Question 1: Read in the gambling dataset check the first couple of rows and describe the data types. Identify incorrect data types, if any. ( 5 Points )
mydata = read.csv("data/gambling.csv")
head(mydata)
The data types featured in the gambling dataset are nominal, ratio, and categorical.
There appear to be no incorrect data types.
Question 2: Describe the data using full sentences and using descriptive statistics. ( 5 Points )
#str(mydata)
summary(mydata)
sex status
Min. :0.0000 Min. :18.00
1st Qu.:0.0000 1st Qu.:28.00
Median :0.0000 Median :43.00
Mean :0.4043 Mean :45.23
3rd Qu.:1.0000 3rd Qu.:61.50
Max. :1.0000 Max. :75.00
income verbal
Min. : 0.600 Min. : 1.00
1st Qu.: 2.000 1st Qu.: 6.00
Median : 3.250 Median : 7.00
Mean : 4.642 Mean : 6.66
3rd Qu.: 6.210 3rd Qu.: 8.00
Max. :15.000 Max. :10.00
gamble
Min. : 0.0
1st Qu.: 1.1
Median : 6.0
Mean : 19.3
3rd Qu.: 19.4
Max. :156.0
income = mydata$income
income
[1] 2.00 2.50 2.00 7.00 2.00 3.47 5.50
[8] 6.42 2.00 6.00 3.00 4.75 2.20 2.00
[15] 3.00 1.50 9.50 10.00 4.00 3.50 3.00
[22] 2.50 3.50 10.00 6.50 1.50 5.44 1.00
[29] 0.60 5.50 12.00 7.00 15.00 2.00 1.50
[36] 4.50 2.50 8.00 10.00 1.60 2.00 15.00
[43] 3.00 3.25 4.94 1.50 2.50
mean_income = mean (income)
mean_income
[1] 4.641915
status = mydata$status
status
[1] 51 28 37 28 65 61 28 27 43 18 18 43 30 28
[15] 38 38 28 18 43 51 62 47 43 27 71 38 51 38
[29] 51 62 18 30 38 71 28 61 71 28 51 65 48 61
[43] 75 66 62 71 71
mean_status = mean(status)
mean_status
[1] 45.23404
The data set includes five catgories in the following columns: ‘sex’, ‘status’, ‘verbal’, ‘income’, and ‘gamble’.
The average income is 4.641915 and the average status is 45.23404
Question 3: Estimate the upper and lower threshold for the verbal score ( 5 Points )
HINT: A common way to estimate the upper and lower threshold is to take the mean (+ or -) 3 * standard deviation.
verbal = mydata$verbal
verbal
[1] 8 8 6 4 8 6 7 5 6 7 6 6 4 6
[15] 6 8 8 5 8 9 8 9 5 4 7 7 4 6
[29] 7 8 2 7 7 10 1 8 7 6 6 6 9 9
[43] 8 9 6 7 9
mean_verbal = mean(verbal)
mean_verbal
[1] 6.659574
verbal_sd = sd(verbal)
verbal_sd
[1] 1.856558
verbal_lower = mean_verbal - (3) * verbal_sd
verbal_upper = mean_verbal + (3) * verbal_sd
verbal_upper
[1] 12.22925
verbal_lower
[1] 1.0899
Question 4: Calculate the z-score for income where x=13. Based on the income value x=13 pounds per week, how would you rate the income: low income, average income, high income. Why? ( 5 Points )
income_sd = sd(income)
income_sd
[1] 3.551371
Hint: zscore = (x - mean)/sd
zscore = (13 - 4.641915)/ 3.551371
zscore
[1] 2.353481
I would rate the income low considering it is below the average.
Question 5: Create a histogram for the zscore of income. What do you notice about the shape? ( 5 Points )
Hint: To plot a histogram, use the function hist(variable).
hist(zscore)

LS0tCnRpdGxlOiAiQnVzaW5lc3MgQW5hbHl0aWNzIC0gTUlEVEVSTSIKYXV0aG9yOiAiS2FyaW5hIFJvY2hhIgpkYXRlOiAiSnVseSAyNCwgMjAxNyIKb3V0cHV0OgogIGh0bWxfbm90ZWJvb2s6IGRlZmF1bHQKICBodG1sX2RvY3VtZW50OiBkZWZhdWx0CiAgcGRmX2RvY3VtZW50OiBkZWZhdWx0CnN1YnRpdGxlOiBDTUUgR3JvdXAgRm91bmRhdGlvbiBCdXNpbmVzcyBBbmFseXRpY3MgTGFiCi0tLQoKCgojIyMgUXVlc3Rpb24gMTogUmVhZCBpbiB0aGUgZ2FtYmxpbmcgZGF0YXNldCBjaGVjayB0aGUgZmlyc3QgY291cGxlIG9mIHJvd3MgYW5kIGRlc2NyaWJlIHRoZSBkYXRhIHR5cGVzLiBJZGVudGlmeSBpbmNvcnJlY3QgZGF0YSB0eXBlcywgaWYgYW55LiAoIDUgUG9pbnRzICkKCmBgYHtyfQpteWRhdGEgPSByZWFkLmNzdigiZGF0YS9nYW1ibGluZy5jc3YiKQpoZWFkKG15ZGF0YSkKYGBgCgpUaGUgZGF0YSB0eXBlcyBmZWF0dXJlZCBpbiB0aGUgZ2FtYmxpbmcgZGF0YXNldCBhcmUgbm9taW5hbCwgcmF0aW8sIGFuZCBjYXRlZ29yaWNhbC4gCgpUaGVyZSBhcHBlYXIgdG8gYmUgbm8gaW5jb3JyZWN0IGRhdGEgdHlwZXMuCgoKCgoKIyMjIFF1ZXN0aW9uIDI6IERlc2NyaWJlIHRoZSBkYXRhIHVzaW5nIGZ1bGwgc2VudGVuY2VzIGFuZCB1c2luZyBkZXNjcmlwdGl2ZSBzdGF0aXN0aWNzLiAoIDUgUG9pbnRzICkKCmBgYHtyfQojc3RyKG15ZGF0YSkKc3VtbWFyeShteWRhdGEpCmBgYAoKYGBge3J9CmluY29tZSA9IG15ZGF0YSRpbmNvbWUKaW5jb21lCmBgYAoKYGBge3J9Cm1lYW5faW5jb21lID0gbWVhbiAoaW5jb21lKQptZWFuX2luY29tZQpgYGAKCmBgYHtyfQpzdGF0dXMgPSBteWRhdGEkc3RhdHVzCnN0YXR1cwpgYGAKCgpgYGB7cn0KbWVhbl9zdGF0dXMgPSBtZWFuKHN0YXR1cykKbWVhbl9zdGF0dXMKYGBgCgoKClRoZSBkYXRhIHNldCBpbmNsdWRlcyBmaXZlIGNhdGdvcmllcyBpbiB0aGUgZm9sbG93aW5nIGNvbHVtbnM6ICdzZXgnLCAnc3RhdHVzJywgJ3ZlcmJhbCcsICdpbmNvbWUnLCBhbmQgJ2dhbWJsZScuIAoKVGhlIGF2ZXJhZ2UgaW5jb21lIGlzIDQuNjQxOTE1CmFuZCB0aGUgYXZlcmFnZSBzdGF0dXMgaXMgNDUuMjM0MDQKCgoKCiMjIyBRdWVzdGlvbiAzOiBFc3RpbWF0ZSB0aGUgdXBwZXIgYW5kIGxvd2VyIHRocmVzaG9sZCBmb3IgdGhlIHZlcmJhbCBzY29yZSAoIDUgUG9pbnRzICkKCkhJTlQ6ICBBIGNvbW1vbiB3YXkgdG8gZXN0aW1hdGUgdGhlIHVwcGVyIGFuZCBsb3dlciB0aHJlc2hvbGQgaXMgdG8gdGFrZSB0aGUgbWVhbiAoKyBvciAtKSAzICogc3RhbmRhcmQgZGV2aWF0aW9uLgoKYGBge3J9CnZlcmJhbCA9IG15ZGF0YSR2ZXJiYWwKdmVyYmFsCmBgYAoKYGBge3J9Cm1lYW5fdmVyYmFsID0gbWVhbih2ZXJiYWwpCm1lYW5fdmVyYmFsCmBgYAoKYGBge3J9CnZlcmJhbF9zZCA9IHNkKHZlcmJhbCkKdmVyYmFsX3NkCmBgYAoKCgpgYGB7cn0KdmVyYmFsX2xvd2VyID0gbWVhbl92ZXJiYWwgLSAoMykgKiB2ZXJiYWxfc2QKdmVyYmFsX3VwcGVyID0gbWVhbl92ZXJiYWwgKyAoMykgKiB2ZXJiYWxfc2QKdmVyYmFsX3VwcGVyCmBgYAoKYGBge3J9CnZlcmJhbF9sb3dlcgpgYGAKCgoKCiMjIyBRdWVzdGlvbiA0OiBDYWxjdWxhdGUgdGhlIHotc2NvcmUgZm9yIGluY29tZSB3aGVyZSB4PTEzLiBCYXNlZCBvbiB0aGUgaW5jb21lIHZhbHVlIHg9MTMgcG91bmRzIHBlciB3ZWVrLCBob3cgd291bGQgeW91IHJhdGUgdGhlIGluY29tZTogbG93IGluY29tZSwgYXZlcmFnZSBpbmNvbWUsIGhpZ2ggaW5jb21lLiBXaHk/ICggNSBQb2ludHMgKQoKYGBge3J9CmluY29tZV9zZCA9IHNkKGluY29tZSkKaW5jb21lX3NkCmBgYAoKSGludDogenNjb3JlID0gKHggLSBtZWFuKS9zZApgYGB7cn0KenNjb3JlID0gKDEzIC0gNC42NDE5MTUpLyAzLjU1MTM3MQp6c2NvcmUKYGBgCgpJIHdvdWxkIHJhdGUgdGhlIGluY29tZSBsb3cgY29uc2lkZXJpbmcgaXQgaXMgYmVsb3cgdGhlIGF2ZXJhZ2UuIAoKCgoKCiMjIyBRdWVzdGlvbiA1OiBDcmVhdGUgYSBoaXN0b2dyYW0gZm9yIHRoZSB6c2NvcmUgb2YgaW5jb21lLiBXaGF0IGRvIHlvdSBub3RpY2UgYWJvdXQgdGhlIHNoYXBlPyAoIDUgUG9pbnRzICkKCkhpbnQ6IFRvIHBsb3QgYSBoaXN0b2dyYW0sIHVzZSB0aGUgZnVuY3Rpb24gaGlzdCh2YXJpYWJsZSkuIApgYGB7cn0KaGlzdCh6c2NvcmUpCmBgYAoKCgoKCgoKIyMjIFF1ZXN0aW9uIDY6IEFuYWx5emUgdGhlIGNvcnJlbGF0aW9uIHBsb3QgYmVsb3cuIEdpdmUgcmVsYXZhbnQgaW5mb3JtYXRpb24gYWJvdXQgdGhlIG5lZ2F0aXZlIGNvcnJlbGF0ZWQsIG5vIGNvcnJlbGFyZWQgYW5kIHBvc2l0aXZlIGNvcnJlbGF0ZWQgdmFyaWFibGVzLiAoIDUgUG9pbnRzICkKCiFbXShkYXRhL2NvcnJfcGxvdC5wbmcpCgoKVGhlcmUgYXJlIHBvc3RpdmUgY29ycmVsYXRlZCBiZXR3ZWVuIGZiIGxpa2VzIGFuZCB1c2VyIHZvdGVzOyB1c2VyIHZvdGVzIGFuZCBncm9zcywgZmIgbGlrZXMgYW5kIGdyb3NzIC4gCgpTaWducyBvZiBuZWdhdGl2ZSBjb3JyZWxhdGVkIGJldHdlZW4gc2NvcmUgYW5kIGNhc3QgbGlrZXMuIGRpcmVhY3RvciBhbmQgY2FzdCBsaWtlcy4gCgpDYW4gY29uY2x1ZGUgdGhhdCB0aGVyZSBpcyBhIHZlcnkgc3Ryb25nIGNvcnJlbGF0aW9uIGJldHdlZW4gZmIgbGlrZXMgYW5kIHVzZXIgdm90ZXMuIAoKIyMjIEV4dHJhIENyZWRpdDogQW5hbHl6ZSB0aGUgY29ycmVsYXRpb24gdGFibGUgYmVsb3cuIEdpdmUgcmVsYXZhbnQgaW5mb3JtYXRpb24gYWJvdXQgdGhlIG5lZ2F0aXZlIGNvcnJlbGF0ZWQsIG5vIGNvcnJlbGFyZWQgYW5kIHBvc2l0aXZlIGNvcnJlbGF0ZWQgdmFyaWFibGVzLiAoIDUgUG9pbnRzICkKCmBgYHtyfQojIENyZWF0ZSBhIGNvcnJlbGF0aW9uIHRhYmxlICJjb3IobW92aWVzKSIKYGBgCgoKCgoKCgo=