Repeat time series for Nile dataset
nile.ts <- ts(Nile, start=1, frequency=10)
summary(nile.ts)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 456.0 798.5 893.5 919.4 1032.5 1370.0
nile.hw1 <-HoltWinters(nile.ts,gamma=FALSE)
nile.hw1
## Holt-Winters exponential smoothing with trend and without seasonal component.
##
## Call:
## HoltWinters(x = nile.ts, gamma = FALSE)
##
## Smoothing parameters:
## alpha: 0.4190643
## beta : 0.05987705
## gamma: FALSE
##
## Coefficients:
## [,1]
## a 756.913740
## b -7.424597
plot(nile.ts)

plot(nile.hw1)

nile.p <- predict(nile.hw1,n.ahead=10)
ts.plot(nile.ts,nile.p)

Time series for AirPassengers alpha=Null, beta=1, gamma=Null
airp.ts1<-ts(AirPassengers,start=1, frequency=10)
summary(airp.ts1)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 104.0 180.0 265.5 280.3 360.5 622.0
airp.hw1<-HoltWinters(airp.ts1,alpha=NULL,beta=1, gamma=NULL)
airp.hw1
## Holt-Winters exponential smoothing with trend and additive seasonal component.
##
## Call:
## HoltWinters(x = airp.ts1, alpha = NULL, beta = 1, gamma = NULL)
##
## Smoothing parameters:
## alpha: 0.9493386
## beta : 1
## gamma: 1
##
## Coefficients:
## [,1]
## a 431.7884126
## b 27.0306710
## s1 8.1637757
## s2 13.1442083
## s3 10.6643227
## s4 23.1524072
## s5 15.9061745
## s6 -5.1141818
## s7 -26.5039556
## s8 -23.4314649
## s9 -14.7577416
## s10 0.2115874
plot(airp.ts1)

plot(airp.hw1)

airp.p1<- predict(airp.hw1,n.ahead=10)
ts.plot(airp.ts1,airp.p1)
