shapiro.test(bugCoveringList\(itemCount); #Normal W = 0.94579, p-value = 0.2011 shapiro.test(not_bugCoveringList\)itemCount); #Not normal W = 0.94811, p-value = 0.0004707
wilcox.test(bugCoveringList\(itemCount,not_bugCoveringList\)itemCount, alternative= “two.sided”, paired=FALSE); #data: bugCoveringList\(itemCount and not_bugCoveringList\)itemCount #W = 1330, p-value = 0.8587
shapiro.test(bugCoveringList\(itemCount); #Not Normal W = 0.90395, p-value = 0.02239 shapiro.test(not_bugCoveringList\)itemCount); #Not normal W = 0.94641, p-value = 0.0003637
wilcox.test(bugCoveringList\(itemCount,not_bugCoveringList\)itemCount, alternative= “two.sided”, paired=FALSE); #data: bugCoveringList\(itemCount and not_bugCoveringList\)itemCount #W = 1196.5, p-value = 0.5333
shapiro.test(bugCoveringList\(itemCount); #Not Normal W = 0.90395, p-value = 0.02239 shapiro.test(not_bugCoveringList\)itemCount); #Not normal W = 0.94641, p-value = 0.0003637
wilcox.test(bugCoveringList\(itemCount,not_bugCoveringList\)itemCount, alternative= “two.sided”, paired=FALSE); #data: bugCoveringList\(itemCount and not_bugCoveringList\)itemCount #W = 1196.5, p-value = 0.5333
shapiro.test(bugCoveringList\(itemCount); #Not Normal W = 0.94579, p-value = 0.2011 shapiro.test(not_bugCoveringList\)itemCount); #Not normalW = 0.94811, p-value = 0.0004707
wilcox.test(bugCoveringList\(itemCount,not_bugCoveringList\)itemCount, alternative= “two.sided”, paired=FALSE); #data: bugCoveringList\(itemCount and not_bugCoveringList\)itemCount #W = 1330, p-value = 0.8587
shapiro.test(bugCoveringList\(itemCount); #Normal W = 0.94106, p-value = 0.1566 shapiro.test(not_bugCoveringList\)itemCount); #Not normal W = 0.9589, p-value = 0.002643
wilcox.test(bugCoveringList\(itemCount,not_bugCoveringList\)itemCount, alternative= “two.sided”, paired=FALSE); #data: bugCoveringList\(itemCount and not_bugCoveringList\)itemCount #W = 1337.5, p-value = 0.8231
shapiro.test(bugCoveringList\(itemCount); #Not Normal W = 0.90256, p-value = 0.02086 shapiro.test(not_bugCoveringList\)itemCount); #Not normal W = 0.95576, p-value = 0.001575
wilcox.test(bugCoveringList\(itemCount,not_bugCoveringList\)itemCount, alternative= “two.sided”, paired=FALSE); #data: bugCoveringList\(itemCount and not_bugCoveringList\)itemCount #W = 1477.5, p-value = 0.2851
shapiro.test(bugCoveringList\(itemCount); #Not Normal W = 0.88385, p-value = 0.008305 shapiro.test(not_bugCoveringList\)itemCount); #Not normal W = 0.95902, p-value = 0.002696
mean(bugCoveringList\(itemCount) #9.48 mean(not_bugCoveringList\)itemCount) #8.5
wilcox.test(bugCoveringList\(itemCount,not_bugCoveringList\)itemCount, alternative= “two.sided”, paired=FALSE, conf.int = TRUE); #data: bugCoveringList\(itemCount and not_bugCoveringList\)itemCount #W = 1643, p-value = 0.03867 #alternative hypothesis: true location shift is not equal to 0 #95 percent confidence interval: # 3.075891e-05 1.999998e+00 #sample estimates: # difference in location #0.9999684
shapiro.test(bugCoveringList\(itemCount); #Not Normal W = 0.90188, p-value = 0.02016 shapiro.test(not_bugCoveringList\)itemCount); #Not normal W = 0.96726, p-value = 0.01121
mean(bugCoveringList\(itemCount) #10.28 mean(not_bugCoveringList\)itemCount) #11.33654
wilcox.test(bugCoveringList\(itemCount,not_bugCoveringList\)itemCount, alternative= “two.sided”, paired=FALSE, conf.int = TRUE); #data: bugCoveringList\(itemCount and not_bugCoveringList\)itemCount #W = 924.5, p-value = 0.0238 #alternative hypothesis: true location shift is not equal to 0 #95 percent confidence interval: # -1.999977e+00 -4.944597e-05 #sample estimates: # difference in location -1.000029
shapiro.test(bugCoveringList\(itemCount); #Normal W = 0.95015, p-value = 0.2527 shapiro.test(not_bugCoveringList\)itemCount); #Not normal W = 0.96348, p-value = 0.005757
mean(bugCoveringList\(itemCount) #7.36 mean(not_bugCoveringList\)itemCount) #6.27
wilcox.test(bugCoveringList\(itemCount,not_bugCoveringList\)itemCount, alternative= “two.sided”, paired=FALSE, conf.int = TRUE); #data: bugCoveringList\(itemCount and not_bugCoveringList\)itemCount #W = 1715, p-value = 0.01214 #alternative hypothesis: true location shift is not equal to 0 #95 percent confidence interval: # 3.068510e-06 1.999979e+00 #sample estimates difference in location = 1.000018
shapiro.test(bugCoveringList\(itemCount); #Normal W = 0.93489, p-value = 0.1128 shapiro.test(not_bugCoveringList\)itemCount); #Not normal W = 0.96072, p-value = 0.003591
mean(bugCoveringList\(itemCount) #11.28 mean(not_bugCoveringList\)itemCount) #10.49
wilcox.test(bugCoveringList\(itemCount,not_bugCoveringList\)itemCount, alternative= “two.sided”, paired=FALSE, conf.int = TRUE); #data: bugCoveringList\(itemCount and not_bugCoveringList\)itemCount #W = 1547, p-value = 0.1384