Objectives

The objectives of this problem set is to orient you to a number of activities in R. And to conduct a thoughtful exercise in appreciating the importance of data visualization. For each question create a code chunk or text response that completes/answers the activity or question requested. Finally, upon completion post your assignment on Rpubs and upload a link to it to the “Problem Set 2” assignmenet on Moodle.

Questions

  1. Anscombes quartet is a set of 4 \(x,y\) data sets that were published by Francis Anscombe in a 1973 paper Graphs in statistical analysis. For this first question load the anscombe data that is part of the library(datasets) in R. And assign that data to a new object called data.
library(datasets)
data("anscombe")
data <- anscombe
data
##    x1 x2 x3 x4    y1   y2    y3    y4
## 1  10 10 10  8  8.04 9.14  7.46  6.58
## 2   8  8  8  8  6.95 8.14  6.77  5.76
## 3  13 13 13  8  7.58 8.74 12.74  7.71
## 4   9  9  9  8  8.81 8.77  7.11  8.84
## 5  11 11 11  8  8.33 9.26  7.81  8.47
## 6  14 14 14  8  9.96 8.10  8.84  7.04
## 7   6  6  6  8  7.24 6.13  6.08  5.25
## 8   4  4  4 19  4.26 3.10  5.39 12.50
## 9  12 12 12  8 10.84 9.13  8.15  5.56
## 10  7  7  7  8  4.82 7.26  6.42  7.91
## 11  5  5  5  8  5.68 4.74  5.73  6.89
  1. Summarise the data by calculating the mean, variance, for each column and the correlation between each pair (eg. x1 and y1, x2 and y2, etc) (Hint: use the fBasics() package!)
library(fBasics)
## Loading required package: timeDate
## Loading required package: timeSeries
## 
## Rmetrics Package fBasics
## Analysing Markets and calculating Basic Statistics
## Copyright (C) 2005-2014 Rmetrics Association Zurich
## Educational Software for Financial Engineering and Computational Science
## Rmetrics is free software and comes with ABSOLUTELY NO WARRANTY.
## https://www.rmetrics.org --- Mail to: info@rmetrics.org
colMeans(data, na.rm = FALSE, dims = 1 )
##       x1       x2       x3       x4       y1       y2       y3       y4 
## 9.000000 9.000000 9.000000 9.000000 7.500909 7.500909 7.500000 7.500909
colVars(data, na.rm = FALSE)
##        x1        x2        x3        x4        y1        y2        y3 
## 11.000000 11.000000 11.000000 11.000000  4.127269  4.127629  4.122620 
##        y4 
##  4.123249
cor(data, y = NULL)
##            x1         x2         x3         x4         y1         y2
## x1  1.0000000  1.0000000  1.0000000 -0.5000000  0.8164205  0.8162365
## x2  1.0000000  1.0000000  1.0000000 -0.5000000  0.8164205  0.8162365
## x3  1.0000000  1.0000000  1.0000000 -0.5000000  0.8164205  0.8162365
## x4 -0.5000000 -0.5000000 -0.5000000  1.0000000 -0.5290927 -0.7184365
## y1  0.8164205  0.8164205  0.8164205 -0.5290927  1.0000000  0.7500054
## y2  0.8162365  0.8162365  0.8162365 -0.7184365  0.7500054  1.0000000
## y3  0.8162867  0.8162867  0.8162867 -0.3446610  0.4687167  0.5879193
## y4 -0.3140467 -0.3140467 -0.3140467  0.8165214 -0.4891162 -0.4780949
##            y3         y4
## x1  0.8162867 -0.3140467
## x2  0.8162867 -0.3140467
## x3  0.8162867 -0.3140467
## x4 -0.3446610  0.8165214
## y1  0.4687167 -0.4891162
## y2  0.5879193 -0.4780949
## y3  1.0000000 -0.1554718
## y4 -0.1554718  1.0000000
  1. Create scatter plots for each \(x, y\) pair of data.
pairs(data, main="Pair of Data Scatter plots")

  1. Now change the symbols on the scatter plots to solid circles and plot them together as a 4 panel graphic
par(mfrow=c(2,2))
plot(data$x1, data$y1, pch=16)
plot(data$x2, data$y2, pch=16)
plot(data$x3, data$y3, pch=16)
plot(data$x4, data$y4, pch=16)

  1. Now fit a linear model to each data set using the lm() function.
lm1 <- lm(data$y1 ~ data$x1)
lm1
## 
## Call:
## lm(formula = data$y1 ~ data$x1)
## 
## Coefficients:
## (Intercept)      data$x1  
##      3.0001       0.5001
lm2 <- lm(data$y2 ~ data$x2)
lm2
## 
## Call:
## lm(formula = data$y2 ~ data$x2)
## 
## Coefficients:
## (Intercept)      data$x2  
##       3.001        0.500
lm3 <- lm(data$y3 ~ data$x3)
lm3
## 
## Call:
## lm(formula = data$y3 ~ data$x3)
## 
## Coefficients:
## (Intercept)      data$x3  
##      3.0025       0.4997
lm4 <- lm(data$y4 ~ data$x4)
lm4
## 
## Call:
## lm(formula = data$y4 ~ data$x4)
## 
## Coefficients:
## (Intercept)      data$x4  
##      3.0017       0.4999
  1. Now combine the last two tasks. Create a four panel scatter plot matrix that has both the data points and the regression lines. (hint: the model objects will carry over chunks!)
par(mfrow=c(2,2))

plot(data$x1, data$y1, pch=16)
abline(lm1, col="blue")

plot(data$x2, data$y2, pch=16)
abline(lm2, col="blue")

plot(data$x3, data$y3, pch=16)
abline(lm3, col="blue")

plot(data$x4, data$y4, pch=16)
abline(lm4, col="blue")

  1. Now compare the model fits for each model object.
summary(lm1)

Call: lm(formula = data\(y1 ~ data\)x1)

Residuals: Min 1Q Median 3Q Max -1.92127 -0.45577 -0.04136 0.70941 1.83882

Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.0001 1.1247 2.667 0.02573 * data$x1 0.5001 0.1179 4.241 0.00217 ** — Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1

Residual standard error: 1.237 on 9 degrees of freedom Multiple R-squared: 0.6665, Adjusted R-squared: 0.6295 F-statistic: 17.99 on 1 and 9 DF, p-value: 0.00217

anova(lm1)

Analysis of Variance Table

Response: data\(y1 Df Sum Sq Mean Sq F value Pr(>F) data\)x1 1 27.510 27.5100 17.99 0.00217 ** Residuals 9 13.763 1.5292
— Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1

summary(lm2)

Call: lm(formula = data\(y2 ~ data\)x2)

Residuals: Min 1Q Median 3Q Max -1.9009 -0.7609 0.1291 0.9491 1.2691

Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.001 1.125 2.667 0.02576 * data$x2 0.500 0.118 4.239 0.00218 ** — Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1

Residual standard error: 1.237 on 9 degrees of freedom Multiple R-squared: 0.6662, Adjusted R-squared: 0.6292 F-statistic: 17.97 on 1 and 9 DF, p-value: 0.002179

anova(lm2)

Analysis of Variance Table

Response: data\(y2 Df Sum Sq Mean Sq F value Pr(>F) data\)x2 1 27.500 27.5000 17.966 0.002179 ** Residuals 9 13.776 1.5307
— Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1

summary(lm3)

Call: lm(formula = data\(y3 ~ data\)x3)

Residuals: Min 1Q Median 3Q Max -1.1586 -0.6146 -0.2303 0.1540 3.2411

Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.0025 1.1245 2.670 0.02562 * data$x3 0.4997 0.1179 4.239 0.00218 ** — Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1

Residual standard error: 1.236 on 9 degrees of freedom Multiple R-squared: 0.6663, Adjusted R-squared: 0.6292 F-statistic: 17.97 on 1 and 9 DF, p-value: 0.002176

anova(lm3)

Analysis of Variance Table

Response: data\(y3 Df Sum Sq Mean Sq F value Pr(>F) data\)x3 1 27.470 27.4700 17.972 0.002176 ** Residuals 9 13.756 1.5285
— Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1

summary(lm4)

Call: lm(formula = data\(y4 ~ data\)x4)

Residuals: Min 1Q Median 3Q Max -1.751 -0.831 0.000 0.809 1.839

Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.0017 1.1239 2.671 0.02559 * data$x4 0.4999 0.1178 4.243 0.00216 ** — Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1

Residual standard error: 1.236 on 9 degrees of freedom Multiple R-squared: 0.6667, Adjusted R-squared: 0.6297 F-statistic: 18 on 1 and 9 DF, p-value: 0.002165

anova(lm4)

Analysis of Variance Table

Response: data\(y4 Df Sum Sq Mean Sq F value Pr(>F) data\)x4 1 27.490 27.4900 18.003 0.002165 ** Residuals 9 13.742 1.5269
— Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1

  1. In text, summarize the lesson of Anscombe’s Quartet and what it says about the value of data visualization.

Data visualization is the presentation of data in a graphical format. It enables decision makers to see analytics presented visually, so you can get difficult concepts or identify new patterns. With interactive visualization, you can take the concept a step further by using technology to drill down into charts/graphs for more detail of data, interactively changing what data you see and how it’s processed. It will help to do strategy plan on business side or finance industry.