Question 1: Read in the gambling dataset check the first couple of rows and describe the data types. Identify incorrect data types, if any. ( 5 Points )
gamblingdata = read.csv(file="data/gambling.csv")
head(gamblingdata)
Question 2: Describe the data using full sentences and using descriptive statistics. ( 5 Points )
summary(gamblingdata)
sex status income verbal gamble
Min. :0.0000 Min. :18.00 Min. : 0.600 Min. : 1.00 Min. : 0.0
1st Qu.:0.0000 1st Qu.:28.00 1st Qu.: 2.000 1st Qu.: 6.00 1st Qu.: 1.1
Median :0.0000 Median :43.00 Median : 3.250 Median : 7.00 Median : 6.0
Mean :0.4043 Mean :45.23 Mean : 4.642 Mean : 6.66 Mean : 19.3
3rd Qu.:1.0000 3rd Qu.:61.50 3rd Qu.: 6.210 3rd Qu.: 8.00 3rd Qu.: 19.4
Max. :1.0000 Max. :75.00 Max. :15.000 Max. :10.00 Max. :156.0
The data in the gambling.csv show gender of players, status, income, verbal signals, and rate of gamble.
meanIncome = mean(gamblingdata$income)
meanIncome
[1] 4.641915
maxIncome = max(gamblingdata$income)
maxIncome
[1] 15
minIncome = min(gamblingdata$income)
minIncome
[1] 0.6
medianIncome = median(gamblingdata$income)
medianIncome
[1] 3.25
Question 3: Estimate the upper and lower threshold for the verbal score ( 5 Points )
HINT: A common way to estimate the upper and lower threshold is to take the mean (+ or -) 3 * standard deviation.
verbal = gamblingdata$verbal
verbal
[1] 8 8 6 4 8 6 7 5 6 7 6 6 4 6 6 8 8 5 8 9 8 9 5 4 7 7 4 6 7 8 2 7 7 10 1 8
[37] 7 6 6 6 9 9 8 9 6 7 9
verbalmean = mean(verbal)
verbalmean
[1] 6.659574
verbalsd = sd(verbal)
verbalsd
[1] 1.856558
lowerverbal = verbalmean -(3 * verbalsd)
upperverbal = verbalmean + (3 * verbalsd)
lowerverbal
[1] 1.0899
upperverbal
[1] 12.22925
Question 4: Calculate the z-score for income where x=13. Based on the income value x=13 pounds per week, how would you rate the income: low income, average income, high income. Why? ( 5 Points )
Hint: zscore = (x - mean)/sd
income = gamblingdata$income
income
[1] 2.00 2.50 2.00 7.00 2.00 3.47 5.50 6.42 2.00 6.00 3.00 4.75 2.20 2.00 3.00 1.50 9.50 10.00
[19] 4.00 3.50 3.00 2.50 3.50 10.00 6.50 1.50 5.44 1.00 0.60 5.50 12.00 7.00 15.00 2.00 1.50 4.50
[37] 2.50 8.00 10.00 1.60 2.00 15.00 3.00 3.25 4.94 1.50 2.50
incomemean = mean(income)
incomemean
[1] 4.641915
incomesd = sd(income)
incomesd
[1] 3.551371
zscore = (13-incomemean)/incomesd
zscore
[1] 2.353481
Question 5: Create a histogram for the zscore of income. What do you notice about the shape? ( 5 Points )
Hint: To plot a histogram, use the function hist(variable).
zscoresIncome = (income - meanIncome)/incomesd
hist(zscoresIncome)

this histogram has a negative slope. there are a lot of negative zscores compared to positives.
LS0tDQp0aXRsZTogIkJ1c2luZXNzIEFuYWx5dGljcyAtIE1JRFRFUk0iDQphdXRob3I6ICJFbGlvIFZlbnRvIg0KZGF0ZTogIlN1bW1lciAyMDE3Ig0Kb3V0cHV0Og0KICBodG1sX25vdGVib29rOiBkZWZhdWx0DQogIGh0bWxfZG9jdW1lbnQ6IGRlZmF1bHQNCiAgcGRmX2RvY3VtZW50OiBkZWZhdWx0DQpzdWJ0aXRsZTogQ01FIEdyb3VwIEZvdW5kYXRpb24gQnVzaW5lc3MgQW5hbHl0aWNzIExhYg0KLS0tDQoNCg0KDQojIyMgUXVlc3Rpb24gMTogUmVhZCBpbiB0aGUgZ2FtYmxpbmcgZGF0YXNldCBjaGVjayB0aGUgZmlyc3QgY291cGxlIG9mIHJvd3MgYW5kIGRlc2NyaWJlIHRoZSBkYXRhIHR5cGVzLiBJZGVudGlmeSBpbmNvcnJlY3QgZGF0YSB0eXBlcywgaWYgYW55LiAoIDUgUG9pbnRzICkNCg0KYGBge3J9DQpnYW1ibGluZ2RhdGEgPSByZWFkLmNzdihmaWxlPSJkYXRhL2dhbWJsaW5nLmNzdiIpDQpoZWFkKGdhbWJsaW5nZGF0YSkNCmBgYA0KDQoNCg0KDQojIyMgUXVlc3Rpb24gMjogRGVzY3JpYmUgdGhlIGRhdGEgdXNpbmcgZnVsbCBzZW50ZW5jZXMgYW5kIHVzaW5nIGRlc2NyaXB0aXZlIHN0YXRpc3RpY3MuICggNSBQb2ludHMgKQ0KDQpgYGB7cn0NCnN1bW1hcnkoZ2FtYmxpbmdkYXRhKQ0KYGBgDQoNClRoZSBkYXRhIGluIHRoZSBnYW1ibGluZy5jc3Ygc2hvdyBnZW5kZXIgb2YgcGxheWVycywgc3RhdHVzLCBpbmNvbWUsIHZlcmJhbCBzaWduYWxzLCBhbmQgcmF0ZSBvZiBnYW1ibGUuDQoNCmBgYHtyfQ0KbWVhbkluY29tZSA9IG1lYW4oZ2FtYmxpbmdkYXRhJGluY29tZSkNCm1lYW5JbmNvbWUNCmBgYA0KDQpgYGB7cn0NCm1heEluY29tZSA9IG1heChnYW1ibGluZ2RhdGEkaW5jb21lKQ0KbWF4SW5jb21lDQpgYGANCg0KYGBge3J9DQptaW5JbmNvbWUgPSBtaW4oZ2FtYmxpbmdkYXRhJGluY29tZSkNCm1pbkluY29tZQ0KYGBgDQoNCmBgYHtyfQ0KbWVkaWFuSW5jb21lID0gbWVkaWFuKGdhbWJsaW5nZGF0YSRpbmNvbWUpDQptZWRpYW5JbmNvbWUNCmBgYA0KDQoNCg0KIyMjIFF1ZXN0aW9uIDM6IEVzdGltYXRlIHRoZSB1cHBlciBhbmQgbG93ZXIgdGhyZXNob2xkIGZvciB0aGUgdmVyYmFsIHNjb3JlICggNSBQb2ludHMgKQ0KDQpISU5UOiAgQSBjb21tb24gd2F5IHRvIGVzdGltYXRlIHRoZSB1cHBlciBhbmQgbG93ZXIgdGhyZXNob2xkIGlzIHRvIHRha2UgdGhlIG1lYW4gKCsgb3IgLSkgMyAqIHN0YW5kYXJkIGRldmlhdGlvbi4NCg0KYGBge3J9DQp2ZXJiYWwgPSBnYW1ibGluZ2RhdGEkdmVyYmFsDQp2ZXJiYWwNCmBgYA0KDQpgYGB7cn0NCnZlcmJhbG1lYW4gPSBtZWFuKHZlcmJhbCkNCnZlcmJhbG1lYW4NCnZlcmJhbHNkID0gc2QodmVyYmFsKQ0KdmVyYmFsc2QNCmBgYA0KDQpgYGB7cn0NCmxvd2VydmVyYmFsID0gdmVyYmFsbWVhbiAtKDMgKiB2ZXJiYWxzZCkNCnVwcGVydmVyYmFsID0gdmVyYmFsbWVhbiArICgzICogdmVyYmFsc2QpDQpsb3dlcnZlcmJhbA0KYGBgDQoNCmBgYHtyfQ0KdXBwZXJ2ZXJiYWwNCmBgYA0KDQoNCg0KIyMjIFF1ZXN0aW9uIDQ6IENhbGN1bGF0ZSB0aGUgei1zY29yZSBmb3IgaW5jb21lIHdoZXJlIHg9MTMuIEJhc2VkIG9uIHRoZSBpbmNvbWUgdmFsdWUgeD0xMyBwb3VuZHMgcGVyIHdlZWssIGhvdyB3b3VsZCB5b3UgcmF0ZSB0aGUgaW5jb21lOiBsb3cgaW5jb21lLCBhdmVyYWdlIGluY29tZSwgaGlnaCBpbmNvbWUuIFdoeT8gKCA1IFBvaW50cyApDQoNCkhpbnQ6IHpzY29yZSA9ICh4IC0gbWVhbikvc2QNCmBgYHtyfQ0KaW5jb21lID0gZ2FtYmxpbmdkYXRhJGluY29tZQ0KaW5jb21lDQpgYGANCg0KDQpgYGB7cn0NCmluY29tZW1lYW4gPSBtZWFuKGluY29tZSkNCmluY29tZW1lYW4NCmBgYA0KDQpgYGB7cn0NCmluY29tZXNkID0gc2QoaW5jb21lKQ0KaW5jb21lc2QNCmBgYA0KDQpgYGB7cn0NCnpzY29yZSA9ICgxMy1pbmNvbWVtZWFuKS9pbmNvbWVzZA0KenNjb3JlDQpgYGANCg0KDQoNCg0KIyMjIFF1ZXN0aW9uIDU6IENyZWF0ZSBhIGhpc3RvZ3JhbSBmb3IgdGhlIHpzY29yZSBvZiBpbmNvbWUuIFdoYXQgZG8geW91IG5vdGljZSBhYm91dCB0aGUgc2hhcGU/ICggNSBQb2ludHMgKQ0KDQpIaW50OiBUbyBwbG90IGEgaGlzdG9ncmFtLCB1c2UgdGhlIGZ1bmN0aW9uIGhpc3QodmFyaWFibGUpLiANCmBgYHtyfQ0KenNjb3Jlc0luY29tZSA9IChpbmNvbWUgLSBtZWFuSW5jb21lKS9pbmNvbWVzZA0KaGlzdCh6c2NvcmVzSW5jb21lKQ0KYGBgDQoNCnRoaXMgaGlzdG9ncmFtIGhhcyBhIG5lZ2F0aXZlIHNsb3BlLiB0aGVyZSBhcmUgYSBsb3Qgb2YgbmVnYXRpdmUgenNjb3JlcyBjb21wYXJlZCB0byBwb3NpdGl2ZXMuIA0KDQoNCiMjIyBRdWVzdGlvbiA2OiBBbmFseXplIHRoZSBjb3JyZWxhdGlvbiBwbG90IGJlbG93LiBHaXZlIHJlbGF2YW50IGluZm9ybWF0aW9uIGFib3V0IHRoZSBuZWdhdGl2ZSBjb3JyZWxhdGVkLCBubyBjb3JyZWxhcmVkIGFuZCBwb3NpdGl2ZSBjb3JyZWxhdGVkIHZhcmlhYmxlcy4gKCA1IFBvaW50cyApDQoNCiFbXShkYXRhL2NvcnJfcGxvdC5wbmcpDQoNClRoZSBwb3NpdGl2ZXMgb3V0d2VpZ2ggdGhlIG5lZ2F0aXZlcyBpbiBzZWVpbmcgdGhhdCB0aGUgeCBheGlzIGlzIG1vcmUgZGlzdGluZ3Vpc2ggb24gdGhlIHJpZ2h0IGhhbmQgc2lkZS4gVGhlcmUgaXMgYSBmcmVxdWVudCBjb3JyZWxhdGlvbiByZWxhdGluZyB0byB0aGUgY2FzdWFsIGh5cG90aGVzaXMgbm90YXRlZCB3aXRoIHRoZSBkb3RzIGdvaW5nIHRocm91Z2ggdGhlIG1pZGRsZSBpbiBhIGRpYWdvbmFsIGxpbmUuDQoNCg0KIyMjIEV4dHJhIENyZWRpdDogQW5hbHl6ZSB0aGUgY29ycmVsYXRpb24gdGFibGUgYmVsb3cuIEdpdmUgcmVsYXZhbnQgaW5mb3JtYXRpb24gYWJvdXQgdGhlIG5lZ2F0aXZlIGNvcnJlbGF0ZWQsIG5vIGNvcnJlbGFyZWQgYW5kIHBvc2l0aXZlIGNvcnJlbGF0ZWQgdmFyaWFibGVzLiAoIDUgUG9pbnRzICkNCg0KYGBge3J9DQojIENyZWF0ZSBhIGNvcnJlbGF0aW9uIHRhYmxlICJjb3IobW92aWVzKSINCg0KbW92aWVzZGF0YSA9IHJlYWQuY3N2KGZpbGU9ImRhdGEvbW92aWVzLmNzdiIpDQpoZWFkKG1vdmllc2RhdGEpDQoNCg0KDQpgYGANCg0KDQpgYGB7cn0NCmNvcihtb3ZpZXNkYXRhKQ0KYGBgDQoNCmBgYHtyfQ0KY29yKG1vdmllc2RhdGEpDQpgYGANCg0KDQoNCg0K