library(spdplyr)
## Loading required package: dplyr
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
## Loading required package: sp
library(purrrlyr)
library(tidyverse)
## Loading tidyverse: ggplot2
## Loading tidyverse: tibble
## Loading tidyverse: tidyr
## Loading tidyverse: readr
## Loading tidyverse: purrr
## Conflicts with tidy packages ----------------------------------------------
## filter(): dplyr, stats
## lag(): dplyr, stats
library(dunn.test)
data_barri <- read.csv("/srv/shiny-server/barriossust/barrios_data.csv",sep=";")
databr <- readRDS("/srv/shiny-server/barriossust/Data/barrios_merged.RDS")
databr$MANZENT <- as.character(as.numeric(databr$MANZENT))
datawk15 <- readRDS("/srv/shiny-server/barriossust/Data/accesibility_score_final_15.RDS")
datawk10 <- readRDS("/srv/shiny-server/barriossust/Data/accesibility_score_final.RDS")
final1 <- databr@data %>% left_join(datawk15, by = c("MANZENT" = "ID_W"))
final1 <- data_barri %>% left_join(final1, by = c("Comp" = "BARRIO"))
## Warning: Column `Comp`/`BARRIO` joining factors with different levels,
## coercing to character vector
final1$Barrio <- NULL
final2 <- databr@data %>% left_join(datawk10, by = c("MANZENT" = "ID_W"))
final2 <- data_barri %>% left_join(final2, by = c("Comp" = "BARRIO"))
## Warning: Column `Comp`/`BARRIO` joining factors with different levels,
## coercing to character vector
final2$Barrio <- NULL
#WK15
shapiro.test(final1$listo)
##
## Shapiro-Wilk normality test
##
## data: final1$listo
## W = 0.90395, p-value < 2.2e-16
kruskal.test(final1$listo~factor(final1$Localizacion))
##
## Kruskal-Wallis rank sum test
##
## data: final1$listo by factor(final1$Localizacion)
## Kruskal-Wallis chi-squared = 859.87, df = 2, p-value < 2.2e-16
dunn.test(final1$listo,factor(final1$Localizacion),list=T,table = F,kw=F)
##
## Comparison of x by group
## (No adjustment)
##
## List of pairwise comparisons: Z statistic (p-value)
## --------------------------------------------
## central - pericentral : -4.734154 (0.0000)
## central - periferia : 19.34802 (0.0000)
## pericentral - periferia : 28.66764 (0.0000)
dunn.test(final1$listo,factor(final1$Ciudad),list=T,table = F,kw=F)
##
## Comparison of x by group
## (No adjustment)
##
## List of pairwise comparisons: Z statistic (p-value)
## --------------------------------------------------------
## Copiapo - Gran Concepcion : 2.395383 (0.0083)
## Copiapo - Gran Coquimbo : -13.71252 (0.0000)
## Gran Concepcion - Gran Coquimbo : -19.26950 (0.0000)
## Copiapo - Santiago : -11.17613 (0.0000)
## Gran Concepcion - Santiago : -17.37805 (0.0000)
## Gran Coquimbo - Santiago : 5.131989 (0.0000)
## Copiapo - Temuco - Padrelas : -11.72018 (0.0000)
## Gran Concepcion - Temuco - Padrelas : -16.33241 (0.0000)
## Gran Coquimbo - Temuco - Padrelas : 1.413731 (0.0787)
## Santiago - Temuco - Padrelas : -2.963080 (0.0015)
## Copiapo - Valdivia : -24.91279 (0.0000)
## Gran Concepcion - Valdivia : -29.24450 (0.0000)
## Gran Coquimbo - Valdivia : -16.26417 (0.0000)
## Santiago - Valdivia : -20.51610 (0.0000)
## Temuco - Padrelas - Valdivia : -16.59896 (0.0000)
#WK10
shapiro.test(final2$listo)
##
## Shapiro-Wilk normality test
##
## data: final2$listo
## W = 0.80546, p-value < 2.2e-16
kruskal.test(final2$listo~factor(final2$Localizacion))
##
## Kruskal-Wallis rank sum test
##
## data: final2$listo by factor(final2$Localizacion)
## Kruskal-Wallis chi-squared = 471.18, df = 2, p-value < 2.2e-16
dunn.test(final2$listo,factor(final2$Localizacion),list=T,table = F,kw=F)
##
## Comparison of x by group
## (No adjustment)
##
## List of pairwise comparisons: Z statistic (p-value)
## --------------------------------------------
## central - pericentral : -4.889847 (0.0000)
## central - periferia : 13.21145 (0.0000)
## pericentral - periferia : 21.47989 (0.0000)
dunn.test(final2$listo,factor(final2$Ciudad),list=T,table = F,kw=F)
##
## Comparison of x by group
## (No adjustment)
##
## List of pairwise comparisons: Z statistic (p-value)
## --------------------------------------------------------
## Copiapo - Gran Concepcion : 3.412337 (0.0003)
## Copiapo - Gran Coquimbo : -9.320235 (0.0000)
## Gran Concepcion - Gran Coquimbo : -15.30349 (0.0000)
## Copiapo - Santiago : -9.686530 (0.0000)
## Gran Concepcion - Santiago : -16.94046 (0.0000)
## Gran Coquimbo - Santiago : 0.738121 (0.2302)
## Copiapo - Temuco - Padrelas : -7.870216 (0.0000)
## Gran Concepcion - Temuco - Padrelas : -12.97746 (0.0000)
## Gran Coquimbo - Temuco - Padrelas : 1.037165 (0.1498)
## Santiago - Temuco - Padrelas : 0.520912 (0.3012)
## Copiapo - Valdivia : -21.89543 (0.0000)
## Gran Concepcion - Valdivia : -26.76123 (0.0000)
## Gran Coquimbo - Valdivia : -16.63018 (0.0000)
## Santiago - Valdivia : -18.14095 (0.0000)
## Temuco - Padrelas - Valdivia : -16.63836 (0.0000)