Question 1: Read in the gambling dataset check the first couple of rows and describe the data types. Identify incorrect data types, if any. ( 5 Points )
gdata = read.csv("data/gambling.csv")
gdata
Sex is a categorical data type, so the values listed in that column appear to be incorrect. Status could be any type of data depending on how it was measured. I am going to assume that the numerical data presented is correct. Income is a ratio data type because there is a true zero. The column appears to be presented correctly. Verbal could be anything, so I will assume it is presented appropriately. Finally, gamble appears to be a dollar amount in which it is presented appropriately.
Question 2: Describe the data using full sentences and using descriptive statistics. ( 5 Points )
meanIncome = mean(gdata$income)
meanIncome
[1] 4.641915
maxIncome = max(gdata$income)
maxIncome
[1] 15
minIncome = min(gdata$income)
minIncome
[1] 0.6
summary(gdata)
sex status income verbal gamble
Min. :0.0000 Min. :18.00 Min. : 0.600 Min. : 1.00 Min. : 0.0
1st Qu.:0.0000 1st Qu.:28.00 1st Qu.: 2.000 1st Qu.: 6.00 1st Qu.: 1.1
Median :0.0000 Median :43.00 Median : 3.250 Median : 7.00 Median : 6.0
Mean :0.4043 Mean :45.23 Mean : 4.642 Mean : 6.66 Mean : 19.3
3rd Qu.:1.0000 3rd Qu.:61.50 3rd Qu.: 6.210 3rd Qu.: 8.00 3rd Qu.: 19.4
Max. :1.0000 Max. :75.00 Max. :15.000 Max. :10.00 Max. :156.0
Originally, I started looking for basic statistics for the income column of the data. Then, I decided to pull of the basic statistics of all the data using the summary function.
Question 3: Estimate the upper and lower threshold for the verbal score ( 5 Points )
HINT: A common way to estimate the upper and lower threshold is to take the mean (+ or -) 3 * standard deviation.
meanVerbal = mean(gdata$verbal)
sdVerbal = sd(gdata$verbal)
upperVerbal = meanVerbal + (3) * sdVerbal
upperVerbal
[1] 12.22925
lowerVerbal = meanVerbal - (3) * sdVerbal
lowerVerbal
[1] 1.0899
First I found the mean and standard deviation of the verbal scores from the gambling data. Then I used the equation to find the upper and lower thresholds for those verbal scores.
Question 4: Calculate the z-score for income where x=13. Based on the income value x=13 pounds per week, how would you rate the income: low income, average income, high income. Why? ( 5 Points )
Hint: zscore = (x - mean)/sd
income = gdata$income
meanIncome = mean(income)
sdIncome = sd(income)
zscoreIncome = (13 - meanIncome)/sdIncome
zscoreIncome
[1] 2.353481
First, I named the income column of the gambling data. Then I found the mean and the standard deviation. Finally, i plugged those into the zscore equation to determine a zscore of 2.35 for the income. Since the zscore is positive, and not close to zero, I would rate the income as high income.
Question 5: Create a histogram for the zscore of income. What do you notice about the shape? ( 5 Points )
Hint: To plot a histogram, use the function hist(variable).
zscoresIncome = (income - meanIncome)/sdIncome
hist(zscoresIncome)

The shape of the histogram of income zscores is downward sloping. There are a lot of negative zscores and zscores around zero. There are not very many zscores higher than positive 1.
LS0tDQp0aXRsZTogIkJ1c2luZXNzIEFuYWx5dGljcyAtIE1JRFRFUk0iDQphdXRob3I6ICJSYWNoZWwgSGxhdmFjZWsiDQpkYXRlOiAiSnVseSAyNCwgMjAxNyINCm91dHB1dDoNCiAgaHRtbF9ub3RlYm9vazogZGVmYXVsdA0KICBodG1sX2RvY3VtZW50OiBkZWZhdWx0DQogIHBkZl9kb2N1bWVudDogZGVmYXVsdA0Kc3VidGl0bGU6IENNRSBHcm91cCBGb3VuZGF0aW9uIEJ1c2luZXNzIEFuYWx5dGljcyBMYWINCi0tLQ0KDQoNCg0KIyMjIFF1ZXN0aW9uIDE6IFJlYWQgaW4gdGhlIGdhbWJsaW5nIGRhdGFzZXQgY2hlY2sgdGhlIGZpcnN0IGNvdXBsZSBvZiByb3dzIGFuZCBkZXNjcmliZSB0aGUgZGF0YSB0eXBlcy4gSWRlbnRpZnkgaW5jb3JyZWN0IGRhdGEgdHlwZXMsIGlmIGFueS4gKCA1IFBvaW50cyApDQoNCmBgYHtyfQ0KZ2RhdGEgPSByZWFkLmNzdigiZGF0YS9nYW1ibGluZy5jc3YiKQ0KZ2RhdGENCmBgYA0KDQpTZXggaXMgYSBjYXRlZ29yaWNhbCBkYXRhIHR5cGUsIHNvIHRoZSB2YWx1ZXMgbGlzdGVkIGluIHRoYXQgY29sdW1uIGFwcGVhciB0byBiZSBpbmNvcnJlY3QuIFN0YXR1cyBjb3VsZCBiZSBhbnkgdHlwZSBvZiBkYXRhIGRlcGVuZGluZyBvbiBob3cgaXQgd2FzIG1lYXN1cmVkLiBJIGFtIGdvaW5nIHRvIGFzc3VtZSB0aGF0IHRoZSBudW1lcmljYWwgZGF0YSBwcmVzZW50ZWQgaXMgY29ycmVjdC4gSW5jb21lIGlzIGEgcmF0aW8gZGF0YSB0eXBlIGJlY2F1c2UgdGhlcmUgaXMgYSB0cnVlIHplcm8uIFRoZSBjb2x1bW4gYXBwZWFycyB0byBiZSBwcmVzZW50ZWQgY29ycmVjdGx5LiBWZXJiYWwgY291bGQgYmUgYW55dGhpbmcsIHNvIEkgd2lsbCBhc3N1bWUgaXQgaXMgcHJlc2VudGVkIGFwcHJvcHJpYXRlbHkuIEZpbmFsbHksIGdhbWJsZSBhcHBlYXJzIHRvIGJlIGEgZG9sbGFyIGFtb3VudCBpbiB3aGljaCBpdCBpcyBwcmVzZW50ZWQgYXBwcm9wcmlhdGVseS4NCg0KDQoNCiMjIyBRdWVzdGlvbiAyOiBEZXNjcmliZSB0aGUgZGF0YSB1c2luZyBmdWxsIHNlbnRlbmNlcyBhbmQgdXNpbmcgZGVzY3JpcHRpdmUgc3RhdGlzdGljcy4gKCA1IFBvaW50cyApDQoNCmBgYHtyfQ0KbWVhbkluY29tZSA9IG1lYW4oZ2RhdGEkaW5jb21lKQ0KbWVhbkluY29tZQ0KbWF4SW5jb21lID0gbWF4KGdkYXRhJGluY29tZSkNCm1heEluY29tZQ0KbWluSW5jb21lID0gbWluKGdkYXRhJGluY29tZSkNCm1pbkluY29tZQ0Kc3VtbWFyeShnZGF0YSkNCmBgYA0KDQpPcmlnaW5hbGx5LCBJIHN0YXJ0ZWQgbG9va2luZyBmb3IgYmFzaWMgc3RhdGlzdGljcyBmb3IgdGhlIGluY29tZSBjb2x1bW4gb2YgdGhlIGRhdGEuIFRoZW4sIEkgZGVjaWRlZCB0byBwdWxsIG9mIHRoZSBiYXNpYyBzdGF0aXN0aWNzIG9mIGFsbCB0aGUgZGF0YSB1c2luZyB0aGUgc3VtbWFyeSBmdW5jdGlvbi4gDQoNCg0KDQojIyMgUXVlc3Rpb24gMzogRXN0aW1hdGUgdGhlIHVwcGVyIGFuZCBsb3dlciB0aHJlc2hvbGQgZm9yIHRoZSB2ZXJiYWwgc2NvcmUgKCA1IFBvaW50cyApDQoNCkhJTlQ6ICBBIGNvbW1vbiB3YXkgdG8gZXN0aW1hdGUgdGhlIHVwcGVyIGFuZCBsb3dlciB0aHJlc2hvbGQgaXMgdG8gdGFrZSB0aGUgbWVhbiAoKyBvciAtKSAzICogc3RhbmRhcmQgZGV2aWF0aW9uLg0KDQpgYGB7cn0NCm1lYW5WZXJiYWwgPSBtZWFuKGdkYXRhJHZlcmJhbCkNCnNkVmVyYmFsID0gc2QoZ2RhdGEkdmVyYmFsKQ0KdXBwZXJWZXJiYWwgPSBtZWFuVmVyYmFsICsgKDMpICogc2RWZXJiYWwNCnVwcGVyVmVyYmFsDQpsb3dlclZlcmJhbCA9IG1lYW5WZXJiYWwgLSAoMykgKiBzZFZlcmJhbA0KbG93ZXJWZXJiYWwNCmBgYA0KDQpGaXJzdCBJIGZvdW5kIHRoZSBtZWFuIGFuZCBzdGFuZGFyZCBkZXZpYXRpb24gb2YgdGhlIHZlcmJhbCBzY29yZXMgZnJvbSB0aGUgZ2FtYmxpbmcgZGF0YS4gVGhlbiBJIHVzZWQgdGhlIGVxdWF0aW9uIHRvIGZpbmQgdGhlIHVwcGVyIGFuZCBsb3dlciB0aHJlc2hvbGRzIGZvciB0aG9zZSB2ZXJiYWwgc2NvcmVzLg0KDQoNCg0KIyMjIFF1ZXN0aW9uIDQ6IENhbGN1bGF0ZSB0aGUgei1zY29yZSBmb3IgaW5jb21lIHdoZXJlIHg9MTMuIEJhc2VkIG9uIHRoZSBpbmNvbWUgdmFsdWUgeD0xMyBwb3VuZHMgcGVyIHdlZWssIGhvdyB3b3VsZCB5b3UgcmF0ZSB0aGUgaW5jb21lOiBsb3cgaW5jb21lLCBhdmVyYWdlIGluY29tZSwgaGlnaCBpbmNvbWUuIFdoeT8gKCA1IFBvaW50cyApDQoNCkhpbnQ6IHpzY29yZSA9ICh4IC0gbWVhbikvc2QNCmBgYHtyfQ0KaW5jb21lID0gZ2RhdGEkaW5jb21lDQptZWFuSW5jb21lID0gbWVhbihpbmNvbWUpDQpzZEluY29tZSA9IHNkKGluY29tZSkNCnpzY29yZUluY29tZSA9ICgxMyAtIG1lYW5JbmNvbWUpL3NkSW5jb21lDQp6c2NvcmVJbmNvbWUNCmBgYA0KDQpGaXJzdCwgSSBuYW1lZCB0aGUgaW5jb21lIGNvbHVtbiBvZiB0aGUgZ2FtYmxpbmcgZGF0YS4gVGhlbiBJIGZvdW5kIHRoZSBtZWFuIGFuZCB0aGUgc3RhbmRhcmQgZGV2aWF0aW9uLiBGaW5hbGx5LCBpIHBsdWdnZWQgdGhvc2UgaW50byB0aGUgenNjb3JlIGVxdWF0aW9uIHRvIGRldGVybWluZSBhIHpzY29yZSBvZiAyLjM1IGZvciB0aGUgaW5jb21lLiBTaW5jZSB0aGUgenNjb3JlIGlzIHBvc2l0aXZlLCBhbmQgbm90IGNsb3NlIHRvIHplcm8sIEkgd291bGQgcmF0ZSB0aGUgaW5jb21lIGFzIGhpZ2ggaW5jb21lLiANCg0KDQoNCiMjIyBRdWVzdGlvbiA1OiBDcmVhdGUgYSBoaXN0b2dyYW0gZm9yIHRoZSB6c2NvcmUgb2YgaW5jb21lLiBXaGF0IGRvIHlvdSBub3RpY2UgYWJvdXQgdGhlIHNoYXBlPyAoIDUgUG9pbnRzICkNCg0KSGludDogVG8gcGxvdCBhIGhpc3RvZ3JhbSwgdXNlIHRoZSBmdW5jdGlvbiBoaXN0KHZhcmlhYmxlKS4gDQpgYGB7cn0NCnpzY29yZXNJbmNvbWUgPSAoaW5jb21lIC0gbWVhbkluY29tZSkvc2RJbmNvbWUNCmhpc3QoenNjb3Jlc0luY29tZSkNCmBgYA0KDQpUaGUgc2hhcGUgb2YgdGhlIGhpc3RvZ3JhbSBvZiBpbmNvbWUgenNjb3JlcyBpcyBkb3dud2FyZCBzbG9waW5nLiBUaGVyZSBhcmUgYSBsb3Qgb2YgbmVnYXRpdmUgenNjb3JlcyBhbmQgenNjb3JlcyBhcm91bmQgemVyby4gVGhlcmUgYXJlIG5vdCB2ZXJ5IG1hbnkgenNjb3JlcyBoaWdoZXIgdGhhbiBwb3NpdGl2ZSAxLiANCg0KDQoNCiMjIyBRdWVzdGlvbiA2OiBBbmFseXplIHRoZSBjb3JyZWxhdGlvbiBwbG90IGJlbG93LiBHaXZlIHJlbGF2YW50IGluZm9ybWF0aW9uIGFib3V0IHRoZSBuZWdhdGl2ZSBjb3JyZWxhdGVkLCBubyBjb3JyZWxhcmVkIGFuZCBwb3NpdGl2ZSBjb3JyZWxhdGVkIHZhcmlhYmxlcy4gKCA1IFBvaW50cyApDQoNCiFbXShkYXRhL2NvcnJfcGxvdC5wbmcpDQoNCkFsbCBvZiB0aGUgdmFyaWFibGVzIHByZXNlbnRlZCBhcHBlYXIgdG8gYmUgcG9zaXRpdmVseSBjb3JyZWxhdGVkIHNpbmNlIGFsbCBvZiB0aGUgY2lyY2xlcyBhcmUgYmx1ZS4gR2l2ZW4gdGhhdCwgdGhlcmUgYXJlIHNvbWUgd2l0aCBzdHJvbmdlciBwb3NpdGl2ZSBjb3JyZWxhdGlvbnMgdGhhbiBvdGhlcnMuIE5hdHVyYWxseSwgYWxsIHRoZSBsYXJnZSwgZGFyayBibHVlIGNpcmNsZXMgcmVwcmVzZW50IGEgcG9zaXRpdmUgY29ycmVsYXRpb24gb2YgMSBiZWNhdXNlIHRoZSB2YXJpYWxlcyBmb3IgdGhvc2UgYXJlIHRoZSBzYW1lLiBUaGVyZSBkb2VzIGFwcGVhciB0byBiYSBhIHN0cm9uZyBjb3JyZWxhdGlvbiBiZXR3ZWVuIHVzZXIgdm90ZXMgYW5kIGZhY2Vib29rIGxpa2VzLiBXaGVyZSB0aGVyZSBkb2Vzbid0IHNlZW0gdG8gYmUgYXMgc3Ryb25nIG9mIGEgcG9zaXRpdmUgY29ycmVsYXRpb24gaXMgYmV0d2VlbiBjYXN0IGxpa2VzIGFuZCBkaXJlY3Rvciwgc2NvcmUgYW5kIGRpcmVjdG9yLCBncm9zcyBhbmQgZGlyZWN0b3IsIHNjb3JlIGFuZCBjYXN0IGxpa2VzLCBhbmQgc2NvcmUgYW5kIGdyb3NzLiBBbGwgb2YgdGhlc2Ugc3RpbGwgaGF2ZSBhIHBvc2l0aXZlIGNvcnJlbGF0aW9uLCBidXQgZGVmaW5pdGVseSBub3QgdmVyeSBzdHJvbmcuIA0KDQoNCg0KIyMjIEV4dHJhIENyZWRpdDogQW5hbHl6ZSB0aGUgY29ycmVsYXRpb24gdGFibGUgYmVsb3cuIEdpdmUgcmVsYXZhbnQgaW5mb3JtYXRpb24gYWJvdXQgdGhlIG5lZ2F0aXZlIGNvcnJlbGF0ZWQsIG5vIGNvcnJlbGFyZWQgYW5kIHBvc2l0aXZlIGNvcnJlbGF0ZWQgdmFyaWFibGVzLiAoIDUgUG9pbnRzICkNCg0KYGBge3J9DQojIENyZWF0ZSBhIGNvcnJlbGF0aW9uIHRhYmxlICJjb3IobW92aWVzKSINCm1vdmllcyA9IHJlYWQuY3N2KCJkYXRhL21vdmllcy5jc3YiKQ0KY29yKG1vdmllcykNCg0KYGBgDQoNCkxlbmd0aCwgYnVkZ2V0LCBhY3RvcjEsIGFjdG9yMiwgYWN0b3IzLCBjcml0aWNfcmV2aWV3cywgYW5kIHVzZXJfcmV2aWV3cyBkbyBub3QgaGF2ZSBhbnkgY29ycmVsYXRpb24gd2l0aCBhbnl0aGluZyBlbHNlIGV4Y2VwdCB0aGVtc2VsdmVzLiBEaXJlY3RvciBoYXMgc29tZSBwb3NpdGl2ZSBjb3JyZWxhdGlvbnMsIGJ1dCBub25lIGFyZSBhbGwgdGhhdCBzdHJvbmcgZXhjZXB0IGZvciB3aXRoIGl0c2VsZi4gQ2FzdCBsaWtlcyBoYXMgYSBwb3NpdGl2ZSBjb3JyZWxhdGlvbiBvZiAuNDE0IHdpdGggdXNlciB2b3Rlcy4gRmIgbGlrZXMgYW5kIHVzZXIgdm90ZXMgYXJlIHZlcnkgc3Ryb25nbHkgcG9zaXRpdmVseSBjb3JyZWxhdGVkLiBHcm9zcyBhbmQgdXNlcnZvdGVzIGFsc28gaGF2ZSBhIHByZXR0eSBzdHJvbmcgcG9zaXRpdmUgY29ycmVsYXRpb24uIFNjb3JlIGhhcyBzZXZlcmFsIHBvc2l0aXZlIGNvcnJlbGF0aW9ucyBhcyB3ZWxsLiANCg0KDQoNCg0KDQo=