The objectives of this problem set is to orient you to a number of activities in R. And to conduct a thoughtful exercise in appreciating the importance of data visualization. For each question create a code chunk or text response that completes/answers the activity or question requested. Finally, upon completion post your assignment on Rpubs and upload a link to it to the “Problem Set 2” assignmenet on Moodle.
anscombe data that is part of the library(datasets) in R. And assign that data to a new object called data.library(datasets)
data=anscombe
head(data,10)
## x1 x2 x3 x4 y1 y2 y3 y4
## 1 10 10 10 8 8.04 9.14 7.46 6.58
## 2 8 8 8 8 6.95 8.14 6.77 5.76
## 3 13 13 13 8 7.58 8.74 12.74 7.71
## 4 9 9 9 8 8.81 8.77 7.11 8.84
## 5 11 11 11 8 8.33 9.26 7.81 8.47
## 6 14 14 14 8 9.96 8.10 8.84 7.04
## 7 6 6 6 8 7.24 6.13 6.08 5.25
## 8 4 4 4 19 4.26 3.10 5.39 12.50
## 9 12 12 12 8 10.84 9.13 8.15 5.56
## 10 7 7 7 8 4.82 7.26 6.42 7.91
fBasics() package!)summary(data)
## x1 x2 x3 x4
## Min. : 4.0 Min. : 4.0 Min. : 4.0 Min. : 8
## 1st Qu.: 6.5 1st Qu.: 6.5 1st Qu.: 6.5 1st Qu.: 8
## Median : 9.0 Median : 9.0 Median : 9.0 Median : 8
## Mean : 9.0 Mean : 9.0 Mean : 9.0 Mean : 9
## 3rd Qu.:11.5 3rd Qu.:11.5 3rd Qu.:11.5 3rd Qu.: 8
## Max. :14.0 Max. :14.0 Max. :14.0 Max. :19
## y1 y2 y3 y4
## Min. : 4.260 Min. :3.100 Min. : 5.39 Min. : 5.250
## 1st Qu.: 6.315 1st Qu.:6.695 1st Qu.: 6.25 1st Qu.: 6.170
## Median : 7.580 Median :8.140 Median : 7.11 Median : 7.040
## Mean : 7.501 Mean :7.501 Mean : 7.50 Mean : 7.501
## 3rd Qu.: 8.570 3rd Qu.:8.950 3rd Qu.: 7.98 3rd Qu.: 8.190
## Max. :10.840 Max. :9.260 Max. :12.74 Max. :12.500
library(corrplot)
## Warning: package 'corrplot' was built under R version 3.3.3
corrplot(cor(data),method="circle")
plot(data$x1,data$y1)
plot(data$x2,data$y2)
plot(data$x3,data$y3)
plot(data$x4,data$y4)
pairs(data)
par(mfrow=c(2,2))
plot(data$x1,data$y1,pch=19)
plot(data$x2,data$y2,pch=19)
plot(data$x3,data$y3,pch=19)
plot(data$x4,data$y4,pch=19)
lm() function.lm(data$x1 ~ data$y1)
##
## Call:
## lm(formula = data$x1 ~ data$y1)
##
## Coefficients:
## (Intercept) data$y1
## -0.9975 1.3328
lm(data$x2 ~ data$y2)
##
## Call:
## lm(formula = data$x2 ~ data$y2)
##
## Coefficients:
## (Intercept) data$y2
## -0.9948 1.3325
lm(data$x3 ~ data$y3)
##
## Call:
## lm(formula = data$x3 ~ data$y3)
##
## Coefficients:
## (Intercept) data$y3
## -1.000 1.333
lm(data$x4 ~ data$y4)
##
## Call:
## lm(formula = data$x4 ~ data$y4)
##
## Coefficients:
## (Intercept) data$y4
## -1.004 1.334
par(mfrow=c(2,2))
plot(data$x1,data$y1,pch=19)+abline(lm(data$x1 ~ data$y1))
## numeric(0)
plot(data$x2,data$y2,pch=19)+abline(lm(data$x2 ~ data$y2))
## numeric(0)
plot(data$x3,data$y3,pch=19)+abline(lm(data$x3 ~ data$y3))
## numeric(0)
plot(data$x4,data$y4,pch=19)+abline(lm(data$x4 ~ data$y4))
## numeric(0)
library(fit.models)
## Warning: package 'fit.models' was built under R version 3.3.3
fit.models(lm(data$x1 ~ data$y1),lm(data$x2 ~ data$y2),lm(data$x3 ~ data$y3),lm(data$x4 ~ data$y4))
Calls: lm(data\(x1 ~ data\)y1): lm(formula = data\(x1 ~ data\)y1) lm(data\(x2 ~ data\)y2): lm(formula = data\(x2 ~ data\)y2) lm(data\(x3 ~ data\)y3): lm(formula = data\(x3 ~ data\)y3) lm(data\(x4 ~ data\)y4): lm(formula = data\(x4 ~ data\)y4)
Coefficients: (Intercept) data\(y1 data\)y2 data\(y3 data\)y4 lm(data\(x1 ~ data\)y1) -0.9975 1.3328
lm(data\(x2 ~ data\)y2) -0.9948 1.3325
lm(data\(x3 ~ data\)y3) -1.0003 1.3334
lm(data\(x4 ~ data\)y4) -1.0036 1.334
All four sets are very similar when we eyeball the data or even when we use numberical summary methods. But interestingly, the data sets vary considerably when graphed. It proves that data visualization can expose hidden stories and pattern within the data.