crece<-read.table("growth.csv", sep = ",", header=T)
crece
##     horas   masa
## 1    1416 0.1481
## 2    1416 0.1954
## 3    1416 0.2204
## 4    1416 0.1207
## 5    1419 0.2920
## 6    1419 0.3892
## 7    1419 0.3837
## 8    1419 0.2994
## 9    1422 0.2892
## 10   1422 0.1347
## 11   1422 0.2254
## 12   1440 0.7405
## 13   1440 0.4069
## 14   1440 0.1213
## 15   1440 0.2477
## 16   1442 0.3641
## 17   1442 0.4780
## 18   1442 0.3243
## 19   1442 0.7489
## 20   1444 0.8562
## 21   1444 0.5270
## 22   1444 0.4817
## 23   1444 0.3918
## 24   1446 0.3449
## 25   1446 0.3349
## 26   1446 0.6067
## 27   1446 0.5888
## 28   1464 1.0516
## 29   1464 0.4802
## 30   1466 1.7754
## 31   1466 1.4030
## 32   1468 0.9107
## 33   1468 0.5893
## 34   1470 1.2156
## 35   1470 1.3592
## 36   1488 1.8306
## 37   1488 1.6102
## 38   1490 1.6628
## 39   1490 1.3939
## 40   1492 1.8325
## 41   1492 1.7633
## 42   1494 1.2809
## 43   1494 1.7984
## 44   1512 2.0020
## 45   1512 1.4276
## 46   1514 1.9924
## 47   1514 1.8784
## 48   1516 1.2773
## 49   1516 1.2808
## 50   1518 1.7115
## 51   1518 1.9192
## 52   1536 1.6359
## 53   1536 2.8007
## 54   1538 2.7597
## 55   1538 2.2568
## 56   1540 1.9971
## 57   1540 1.4329
## 58   1542 2.8216
## 59   1542 2.4322
## 60   1562 2.8792
## 61   1562 1.7876
## 62   1566 1.8798
## 63   1566 2.0045
## 64   1586 2.6742
## 65   1586 2.9516
## 66   1590 2.4495
## 67   1590 2.9953
## 68   1610 2.3608
## 69   1614 3.1235
## 70   1638 3.1728
## 71   1662 3.0080
## 72   1686 3.9043
## 73   1710 3.8536
## 74   1734 4.9471
## 75   1758 3.3347
## 76   1782 4.9931
## 77   1464 0.9834
## 78   1464 1.2531
## 79   1466 0.8680
## 80   1466 1.1197
## 81   1468 1.0167
## 82   1468 1.3540
## 83   1470 1.8440
## 84   1470 1.1583
## 85   1488 1.4967
## 86   1488 1.4209
## 87   1490 1.5471
## 88   1490 0.7599
## 89   1492 2.4725
## 90   1492 1.0097
## 91   1494 1.7194
## 92   1494 1.9900
## 93   1512 1.7484
## 94   1512 0.8221
## 95   1514 2.1259
## 96   1514 1.5582
## 97   1516 1.1170
## 98   1516 1.3397
## 99   1518 1.6475
## 100  1518 1.3037
## 101  1536 1.6586
## 102  1536 1.6086
## 103  1538 2.1021
## 104  1538 2.2497
## 105  1540 1.6863
## 106  1540 2.4327
## 107  1542 1.5602
## 108  1542 1.8178
## 109  1562 1.9473
## 110  1562 2.1227
## 111  1566 2.5310
## 112  1566 2.1990
## 113  1586 2.7956
## 114  1586 1.3617
## 115  1590 2.5855
## 116  1590 1.8011
## 117  1610 1.8224
## 118  1614 2.2646
## 119  1638 3.1698
## 120  1662 3.0866
## 121  1686 2.3654
## 122  1710 2.1446
## 123  1734 3.5218
## 124  1758 4.2132
## 125  1782 3.4072
attach(crece)
plot (horas, masa)

fit1<-lm(masa~horas)
fit1
## 
## Call:
## lm(formula = masa ~ horas)
## 
## Coefficients:
## (Intercept)        horas  
##   -14.87072      0.01085
fit1$coefficients
##  (Intercept)        horas 
## -14.87071687   0.01085168
fit1$residuals
##             1             2             3             4             5 
## -0.3471596724 -0.2998596724 -0.2748596724 -0.3745596724 -0.2358147074 
##             6             7             8             9            10 
## -0.1386147074 -0.1441147074 -0.2284147074 -0.2711697425 -0.4256697425 
##            11            12            13            14            15 
## -0.3349697425 -0.0151999528 -0.3487999528 -0.6343999528 -0.5079999528 
##            16            17            18            19            20 
## -0.4133033095 -0.2994033095 -0.4531033095 -0.0285033095  0.0570933338 
##            21            22            23            24            25 
## -0.2721066662 -0.3174066662 -0.4073066662 -0.4759100229 -0.4859100229 
##            26            27            28            29            30 
## -0.2141100229 -0.2320100229  0.0354597668 -0.5359402332  0.7375564101 
##            31            32            33            34            35 
##  0.3651564101 -0.1488469466 -0.4702469466  0.1343496967  0.2779496967 
##            36            37            38            39            40 
##  0.5540194864  0.3336194864  0.3645161297  0.0956161297  0.5125127730 
##            41            42            43            44            45 
##  0.4433127730 -0.0607905837  0.4567094163  0.4649792059 -0.1094207941 
##            46            47            48            49            50 
##  0.4336758492  0.3196758492 -0.3031275075 -0.2996275075  0.1093691358 
##            51            52            53            54            55 
##  0.3170691358 -0.1615610745  1.0032389255  0.9405355688  0.4376355688 
##            56            57            58            59            60 
##  0.1562322121 -0.4079677879  0.9590288554  0.5696288554  0.7995952884 
##            61            62            63            64            65 
## -0.2920047116 -0.2432114250 -0.1185114250  0.3341550080  0.6115550080 
##            66            67            68            69            70 
##  0.0660482946  0.6118482946 -0.2396852725  0.4796080141  0.2684677337 
##            71            72            73            74            75 
## -0.1567725467  0.4790871729  0.1679468924  1.0010066120 -0.8718336684 
##            76            77            78            79            80 
##  0.5261260512 -0.0327402332  0.2369597668 -0.1698435899  0.0818564101 
##            81            82            83            84            85 
## -0.0428469466  0.2944530534  0.7627496967  0.0770496967  0.2201194864 
##            86            87            88            89            90 
##  0.1443194864  0.2488161297 -0.5383838703  1.1525127730 -0.3102872270 
##            91            92            93            94            95 
##  0.3777094163  0.6483094163  0.2113792059 -0.7149207941  0.5671758492 
##            96            97            98            99           100 
## -0.0005241508 -0.4634275075 -0.2407275075  0.0453691358 -0.2984308642 
##           101           102           103           104           105 
## -0.1388610745 -0.1888610745  0.2829355688  0.4305355688 -0.1545677879 
##           106           107           108           109           110 
##  0.5918322121 -0.3023711446 -0.0447711446 -0.1323047116  0.0430952884 
##           111           112           113           114           115 
##  0.4079885750  0.0759885750  0.4555550080 -0.9783449920  0.2020482946 
##           116           117           118           119           120 
## -0.5823517054 -0.7780852725 -0.3792919859  0.2654677337 -0.0781725467 
##           121           122           123           124           125 
## -1.0598128271 -1.5410531076 -0.4242933880  0.0066663316 -1.0597739488
fit1$fitted.values
##         1         2         3         4         5         6         7 
## 0.4952597 0.4952597 0.4952597 0.4952597 0.5278147 0.5278147 0.5278147 
##         8         9        10        11        12        13        14 
## 0.5278147 0.5603697 0.5603697 0.5603697 0.7557000 0.7557000 0.7557000 
##        15        16        17        18        19        20        21 
## 0.7557000 0.7774033 0.7774033 0.7774033 0.7774033 0.7991067 0.7991067 
##        22        23        24        25        26        27        28 
## 0.7991067 0.7991067 0.8208100 0.8208100 0.8208100 0.8208100 1.0161402 
##        29        30        31        32        33        34        35 
## 1.0161402 1.0378436 1.0378436 1.0595469 1.0595469 1.0812503 1.0812503 
##        36        37        38        39        40        41        42 
## 1.2765805 1.2765805 1.2982839 1.2982839 1.3199872 1.3199872 1.3416906 
##        43        44        45        46        47        48        49 
## 1.3416906 1.5370208 1.5370208 1.5587242 1.5587242 1.5804275 1.5804275 
##        50        51        52        53        54        55        56 
## 1.6021309 1.6021309 1.7974611 1.7974611 1.8191644 1.8191644 1.8408678 
##        57        58        59        60        61        62        63 
## 1.8408678 1.8625711 1.8625711 2.0796047 2.0796047 2.1230114 2.1230114 
##        64        65        66        67        68        69        70 
## 2.3400450 2.3400450 2.3834517 2.3834517 2.6004853 2.6438920 2.9043323 
##        71        72        73        74        75        76        77 
## 3.1647725 3.4252128 3.6856531 3.9460934 4.2065337 4.4669739 1.0161402 
##        78        79        80        81        82        83        84 
## 1.0161402 1.0378436 1.0378436 1.0595469 1.0595469 1.0812503 1.0812503 
##        85        86        87        88        89        90        91 
## 1.2765805 1.2765805 1.2982839 1.2982839 1.3199872 1.3199872 1.3416906 
##        92        93        94        95        96        97        98 
## 1.3416906 1.5370208 1.5370208 1.5587242 1.5587242 1.5804275 1.5804275 
##        99       100       101       102       103       104       105 
## 1.6021309 1.6021309 1.7974611 1.7974611 1.8191644 1.8191644 1.8408678 
##       106       107       108       109       110       111       112 
## 1.8408678 1.8625711 1.8625711 2.0796047 2.0796047 2.1230114 2.1230114 
##       113       114       115       116       117       118       119 
## 2.3400450 2.3400450 2.3834517 2.3834517 2.6004853 2.6438920 2.9043323 
##       120       121       122       123       124       125 
## 3.1647725 3.4252128 3.6856531 3.9460934 4.2065337 4.4669739
summary(fit1)
## 
## Call:
## lm(formula = masa ~ horas)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.54105 -0.29986 -0.03274  0.33362  1.15251 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -1.487e+01  7.546e-01  -19.71   <2e-16 ***
## horas        1.085e-02  4.944e-04   21.95   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4677 on 123 degrees of freedom
## Multiple R-squared:  0.7966, Adjusted R-squared:  0.795 
## F-statistic: 481.8 on 1 and 123 DF,  p-value: < 2.2e-16
anova(fit1)
## Analysis of Variance Table
## 
## Response: masa
##            Df  Sum Sq Mean Sq F value    Pr(>F)    
## horas       1 105.379 105.379  481.81 < 2.2e-16 ***
## Residuals 123  26.902   0.219                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
layout(matrix(1:4,2,2))
plot(fit1)
layout(1)
shapiro.test(fit1$residuals)
## 
##  Shapiro-Wilk normality test
## 
## data:  fit1$residuals
## W = 0.98757, p-value = 0.3157
abline(fit1)
segments(horas, fitted(fit1), horas, masa)