9.0 Median : 9.0 Median : 9.0 Median : 8
## Mean : 9.0 Mean : 9.0 Mean : 9.0 Mean : 9
## 3rd Qu.:11.5 3rd Qu.:11.5 3rd Qu.:11.5 3rd Qu.: 8
## Max. :14.0 Max. :14.0 Max. :14.0 Max. :19
## y1 y2 y3 y4
## Min. : 4.260 Min. :3.100 Min. : 5.39 Min. : 5.250
## 1st Qu.: 6.315 1st Qu.:6.695 1st Qu.: 6.25 1st Qu.: 6.170
## Median : 7.580 Median :8.140 Median : 7.11 Median : 7.040
## Mean : 7.501 Mean :7.501 Mean : 7.50 Mean : 7.501
## 3rd Qu.: 8.570 3rd Qu.:8.950 3rd Qu.: 7.98 3rd Qu.: 8.190
## Max. :10.840 Max. :9.260 Max. :12.74 Max. :12.500
#calculating the mean
colMeans(data)
## x1 x2 x3 x4 y1 y2 y3 y4
## 9.000000 9.000000 9.000000 9.000000 7.500909 7.500909 7.500000 7.500909
#calculating the variance
colVars(data)
## x1 x2 x3 x4 y1 y2 y3
## 11.000000 11.000000 11.000000 11.000000 4.127269 4.127629 4.122620
## y4
## 4.123249
#calculating the correlation between each pair
correlationTest(data$x1, data$y1, method = c("pearson"),
title = NULL, description = NULL)
##
## Title:
## Pearson's Correlation Test
##
## Test Results:
## PARAMETER:
## Degrees of Freedom: 9
## SAMPLE ESTIMATES:
## Correlation: 0.8164
## STATISTIC:
## t: 4.2415
## P VALUE:
## Alternative Two-Sided: 0.00217
## Alternative Less: 0.9989
## Alternative Greater: 0.001085
## CONFIDENCE INTERVAL:
## Two-Sided: 0.4244, 0.9507
## Less: -1, 0.9388
## Greater: 0.5113, 1
##
## Description:
## Thu Jul 27 17:34:16 2017
correlationTest(data$x2, data$y2, method = c("pearson"),
title = NULL, description = NULL)
##
## Title:
## Pearson's Correlation Test
##
## Test Results:
## PARAMETER:
## Degrees of Freedom: 9
## SAMPLE ESTIMATES:
## Correlation: 0.8162
## STATISTIC:
## t: 4.2386
## P VALUE:
## Alternative Two-Sided: 0.002179
## Alternative Less: 0.9989
## Alternative Greater: 0.001089
## CONFIDENCE INTERVAL:
## Two-Sided: 0.4239, 0.9506
## Less: -1, 0.9387
## Greater: 0.5109, 1
##
## Description:
## Thu Jul 27 17:34:16 2017
correlationTest(data$x3, data$y3, method = c("pearson"),
title = NULL, description = NULL)
##
## Title:
## Pearson's Correlation Test
##
## Test Results:
## PARAMETER:
## Degrees of Freedom: 9
## SAMPLE ESTIMATES:
## Correlation: 0.8163
## STATISTIC:
## t: 4.2394
## P VALUE:
## Alternative Two-Sided: 0.002176
## Alternative Less: 0.9989
## Alternative Greater: 0.001088
## CONFIDENCE INTERVAL:
## Two-Sided: 0.4241, 0.9507
## Less: -1, 0.9387
## Greater: 0.511, 1
##
## Description:
## Thu Jul 27 17:34:16 2017
correlationTest(data$x4, data$y4, method = c("pearson"),
title = NULL, description = NULL)
##
## Title:
## Pearson's Correlation Test
##
## Test Results:
## PARAMETER:
## Degrees of Freedom: 9
## SAMPLE ESTIMATES:
## Correlation: 0.8165
## STATISTIC:
## t: 4.243
## P VALUE:
## Alternative Two-Sided: 0.002165
## Alternative Less: 0.9989
## Alternative Greater: 0.001082
## CONFIDENCE INTERVAL:
## Two-Sided: 0.4246, 0.9507
## Less: -1, 0.9388
## Greater: 0.5115, 1
##
## Description:
## Thu Jul 27 17:34:16 2017
correlationTest(data$x1, data$y1, method = c("pearson"),
title = NULL, description = NULL)
##
## Title:
## Pearson's Correlation Test
##
## Test Results:
## PARAMETER:
## Degrees of Freedom: 9
## SAMPLE ESTIMATES:
## Correlation: 0.8164
## STATISTIC:
## t: 4.2415
## P VALUE:
## Alternative Two-Sided: 0.00217
## Alternative Less: 0.9989
## Alternative Greater: 0.001085
## CONFIDENCE INTERVAL:
## Two-Sided: 0.4244, 0.9507
## Less: -1, 0.9388
## Greater: 0.5113, 1
##
## Description:
## Thu Jul 27 17:34:16 2017
plot(data$x1, data$y1, main="Scatterplot of X1 Y1 Pair",
xlab="X1 Value ", ylab="Y1 Value ",
abline(lm(data$x1~data$y1), col="red"))
plot(data$x2, data$y2, main="Scatterplot of X2 Y2 Pair",
xlab="X2 Value ", ylab="Y2 Value ",
abline(lm(data$x2~data$y2), col="Blue"))
plot(data$x3, data$y3, main="Scatterplot of X3 Y3 Pair",
xlab="X3 Value ", ylab="Y3 Value ",
abline(lm(data$x3~data$y3), col="Pink"))
plot(data$x4, data$y4, main="Scatterplot of X4 Y4 Pair",
xlab="X4 Value ", ylab="Y4 Value ",
abline(lm(data$x4~data$y4), col="Green"))
par(mfrow=c(2,2))
plot(data$x1,data$y1, main="Scatterplot x1 ~ y1",pch=19)
plot(data$x2,data$y2, main="Scatterplot x2 ~ y2",pch=19)
plot(data$x3,data$y3, main="Scatterplot x3 ~ y3",pch=19)
plot(data$x4,data$y4, main="Scatterplot x4 ~ y4",pch=19)
lm() function.#Please check the line in the chart of Question 3
fit1<-lm(data$y1~data$x1)
fit2<-lm(data$y2~data$x2)
fit3<-lm(data$y3~data$x3)
fit4<-lm(data$y4~data$x4)
par(mfrow=c(2,2))
plot(data$x1,data$y1, main="Scatterplot x1 ~ y1",pch=19)
abline(fit1, col="red")
plot(data$x2,data$y2, main="Scatterplot x2 ~ y2",pch=19)
abline(fit2, col="blue")
plot(data$x3,data$y3, main="Scatterplot x3 ~ y3",pch=19)
abline(fit3, col="green")
plot(data$x4,data$y4, main="Scatterplot x4 ~ y4",pch=19)
abline(fit4, col="pink")
anova(fit1)
Analysis of Variance Table
Response: data\(y1 Df Sum Sq Mean Sq F value Pr(>F) data\)x1 1 27.510 27.5100 17.99 0.00217 ** Residuals 9 13.763 1.5292
— Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1
anova(fit2)
Analysis of Variance Table
Response: data\(y2 Df Sum Sq Mean Sq F value Pr(>F) data\)x2 1 27.500 27.5000 17.966 0.002179 ** Residuals 9 13.776 1.5307
— Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1
anova(fit3)
Analysis of Variance Table
Response: data\(y3 Df Sum Sq Mean Sq F value Pr(>F) data\)x3 1 27.470 27.4700 17.972 0.002176 ** Residuals 9 13.756 1.5285
— Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1
anova(fit4)
Analysis of Variance Table
Response: data\(y4 Df Sum Sq Mean Sq F value Pr(>F) data\)x4 1 27.490 27.4900 18.003 0.002165 ** Residuals 9 13.742 1.5269
— Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1