1 prepare data and define vars

library(foreign)
## Warning: package 'foreign' was built under R version 3.3.2
r=read.dta("C:/Data/dataR5a.dta") 

r1 <- subset(r, cost_inc>1 )

attach(r1)

r1$logC1=log10(r1$cost_inc)

r1$logC2=r1$cost_inc/1000

r1$highper[cost_inc<=62000] <- 0
r1$highper[cost_inc>62000] <- 1


r1$b16a[b16a == 5] <- 0


r1$freeEn[c9==1] <- 1
r1$freeEn[c9>1] <- 0




r1$h1[h1== 1] <- 1
r1$h1[h1== 2] <- 0


r1$c7ad[c7== 2] <- 0
r1$c7ad[c7== 1] <- 1
r1$c7ad[is.na(r1$c7)] <- 0


r1$ant[c5==1& c5==2 & c5==7 & c5==8 & c5==9] <- 0
r1$ant[c5==3|c5==4|c5==5] <- 1
r1$ant[is.na(r1$c5)] <- 0


r1$p1=r1$label1+r1$freeEn+r1$ant+r1$c7ad

r1$p[r1$p1==0] <- 0
r1$p[r1$p1==1] <- 1
r1$p[r1$p1>=2] <- 2

r1$wtp[cost_inc >=1] <- 0
r1$wtp[is.na(r1$wtp)] <- 1






newdata2=r1

attach(newdata2 )
## The following objects are masked from r1:
## 
##     a, a1, advice, ag, age_group, anticam, b1, b10, b10a1, b10a2,
##     b10a3, b10a4, b10a5, b10a6, b10a7, b11, b11a, b11a2, b11a3,
##     b12, b12a, b13, b14, b15, b16, b16a, b17, b18, b18a, b1a,
##     b1a1, b1a2, b1a3, b2, b2a1, b3, b4, b5, b5a, b6, b6_123, b6a,
##     b6a1, b6a2, b6a3, b6a4, b6a5, b6a6, b6a7, b6a7a, b6b, b7, b8,
##     b9, br, branch, branch1, branch2, branch3, c1, c2, c23a, c3,
##     c4, c5, c6, c6a111, c7, c8, c9, clog, clog1, COST, cost_inc,
##     cost1, costincrease, ct, d1, d10, d11, d1a, d2, d3, d3a, d4,
##     d5, d6, d7, d8, d9, Decision, e1, e2, edu, educ1, educ2, f1,
##     ghi1, ghi2, ghiro2, giadinhkoUH, group_age, group_age1, h1,
##     h10a, h10a1, h10a10, h10a11, h10a11a, h10a2, h10a3, h10a4,
##     h10a5, h10a6, h10a7, h10a8, h10a9, h12, h12a, h12a_1, h12log,
##     h13, h2, h3, h4, h5, h6, h7, h8, h9, ha000, ict1a, ict2a,
##     itc1, itc2, l1, l2, l3, l4, l5, l6, label_1, label1, label1a,
##     logb7, logC, logitCost, moneyspent, msdt, n01, n02, n03, n05,
##     n06, n07, n08, n1, n10, n100, n101, n102, n103, n11, n12, n13,
##     n14, n15, n16, n1b, n2, n3, n35, n36, n37, n38, n39,
##     n3posterb, n4, n40, n41, n42, n43, n44, n45, n46, n47, n48,
##     n49, n5, n50, n51, n52, n53, n54, n55, n56, n57, n58, n59, n6,
##     n60, n61, n61a, n62, n62a, n63, n63a, n64, n64a, n65, n65a,
##     n66, n66a, n67, n67a, n68, n68a, n7, n77, n78, n7tren, n8,
##     n88, n89, n8nha, n9, n97, n98, n99, n9khach, noE, noEnvi2,
##     occup1, poli4, poli4a, policy, policy_a, policyeffect,
##     reasons, reasons1, s1, Screening, selfhealth, SH1, smostt,
##     taxIn, ter_fa1, ter_in, tertile_fa, tertile_indi, test,
##     unitsdiffi1, var242, w1, w2, w3, w4

2 Dinh nghia bien so

newdata2$age_group2[newdata2$age_group=="group18-29"] <- 1
newdata2$age_group2[newdata2$age_group=="gr3039"] <- 1
newdata2$age_group2[newdata2$age_group=="gr4049"] <- 0
newdata2$age_group2[newdata2$age_group=="gr5059"] <- 0
newdata2$age_group2[newdata2$age_group=="60plus"] <- 0

newdata2$age_group2=as.factor(newdata2$age_group2)


newdata2$educ2=as.factor(newdata2$educ2)

newdata2$h1=as.factor(newdata2$h1)

newdata2$d1a=as.factor(newdata2$d1a)

newdata2$b6b=as.factor(newdata2$b6b)
newdata2$selfhealth=as.factor(newdata2$selfhealth)

newdata2$b18a=as.factor(newdata2$b18a)

newdata2$b16a=as.factor(newdata2$b16a)



newdata2$smostt=as.factor(newdata2$smostt)

newdata2$ter_in=as.factor(newdata2$ter_in)

newdata2$group_age1=as.factor(newdata2$group_age1)

newdata2$label1=as.factor(newdata2$label1)
newdata2$freeEn=as.factor(newdata2$freeEn)
newdata2$c7ad=as.factor(newdata2$c7ad)
newdata2$ant=as.factor(newdata2$ant)

newdata2$p=as.factor(newdata2$p)


newdata2$in00[newdata2$ter_in==1] <- 1
newdata2$in00[newdata2$ter_in==2 | ter_in==3] <- 0

newdata2$in00=as.factor(newdata2$in00)

attach(newdata2)
## The following objects are masked from newdata2 (pos = 3):
## 
##     a, a1, advice, ag, age_group, ant, anticam, b1, b10, b10a1,
##     b10a2, b10a3, b10a4, b10a5, b10a6, b10a7, b11, b11a, b11a2,
##     b11a3, b12, b12a, b13, b14, b15, b16, b16a, b17, b18, b18a,
##     b1a, b1a1, b1a2, b1a3, b2, b2a1, b3, b4, b5, b5a, b6, b6_123,
##     b6a, b6a1, b6a2, b6a3, b6a4, b6a5, b6a6, b6a7, b6a7a, b6b, b7,
##     b8, b9, br, branch, branch1, branch2, branch3, c1, c2, c23a,
##     c3, c4, c5, c6, c6a111, c7, c7ad, c8, c9, clog, clog1, COST,
##     cost_inc, cost1, costincrease, ct, d1, d10, d11, d1a, d2, d3,
##     d3a, d4, d5, d6, d7, d8, d9, Decision, e1, e2, edu, educ1,
##     educ2, f1, freeEn, ghi1, ghi2, ghiro2, giadinhkoUH, group_age,
##     group_age1, h1, h10a, h10a1, h10a10, h10a11, h10a11a, h10a2,
##     h10a3, h10a4, h10a5, h10a6, h10a7, h10a8, h10a9, h12, h12a,
##     h12a_1, h12log, h13, h2, h3, h4, h5, h6, h7, h8, h9, ha000,
##     highper, ict1a, ict2a, itc1, itc2, l1, l2, l3, l4, l5, l6,
##     label_1, label1, label1a, logb7, logC, logC1, logC2,
##     logitCost, moneyspent, msdt, n01, n02, n03, n05, n06, n07,
##     n08, n1, n10, n100, n101, n102, n103, n11, n12, n13, n14, n15,
##     n16, n1b, n2, n3, n35, n36, n37, n38, n39, n3posterb, n4, n40,
##     n41, n42, n43, n44, n45, n46, n47, n48, n49, n5, n50, n51,
##     n52, n53, n54, n55, n56, n57, n58, n59, n6, n60, n61, n61a,
##     n62, n62a, n63, n63a, n64, n64a, n65, n65a, n66, n66a, n67,
##     n67a, n68, n68a, n7, n77, n78, n7tren, n8, n88, n89, n8nha,
##     n9, n97, n98, n99, n9khach, noE, noEnvi2, occup1, p, p1,
##     poli4, poli4a, policy, policy_a, policyeffect, reasons,
##     reasons1, s1, Screening, selfhealth, SH1, smostt, taxIn,
##     ter_fa1, ter_in, tertile_fa, tertile_indi, test, unitsdiffi1,
##     var242, w1, w2, w3, w4, wtp
## The following objects are masked from r1:
## 
##     a, a1, advice, ag, age_group, anticam, b1, b10, b10a1, b10a2,
##     b10a3, b10a4, b10a5, b10a6, b10a7, b11, b11a, b11a2, b11a3,
##     b12, b12a, b13, b14, b15, b16, b16a, b17, b18, b18a, b1a,
##     b1a1, b1a2, b1a3, b2, b2a1, b3, b4, b5, b5a, b6, b6_123, b6a,
##     b6a1, b6a2, b6a3, b6a4, b6a5, b6a6, b6a7, b6a7a, b6b, b7, b8,
##     b9, br, branch, branch1, branch2, branch3, c1, c2, c23a, c3,
##     c4, c5, c6, c6a111, c7, c8, c9, clog, clog1, COST, cost_inc,
##     cost1, costincrease, ct, d1, d10, d11, d1a, d2, d3, d3a, d4,
##     d5, d6, d7, d8, d9, Decision, e1, e2, edu, educ1, educ2, f1,
##     ghi1, ghi2, ghiro2, giadinhkoUH, group_age, group_age1, h1,
##     h10a, h10a1, h10a10, h10a11, h10a11a, h10a2, h10a3, h10a4,
##     h10a5, h10a6, h10a7, h10a8, h10a9, h12, h12a, h12a_1, h12log,
##     h13, h2, h3, h4, h5, h6, h7, h8, h9, ha000, ict1a, ict2a,
##     itc1, itc2, l1, l2, l3, l4, l5, l6, label_1, label1, label1a,
##     logb7, logC, logitCost, moneyspent, msdt, n01, n02, n03, n05,
##     n06, n07, n08, n1, n10, n100, n101, n102, n103, n11, n12, n13,
##     n14, n15, n16, n1b, n2, n3, n35, n36, n37, n38, n39,
##     n3posterb, n4, n40, n41, n42, n43, n44, n45, n46, n47, n48,
##     n49, n5, n50, n51, n52, n53, n54, n55, n56, n57, n58, n59, n6,
##     n60, n61, n61a, n62, n62a, n63, n63a, n64, n64a, n65, n65a,
##     n66, n66a, n67, n67a, n68, n68a, n7, n77, n78, n7tren, n8,
##     n88, n89, n8nha, n9, n97, n98, n99, n9khach, noE, noEnvi2,
##     occup1, poli4, poli4a, policy, policy_a, policyeffect,
##     reasons, reasons1, s1, Screening, selfhealth, SH1, smostt,
##     taxIn, ter_fa1, ter_in, tertile_fa, tertile_indi, test,
##     unitsdiffi1, var242, w1, w2, w3, w4

3 Table 1

# Tao newdataset: new dataset will work for futher analyst


data=subset(newdata2, select=c(logC1,age_group2, d1a,ter_in, educ2, selfhealth, c1, smostt, b6b, h1, b18a,b6a,label1,freeEn,ant, c7ad, p))

attach(data)
## The following objects are masked from newdata2 (pos = 3):
## 
##     age_group2, ant, b18a, b6a, b6b, c1, c7ad, d1a, educ2, freeEn,
##     h1, label1, logC1, p, selfhealth, smostt, ter_in
## The following objects are masked from newdata2 (pos = 4):
## 
##     ant, b18a, b6a, b6b, c1, c7ad, d1a, educ2, freeEn, h1, label1,
##     logC1, p, selfhealth, smostt, ter_in
## The following objects are masked from r1:
## 
##     b18a, b6a, b6b, c1, d1a, educ2, h1, label1, selfhealth,
##     smostt, ter_in
#Tabe 1

require(moonBook)
## Loading required package: moonBook
## Warning: package 'moonBook' was built under R version 3.3.3
mytable(age_group2~.,data=data)
## 
##   Descriptive Statistics by 'age_group2' 
## __________________________________________ 
##                   0           1        p  
##                (N=194)     (N=267)  
## ------------------------------------------ 
##  logC1        4.8 ±  0.3  4.9 ±  0.2 0.001
##  d1a                                 0.000
##    - none    14 ( 7.2%)  166 (62.2%)      
##    - married 180 (92.8%) 101 (37.8%)      
##  ter_in                              0.524
##    - 1       85 (44.5%)  106 (40.5%)      
##    - 2       46 (24.1%)  75 (28.6%)       
##    - 3       60 (31.4%)  81 (30.9%)       
##  educ2                               0.000
##    - 1       74 (38.9%)  22 ( 8.4%)       
##    - 2       98 (51.6%)  122 (46.6%)      
##    - 3       18 ( 9.5%)  118 (45.0%)      
##  selfhealth                          0.000
##    - notwell 130 (67.0%) 124 (46.4%)      
##    - good    64 (33.0%)  143 (53.6%)      
##  c1                                  0.001
##    - 1       180 (92.8%) 218 (81.6%)      
##    - 2       14 ( 7.2%)  49 (18.4%)       
##  smostt                              0.000
##    - light   36 (18.6%)  91 (34.1%)       
##    - medium  68 (35.1%)  105 (39.3%)      
##    - heavy   90 (46.4%)  71 (26.6%)       
##  b6b                                 0.043
##    - 0       138 (71.5%) 161 (61.9%)      
##    - 1       55 (28.5%)  99 (38.1%)       
##  h1                                  0.508
##    - 0       75 (38.7%)  94 (35.2%)       
##    - 1       119 (61.3%) 173 (64.8%)      
##  b18a                                0.780
##    - Good    63 (32.6%)  91 (34.3%)       
##    - bad     130 (67.4%) 174 (65.7%)      
##  b6a                                 0.080
##    - no      168 (87.0%) 209 (80.4%)      
##    - yes     25 (13.0%)  51 (19.6%)       
##  label1                              0.022
##    - 0       152 (78.4%) 231 (86.8%)      
##    - 1       42 (21.6%)  35 (13.2%)       
##  freeEn                              0.124
##    - 0       153 (79.3%) 193 (72.6%)      
##    - 1       40 (20.7%)  73 (27.4%)       
##  ant                                 0.122
##    - 0       94 (48.5%)  150 (56.2%)      
##    - 1       100 (51.5%) 117 (43.8%)      
##  c7ad                                0.498
##    - 0       131 (67.5%) 171 (64.0%)      
##    - 1       63 (32.5%)  96 (36.0%)       
##  p                                   0.779
##    - 0       53 (27.5%)  81 (30.5%)       
##    - 1       63 (32.6%)  82 (30.8%)       
##    - 2       77 (39.9%)  103 (38.7%)      
## ------------------------------------------

```

LS0tDQp0aXRsZTogJ1BhcGVyOiB0YWJsZSAxJw0Kb3V0cHV0Og0KICBodG1sX2RvY3VtZW50Og0KICAgIGNvZGVfZG93bmxvYWQ6IHllcw0KICAgIGNvZGVfZm9sZGluZzogaGlkZQ0KICAgIG51bWJlcl9zZWN0aW9uczogeWVzDQogICAgdGhlbWU6IGpvdXJuYWwNCiAgICB0b2M6IHllcw0KICAgIHRvY19mbG9hdDogeWVzDQogIHdvcmRfZG9jdW1lbnQ6DQogICAgdG9jOiB5ZXMNCi0tLQ0KDQojcHJlcGFyZSBkYXRhIGFuZCBkZWZpbmUgdmFycw0KDQoNCmBgYHtyfQ0KDQoNCmxpYnJhcnkoZm9yZWlnbikNCnI9cmVhZC5kdGEoIkM6L0RhdGEvZGF0YVI1YS5kdGEiKSANCg0KcjEgPC0gc3Vic2V0KHIsIGNvc3RfaW5jPjEgKQ0KDQphdHRhY2gocjEpDQoNCnIxJGxvZ0MxPWxvZzEwKHIxJGNvc3RfaW5jKQ0KDQpyMSRsb2dDMj1yMSRjb3N0X2luYy8xMDAwDQoNCnIxJGhpZ2hwZXJbY29zdF9pbmM8PTYyMDAwXSA8LSAwDQpyMSRoaWdocGVyW2Nvc3RfaW5jPjYyMDAwXSA8LSAxDQoNCg0KcjEkYjE2YVtiMTZhID09IDVdIDwtIDANCg0KDQpyMSRmcmVlRW5bYzk9PTFdIDwtIDENCnIxJGZyZWVFbltjOT4xXSA8LSAwDQoNCg0KDQoNCnIxJGgxW2gxPT0gMV0gPC0gMQ0KcjEkaDFbaDE9PSAyXSA8LSAwDQoNCg0KcjEkYzdhZFtjNz09IDJdIDwtIDANCnIxJGM3YWRbYzc9PSAxXSA8LSAxDQpyMSRjN2FkW2lzLm5hKHIxJGM3KV0gPC0gMA0KDQoNCnIxJGFudFtjNT09MSYgYzU9PTIgJiBjNT09NyAmIGM1PT04ICYgYzU9PTldIDwtIDANCnIxJGFudFtjNT09M3xjNT09NHxjNT09NV0gPC0gMQ0KcjEkYW50W2lzLm5hKHIxJGM1KV0gPC0gMA0KDQoNCnIxJHAxPXIxJGxhYmVsMStyMSRmcmVlRW4rcjEkYW50K3IxJGM3YWQNCg0KcjEkcFtyMSRwMT09MF0gPC0gMA0KcjEkcFtyMSRwMT09MV0gPC0gMQ0KcjEkcFtyMSRwMT49Ml0gPC0gMg0KDQpyMSR3dHBbY29zdF9pbmMgPj0xXSA8LSAwDQpyMSR3dHBbaXMubmEocjEkd3RwKV0gPC0gMQ0KDQoNCg0KDQoNCg0KbmV3ZGF0YTI9cjENCg0KYXR0YWNoKG5ld2RhdGEyICkNCmBgYA0KDQoNCiNEaW5oIG5naGlhIGJpZW4gc28gDQoNCg0KDQpgYGB7cn0NCg0KDQoNCm5ld2RhdGEyJGFnZV9ncm91cDJbbmV3ZGF0YTIkYWdlX2dyb3VwPT0iZ3JvdXAxOC0yOSJdIDwtIDENCm5ld2RhdGEyJGFnZV9ncm91cDJbbmV3ZGF0YTIkYWdlX2dyb3VwPT0iZ3IzMDM5Il0gPC0gMQ0KbmV3ZGF0YTIkYWdlX2dyb3VwMltuZXdkYXRhMiRhZ2VfZ3JvdXA9PSJncjQwNDkiXSA8LSAwDQpuZXdkYXRhMiRhZ2VfZ3JvdXAyW25ld2RhdGEyJGFnZV9ncm91cD09ImdyNTA1OSJdIDwtIDANCm5ld2RhdGEyJGFnZV9ncm91cDJbbmV3ZGF0YTIkYWdlX2dyb3VwPT0iNjBwbHVzIl0gPC0gMA0KDQpuZXdkYXRhMiRhZ2VfZ3JvdXAyPWFzLmZhY3RvcihuZXdkYXRhMiRhZ2VfZ3JvdXAyKQ0KDQoNCm5ld2RhdGEyJGVkdWMyPWFzLmZhY3RvcihuZXdkYXRhMiRlZHVjMikNCg0KbmV3ZGF0YTIkaDE9YXMuZmFjdG9yKG5ld2RhdGEyJGgxKQ0KDQpuZXdkYXRhMiRkMWE9YXMuZmFjdG9yKG5ld2RhdGEyJGQxYSkNCg0KbmV3ZGF0YTIkYjZiPWFzLmZhY3RvcihuZXdkYXRhMiRiNmIpDQpuZXdkYXRhMiRzZWxmaGVhbHRoPWFzLmZhY3RvcihuZXdkYXRhMiRzZWxmaGVhbHRoKQ0KDQpuZXdkYXRhMiRiMThhPWFzLmZhY3RvcihuZXdkYXRhMiRiMThhKQ0KDQpuZXdkYXRhMiRiMTZhPWFzLmZhY3RvcihuZXdkYXRhMiRiMTZhKQ0KDQoNCg0KbmV3ZGF0YTIkc21vc3R0PWFzLmZhY3RvcihuZXdkYXRhMiRzbW9zdHQpDQoNCm5ld2RhdGEyJHRlcl9pbj1hcy5mYWN0b3IobmV3ZGF0YTIkdGVyX2luKQ0KDQpuZXdkYXRhMiRncm91cF9hZ2UxPWFzLmZhY3RvcihuZXdkYXRhMiRncm91cF9hZ2UxKQ0KDQpuZXdkYXRhMiRsYWJlbDE9YXMuZmFjdG9yKG5ld2RhdGEyJGxhYmVsMSkNCm5ld2RhdGEyJGZyZWVFbj1hcy5mYWN0b3IobmV3ZGF0YTIkZnJlZUVuKQ0KbmV3ZGF0YTIkYzdhZD1hcy5mYWN0b3IobmV3ZGF0YTIkYzdhZCkNCm5ld2RhdGEyJGFudD1hcy5mYWN0b3IobmV3ZGF0YTIkYW50KQ0KDQpuZXdkYXRhMiRwPWFzLmZhY3RvcihuZXdkYXRhMiRwKQ0KDQoNCm5ld2RhdGEyJGluMDBbbmV3ZGF0YTIkdGVyX2luPT0xXSA8LSAxDQpuZXdkYXRhMiRpbjAwW25ld2RhdGEyJHRlcl9pbj09MiB8IHRlcl9pbj09M10gPC0gMA0KDQpuZXdkYXRhMiRpbjAwPWFzLmZhY3RvcihuZXdkYXRhMiRpbjAwKQ0KDQphdHRhY2gobmV3ZGF0YTIpDQoNCmBgYA0KDQoNCg0KI1RhYmxlIDENCg0KYGBge3J9DQoNCiMgVGFvIG5ld2RhdGFzZXQ6IG5ldyBkYXRhc2V0IHdpbGwgd29yayBmb3IgZnV0aGVyIGFuYWx5c3QNCg0KDQpkYXRhPXN1YnNldChuZXdkYXRhMiwgc2VsZWN0PWMobG9nQzEsYWdlX2dyb3VwMiwgZDFhLHRlcl9pbiwgZWR1YzIsIHNlbGZoZWFsdGgsIGMxLCBzbW9zdHQsIGI2YiwgaDEsIGIxOGEsYjZhLGxhYmVsMSxmcmVlRW4sYW50LCBjN2FkLCBwKSkNCg0KYXR0YWNoKGRhdGEpDQoNCg0KDQojVGFiZSAxDQoNCnJlcXVpcmUobW9vbkJvb2spDQpteXRhYmxlKGFnZV9ncm91cDJ+LixkYXRhPWRhdGEpDQpgYGANCg0KYGBgDQoNCg0K