Question 1: Read in the gambling dataset check the first couple of rows and describe the data types. Identify incorrect data types, if any. ( 5 Points )
mydata = read.csv(file="data/gambling.csv")
head(mydata)
Question 2: Describe the data using full sentences and using descriptive statistics. ( 5 Points )
The gambling data shows the gender of the player, the status, their income, their verbal signs, and their gambling rate.
Question 3: Estimate the upper and lower threshold for the verbal score ( 5 Points )
verbal = mydata$verbal
verbal
[1] 8 8 6 4 8 6 7 5 6 7 6 6 4 6 6 8 8 5 8 9 8 9 5 4 7 7 4 6 7 8
[31] 2 7 7 10 1 8 7 6 6 6 9 9 8 9 6 7 9
verbalmean = mean(verbal)
verbalmean
verbalsd = sd(verbal)
verbalsd
lowerverbal = verbalmean -(3 * verbalsd)
upperverbal = verbalmean + (3 * verbalsd)
lowerverbal
[1] 1.0899
upperverbal
[1] 12.22925
Question 4: Calculate the z-score for income where x=13. Based on the income value x=13 pounds per week, how would you rate the income: low income, average income, high income. Why? ( 5 Points )
income = mydata$income
income
Hint: zscore = (x - mean)/sd
incomemean = mean(income)
incomemean
[1] 4.641915
incomesd = sd(income)
incomesd
[1] 3.551371
zscore = (13-incomemean)/incomesd
zscore
[1] 2.353481
I would rate the z-score as average, because it is in the middle of all the income data points. The max being 7 and the lowest being 2.
Question 5: Create a histogram for the zscore of income. What do you notice about the shape? ( 5 Points )
Hint: To plot a histogram, use the function hist(variable).
hist(income)

hist
function (x, ...)
UseMethod("hist")
<bytecode: 0x1024b9e38>
<environment: namespace:graphics>
hist(zscore)

hist
function (x, ...)
UseMethod("hist")
<bytecode: 0x1024b9e38>
<environment: namespace:graphics>
LS0tCnRpdGxlOiAiQnVzaW5lc3MgQW5hbHl0aWNzIC0gTUlEVEVSTSIKYXV0aG9yOiAiS2F0aWUgS291dmVsaXMiCmRhdGU6ICJKdWx5IDI0IgpvdXRwdXQ6CiAgaHRtbF9ub3RlYm9vazogZGVmYXVsdAogIGh0bWxfZG9jdW1lbnQ6IGRlZmF1bHQKICBwZGZfZG9jdW1lbnQ6IGRlZmF1bHQKc3VidGl0bGU6IENNRSBHcm91cCBGb3VuZGF0aW9uIEJ1c2luZXNzIEFuYWx5dGljcyBMYWIKLS0tCgoKCiMjIyBRdWVzdGlvbiAxOiBSZWFkIGluIHRoZSBnYW1ibGluZyBkYXRhc2V0IGNoZWNrIHRoZSBmaXJzdCBjb3VwbGUgb2Ygcm93cyBhbmQgZGVzY3JpYmUgdGhlIGRhdGEgdHlwZXMuIElkZW50aWZ5IGluY29ycmVjdCBkYXRhIHR5cGVzLCBpZiBhbnkuICggNSBQb2ludHMgKQoKYGBge3J9Cm15ZGF0YSA9IHJlYWQuY3N2KGZpbGU9ImRhdGEvZ2FtYmxpbmcuY3N2IikKaGVhZChteWRhdGEpCmBgYAoKCiMjIyBRdWVzdGlvbiAyOiBEZXNjcmliZSB0aGUgZGF0YSB1c2luZyBmdWxsIHNlbnRlbmNlcyBhbmQgdXNpbmcgZGVzY3JpcHRpdmUgc3RhdGlzdGljcy4gKCA1IFBvaW50cyApClRoZSBnYW1ibGluZyBkYXRhIHNob3dzIHRoZSBnZW5kZXIgb2YgdGhlIHBsYXllciwgdGhlIHN0YXR1cywgdGhlaXIgaW5jb21lLCB0aGVpciB2ZXJiYWwgc2lnbnMsIGFuZCB0aGVpciBnYW1ibGluZyByYXRlLiAKCiMjIyBRdWVzdGlvbiAzOiBFc3RpbWF0ZSB0aGUgdXBwZXIgYW5kIGxvd2VyIHRocmVzaG9sZCBmb3IgdGhlIHZlcmJhbCBzY29yZSAoIDUgUG9pbnRzICkKCmBgYHtyfQp2ZXJiYWwgPSBteWRhdGEkdmVyYmFsCnZlcmJhbApgYGAKCmBgYHtyfQp2ZXJiYWxtZWFuID0gbWVhbih2ZXJiYWwpCnZlcmJhbG1lYW4KdmVyYmFsc2QgPSBzZCh2ZXJiYWwpCnZlcmJhbHNkCmBgYAoKCmBgYHtyfQpsb3dlcnZlcmJhbCA9IHZlcmJhbG1lYW4gLSgzICogdmVyYmFsc2QpCnVwcGVydmVyYmFsID0gdmVyYmFsbWVhbiArICgzICogdmVyYmFsc2QpCmxvd2VydmVyYmFsCnVwcGVydmVyYmFsCmBgYAoKCgoKCgojIyMgUXVlc3Rpb24gNDogQ2FsY3VsYXRlIHRoZSB6LXNjb3JlIGZvciBpbmNvbWUgd2hlcmUgeD0xMy4gQmFzZWQgb24gdGhlIGluY29tZSB2YWx1ZSB4PTEzIHBvdW5kcyBwZXIgd2VlaywgaG93IHdvdWxkIHlvdSByYXRlIHRoZSBpbmNvbWU6IGxvdyBpbmNvbWUsIGF2ZXJhZ2UgaW5jb21lLCBoaWdoIGluY29tZS4gV2h5PyAoIDUgUG9pbnRzICkKYGBge3J9CmluY29tZSA9IG15ZGF0YSRpbmNvbWUKaW5jb21lCmBgYApIaW50OiB6c2NvcmUgPSAoeCAtIG1lYW4pL3NkCmBgYHtyfQppbmNvbWVtZWFuID0gbWVhbihpbmNvbWUpCmluY29tZW1lYW4KaW5jb21lc2QgPSBzZChpbmNvbWUpCmluY29tZXNkCnpzY29yZSA9ICgxMy1pbmNvbWVtZWFuKS9pbmNvbWVzZAp6c2NvcmUKYGBgCgoKSSB3b3VsZCByYXRlIHRoZSB6LXNjb3JlIGFzIGF2ZXJhZ2UsIGJlY2F1c2UgaXQgaXMgaW4gdGhlIG1pZGRsZSBvZiBhbGwgdGhlIGluY29tZSBkYXRhIHBvaW50cy4gVGhlIG1heCBiZWluZyA3IGFuZCB0aGUgbG93ZXN0IGJlaW5nIDIuCgoKCgojIyMgUXVlc3Rpb24gNTogQ3JlYXRlIGEgaGlzdG9ncmFtIGZvciB0aGUgenNjb3JlIG9mIGluY29tZS4gV2hhdCBkbyB5b3Ugbm90aWNlIGFib3V0IHRoZSBzaGFwZT8gKCA1IFBvaW50cyApCgpIaW50OiBUbyBwbG90IGEgaGlzdG9ncmFtLCB1c2UgdGhlIGZ1bmN0aW9uIGhpc3QodmFyaWFibGUpLiAKYGBge3J9Cmhpc3QoaW5jb21lKQpoaXN0Cmhpc3QoenNjb3JlKQpoaXN0CmBgYAoKCgoKCgoKIyMjIFF1ZXN0aW9uIDY6IEFuYWx5emUgdGhlIGNvcnJlbGF0aW9uIHBsb3QgYmVsb3cuIEdpdmUgcmVsYXZhbnQgaW5mb3JtYXRpb24gYWJvdXQgdGhlIG5lZ2F0aXZlIGNvcnJlbGF0ZWQsIG5vIGNvcnJlbGFyZWQgYW5kIHBvc2l0aXZlIGNvcnJlbGF0ZWQgdmFyaWFibGVzLiAoIDUgUG9pbnRzICkKCiFbXShkYXRhL2NvcnJfcGxvdC5wbmcpCgoKVGhlIGJlbmVmaXRzIGRlZmluaXRlbHkgb3V0d2VpZ2ggdGhlIHJpc2tzIGJlY2F1c2UgdGhlIHggYXhpcyBpcyBtb3JlIHByb21pbmVudCBvbiB0aGUgcmlnaHQuIFdoaWxlIHRoZXJlIGlzIGZyZXF1ZW50IGNvcnJlbGF0aW9uLCBidXQgbWFueSBjYXN1YWwgaHlwb3RoZXNpcywgYmVjYXVzZSB0aGUgbGFyZ2VzdCBkb3RzIGxpZSBpbiB0aGUgbWlkZGxlLiAKCgoKCgoKIyMjIEV4dHJhIENyZWRpdDogQW5hbHl6ZSB0aGUgY29ycmVsYXRpb24gdGFibGUgYmVsb3cuIEdpdmUgcmVsYXZhbnQgaW5mb3JtYXRpb24gYWJvdXQgdGhlIG5lZ2F0aXZlIGNvcnJlbGF0ZWQsIG5vIGNvcnJlbGFyZWQgYW5kIHBvc2l0aXZlIGNvcnJlbGF0ZWQgdmFyaWFibGVzLiAoIDUgUG9pbnRzICkKCmBgYHtyfQojIENyZWF0ZSBhIGNvcnJlbGF0aW9uIHRhYmxlICJjb3IobW92aWVzKSIKCmBgYAoKCgoKCgoK