About

Today the lab focuses on data outliers, data preparation, and data modeling. This lab requires the use of Microsoft Excel, R, and ERDplus.

Setup

Make sure to download the folder titled ‘bsad_lab02’ zip folder and extract the folder to unzip it. Next, we must set this folder as the working directory. The way to do this is to open R Studio, go to ‘Session’, scroll down to ‘Set Working Directory’, and click ‘To Source File Location’. Now, follow the directions to complete the lab.


Task 1

First, we must calculate the mean, standard deviation, maximum, and minimum for the Age column using R.

In R, we must read in the file again, extract the column and find the values that are asked for.

#Read File
mydata= read.csv(file = "data/creditrisk.csv")
#Age 
age = mydata$Age
#Calculate the average age below. 
age_mean= mean(age)
age_mean
[1] 34.39765
#Calculate standard deviation of age below. 
age_sd= sd(age)
age_sd
[1] 11.04513
#Calculate the maximum of age below. The command to find the maximum is max(variable) where variable is the extracted variable.  
age_max= max(age)
age_max
[1] 73
#Calculate the minimum of age below. The command to find the minimum is min(variable) where variable is the extracted variable.  
age_min = min(age)
age_min
[1] 18

Next, use the formula from class to detect any outliers. An outlier is value that “lies outside” most of the other values in a set of data. A common way to estimate the upper and lower threshold is to take the mean (+ or -) 3 * standard deviation. Try using this formula to find the upper and lower limit for age.

#Use the formula above to calculate the upper and lower threshold
age_lower = age_mean - (3) * age_sd
age_upper = age_mean + (3) * age_sd
age_upper
[1] 67.53302
age_lower
[1] 1.262269

A method to find the upper and lower thresholds discussed in introductory statistics courses involves finding the interquartile range. Follow along below to see how we first calculate the interquartile range..

quantile(age) 
  0%  25%  50%  75% 100% 
  18   26   32   41   73 
iqr = upperq - lowerq
Error: object 'upperq' not found
lowerq=quantile(age)[3]
upperq=quantile(age)[4]
iqr= upperq - lowerq
iqr
75% 
  9 

The formula below calculates the threshold. The threshold is the boundaries that determine if a value is an outlier. If the value falls above the upper threshold or below the lower threshold, it is an outlier.

Below is the upper threshold:

upperthreshold = (iqr * 1.5) + upperq 
upperthreshold
 75% 
54.5 

Below is the lower threshold:

lowerthreshold = lowerq - (iqr * 1.5)
lowerthreshold
 50% 
18.5 

Are there any outliers? How many? It can also be useful to visualize the data using a box and whisker plot. The boxplot below supports the IQR we found of 15 and upper and lower threshold.

age[age>upperthreshold]
 [1] 57 59 64 56 63 56 65 56 67 60 56 64 73 63 63 65 59 55 56 56 66 57 58 67 56 59 65 62
mydata[age>upperthreshold,]
age[age<lowerthreshold]
[1] 18
boxplot(age,horizontal = TRUE)


Task 2

Next, we must read the ‘creditriskorg.csv’ file into R. This is the original dataset and contains missing values.

mydata = read.csv(file = "data/creditriskorg.csv")
head(mydata)
#tail(mydata)

We observe that the column names are shifted down below. So, we must make sure to use the command skip and set the header to true.

mydata = read.csv("data/creditriskorg.csv",skip = 1)
head(mydata)
#str(mydata)
summary(mydata)
          Loan.Purpose      Checking        Savings    Months.Customer Months.Employed Gender 
 Small Appliance:105    $-      :251    $-      : 62   Min.   : 5.0    Min.   :  0.0   F:135  
 New Car        :104    $216.00 :  2    $127.00 :  3   1st Qu.:13.0    1st Qu.:  6.0   M:290  
 Furniture      : 85    $271.00 :  2    $836.00 :  3   Median :19.0    Median : 20.0          
 Business       : 44    $296.00 :  2    $904.00 :  3   Mean   :22.9    Mean   : 31.9          
 Used Car       : 40    $305.00 :  2    $922.00 :  3   3rd Qu.:28.0    3rd Qu.: 47.0          
 Education      : 23    $497.00 :  2    $104.00 :  2   Max.   :73.0    Max.   :119.0          
 (Other)        : 24   (Other)  :164   (Other)  :349                                          
  Marital.Status      Age        Housing        Years              Job      Credit.Risk
 Divorced:156    Min.   :18.0   Other: 52   Min.   :1.00   Management: 54   High:211   
 Married : 36    1st Qu.:26.0   Own  :292   1st Qu.:2.00   Skilled   :271   Low :214   
 Single  :233    Median :32.0   Rent : 81   Median :3.00   Unemployed: 11              
                 Mean   :34.4               Mean   :2.84   Unskilled : 89              
                 3rd Qu.:41.0               3rd Qu.:4.00                               
                 Max.   :73.0               Max.   :4.00                               
                                                                                       

To calculate the mean for Checking in R, follow Worksheet 1. Extract the Checking column first and then find the average using the function built in R. What happens when we try to use the function?

#Extracting the Checking Column
checking = mydata$Checking
#Calling the Checking
checking
  [1]  $-           $-           $-           $638.00      $963.00      $2,827.00    $-         
  [8]  $-           $6,509.00    $966.00      $-           $-           $322.00      $-         
 [15]  $396.00      $-           $652.00      $708.00      $207.00      $287.00      $-         
 [22]  $101.00      $-           $-           $-           $141.00      $-           $2,484.00  
 [29]  $237.00      $-           $335.00      $3,565.00    $-           $16,647.00   $-         
 [36]  $-           $-           $940.00      $-           $-           $218.00      $-         
 [43]  $16,935.00   $664.00      $150.00      $-           $216.00      $-           $-         
 [50]  $-           $265.00      $4,256.00    $870.00      $162.00      $-           $-         
 [57]  $-           $461.00      $-           $-           $-           $580.00      $-         
 [64]  $-           $-           $-           $758.00      $399.00      $513.00      $-         
 [71]  $-           $565.00      $-           $-           $-           $166.00      $9,783.00  
 [78]  $674.00      $-           $15,328.00   $-           $713.00      $-           $-         
 [85]  $-           $-           $-           $303.00      $900.00      $-           $1,257.00  
 [92]  $-           $273.00      $522.00      $-           $-           $-           $-         
 [99]  $514.00      $457.00      $5,133.00    $-           $644.00      $305.00      $9,621.00  
[106]  $-           $-           $-           $-           $-           $6,851.00    $13,496.00 
[113]  $509.00      $-           $19,155.00   $-           $-           $374.00      $-         
[120]  $828.00      $-           $829.00      $-           $-           $939.00      $-         
[127]  $889.00      $876.00      $893.00      $12,760.00   $-           $-           $959.00    
[134]  $-           $-           $-           $-           $698.00      $-           $-         
[141]  $-           $12,974.00   $-           $317.00      $-           $-           $-         
[148]  $192.00      $-           $-           $-           $-           $-           $942.00    
[155]  $-           $3,329.00    $-           $-           $-           $-           $-         
[162]  $-           $339.00      $-           $-           $-           $105.00      $-         
[169]  $216.00      $113.00      $109.00      $-           $-           $8,176.00    $-         
[176]  $468.00      $7,885.00    $-           $-           $-           $-           $-         
[183]  $-           $-           $-           $-           $734.00      $-           $-         
[190]  $172.00      $644.00      $-           $617.00      $-           $586.00      $-         
[197]  $-           $-           $-           $-           $522.00      $585.00      $5,588.00  
[204]  $-           $352.00      $-           $2,715.00    $560.00      $895.00      $305.00    
[211]  $-           $-           $-           $8,948.00    $-           $-           $-         
[218]  $-           $-           $483.00      $-           $-           $-           $663.00    
[225]  $624.00      $-           $-           $152.00      $-           $-           $498.00    
[232]  $-           $156.00      $1,336.00    $-           $-           $-           $2,641.00  
[239]  $-           $-           $-           $-           $-           $887.00      $-         
[246]  $-           $-           $-           $18,408.00   $497.00      $-           $946.00    
[253]  $986.00      $8,122.00    $-           $778.00      $645.00      $-           $682.00    
[260]  $19,812.00   $-           $-           $859.00      $-           $-           $-         
[267]  $-           $-           $-           $795.00      $-           $-           $-         
[274]  $-           $852.00      $-           $-           $425.00      $-           $-         
[281]  $-           $11,072.00   $-           $219.00      $8,060.00    $-           $-         
[288]  $-           $-           $1,613.00    $757.00      $-           $-           $977.00    
[295]  $197.00      $-           $-           $-           $-           $-           $256.00    
[302]  $296.00      $-           $-           $-           $298.00      $-           $8,636.00  
[309]  $-           $-           $19,766.00   $-           $-           $-           $-         
[316]  $4,089.00    $-           $271.00      $949.00      $-           $911.00      $-         
[323]  $-           $-           $-           $271.00      $-           $-           $-         
[330]  $-           $4,802.00    $177.00      $-           $-           $996.00      $705.00    
[337]  $-           $-           $5,960.00    $-           $759.00      $-           $651.00    
[344]  $257.00      $955.00      $-           $8,249.00    $-           $956.00      $382.00    
[351]  $-           $842.00      $3,111.00    $-           $-           $2,846.00    $231.00    
[358]  $-           $17,366.00   $-           $332.00      $242.00      $-           $929.00    
[365]  $-           $-           $-           $-           $-           $-           $-         
[372]  $646.00      $538.00      $-           $-           $-           $-           $135.00    
[379]  $2,472.00    $-           $10,417.00   $211.00      $16,630.00   $-           $642.00    
[386]  $-           $296.00      $898.00      $478.00      $315.00      $122.00      $-         
[393]  $-           $-           $670.00      $444.00      $3,880.00    $819.00      $-         
[400]  $-           $-           $-           $-           $-           $-           $-         
[407]  $-           $161.00      $-           $-           $789.00      $765.00      $-         
[414]  $-           $983.00      $-           $-           $798.00      $-           $193.00    
[421]  $497.00      $-           $-           $-           $-         
168 Levels:  $-     $1,257.00   $1,336.00   $1,613.00   $10,417.00   $101.00  ...  $996.00 

To resolve the error, we must remove understand where it is coming from. There are missing values in the csv file, which is quite common as most datasets are not perfect. Additionally, there are commas within the excel spreadsheet, and R does not recognize that ‘1,234’ is equivalent to ‘1234’. Lastly, there are ‘$’ symbols throughout the file which is not a numerica symbol either.

The sub function replaces these symbols with something else. So, in order to remove the comma in the number “1,234”, we must substitute it with just an empty space.

As shown on the worksheet, type and copy the exact commands to find the mean with the NA values removed.

checking[1:6]
[1]  $-          $-          $-          $638.00     $963.00     $2,827.00 
168 Levels:  $-     $1,257.00   $1,336.00   $1,613.00   $10,417.00   $101.00  ...  $996.00 
clean= checking[1:10]
#substitute comma with blank in all of checking 
clean = sub(",","",clean)
#substitute dollar sign with blank in all of checking
clean = sub("\\$","",clean)
class(clean)
[1] "character"
#numeric convert
clean = as.numeric(clean)
NAs introduced by coercion
class(clean)
[1] "numeric"
#mean with NA removed
clean
 [1]   NA   NA   NA  638  963 2827   NA   NA 6509  966
#substitute comma with blank in all of checking
checking = sub(",","", checking)
#substitute dollar sign with blank in all of checking
checking = sub("\\$","",checking)
#numeric convert 
checking =as.numeric(checking)
NAs introduced by coercion
#mean with NA removed
checking
  [1]    NA    NA    NA   638   963  2827    NA    NA  6509   966    NA    NA   322    NA   396
 [16]    NA   652   708   207   287    NA   101    NA    NA    NA   141    NA  2484   237    NA
 [31]   335  3565    NA 16647    NA    NA    NA   940    NA    NA   218    NA 16935   664   150
 [46]    NA   216    NA    NA    NA   265  4256   870   162    NA    NA    NA   461    NA    NA
 [61]    NA   580    NA    NA    NA    NA   758   399   513    NA    NA   565    NA    NA    NA
 [76]   166  9783   674    NA 15328    NA   713    NA    NA    NA    NA    NA   303   900    NA
 [91]  1257    NA   273   522    NA    NA    NA    NA   514   457  5133    NA   644   305  9621
[106]    NA    NA    NA    NA    NA  6851 13496   509    NA 19155    NA    NA   374    NA   828
[121]    NA   829    NA    NA   939    NA   889   876   893 12760    NA    NA   959    NA    NA
[136]    NA    NA   698    NA    NA    NA 12974    NA   317    NA    NA    NA   192    NA    NA
[151]    NA    NA    NA   942    NA  3329    NA    NA    NA    NA    NA    NA   339    NA    NA
[166]    NA   105    NA   216   113   109    NA    NA  8176    NA   468  7885    NA    NA    NA
[181]    NA    NA    NA    NA    NA    NA   734    NA    NA   172   644    NA   617    NA   586
[196]    NA    NA    NA    NA    NA   522   585  5588    NA   352    NA  2715   560   895   305
[211]    NA    NA    NA  8948    NA    NA    NA    NA    NA   483    NA    NA    NA   663   624
[226]    NA    NA   152    NA    NA   498    NA   156  1336    NA    NA    NA  2641    NA    NA
[241]    NA    NA    NA   887    NA    NA    NA    NA 18408   497    NA   946   986  8122    NA
[256]   778   645    NA   682 19812    NA    NA   859    NA    NA    NA    NA    NA    NA   795
[271]    NA    NA    NA    NA   852    NA    NA   425    NA    NA    NA 11072    NA   219  8060
[286]    NA    NA    NA    NA  1613   757    NA    NA   977   197    NA    NA    NA    NA    NA
[301]   256   296    NA    NA    NA   298    NA  8636    NA    NA 19766    NA    NA    NA    NA
[316]  4089    NA   271   949    NA   911    NA    NA    NA    NA   271    NA    NA    NA    NA
[331]  4802   177    NA    NA   996   705    NA    NA  5960    NA   759    NA   651   257   955
[346]    NA  8249    NA   956   382    NA   842  3111    NA    NA  2846   231    NA 17366    NA
[361]   332   242    NA   929    NA    NA    NA    NA    NA    NA    NA   646   538    NA    NA
[376]    NA    NA   135  2472    NA 10417   211 16630    NA   642    NA   296   898   478   315
[391]   122    NA    NA    NA   670   444  3880   819    NA    NA    NA    NA    NA    NA    NA
[406]    NA    NA   161    NA    NA   789   765    NA    NA   983    NA    NA   798    NA   193
[421]   497    NA    NA    NA    NA

What are some other ways to clean this data in R? How about in Excel?

mean(checking,na.rm = TRUE)
[1] 2559.805
sum(checking,na.rm = TRUE)/length(checking)
[1] 1048.014

Task 3

Now, we will look at Chicago taxi data. Go and explore the interactive dashboard and read the description of the data.

Chicago Taxi Dashboard: https://data.cityofchicago.org/Transportation/Taxi-Trips-Dashboard/spcw-brbq

Chicago Taxi Data Description: http://digital.cityofchicago.org/index.php/chicago-taxi-data-released/

Open in RStudio the csv file is located in the data folder, note the size of the file, the number of columns and of rows here. Use the functions learned in lab00 and lab01 to describe the data, identify unique entities, fields and summarize.

mydata= read.csv("data/Taxi_Trips_Sample.csv")
head(mydata)
#str (mydata)
summary(mydata)
                                     Trip.ID     
 3e7d6d8ccf1425ae1dcd584f5c3ca303cf6362ed:    1  
 3e7d6e5c4e87f01a475c8200b33777e85497da89:    1  
 3e7d6e69c1d6755d9e7484a453cd93a3ee9fed4c:    1  
 3e7d6efe43222b0ebc698583916674c648dd4520:    1  
 3e7d6f001e9bcda8478a489cb53293d26328ac85:    1  
 3e7d6f2a03527d63dc01b95e829fdfdd706102da:    1  
 (Other)                                 :99993  
                                                                                                                             Taxi.ID     
 aebf720288b80a8ee36860541db64951c696c749f1a392d312fa4d2a8cd3f95dfb0be580fda7eb63455f809a1be9b3acad19a3ca167073126d0350b50f30741a:   58  
 4f189764b8d9b6f71f7936ab414cac07634be0a00790ca179f9460521b7c9c3e5e102f5ba4e1c9cd18cdd9856dbf4f66ae8f13d8c82f8d2d4872f74b96938a24:   57  
 f737a9a31b07650672910268d7cceb9c06a379c0e75070c0dc0366db8132b06ba2800c5e63c5e56f821a591fc78a92c1c60fb5f48e01aa02e62ff10d18ececd0:   55  
 1158f25979ad78fd3dafc867a540ad761b65922c312e6170ccee63c3f14adea37317d3cf4e2053d2bdb1531d17670872e0411e496905ef9cb4821e0e96056139:   53  
 0861cb74337c620cb9ec639af7dc3aa99173b768caf750a2fd1ff17a8d9db86cad36772c7ff6ddaf2fda48de41bc82981145fe46693ed147d86ae194ee15c703:   52  
 (Other)                                                                                                                         :99720  
 NA's                                                                                                                            :    4  
             Trip.Start.Timestamp              Trip.End.Timestamp  Trip.Seconds    
 07/25/2014 06:45:00 PM:    9                           :   16    Min.   :    0.0  
 02/05/2015 07:15:00 PM:    8     02/10/2014 10:30:00 AM:    9    1st Qu.:  300.0  
 02/27/2015 08:45:00 AM:    8     02/05/2015 07:45:00 PM:    8    Median :  540.0  
 04/25/2014 06:45:00 PM:    8     03/03/2014 06:45:00 PM:    8    Mean   :  739.2  
 09/18/2013 07:30:00 PM:    8     03/22/2014 08:15:00 PM:    8    3rd Qu.:  900.0  
 03/15/2014 07:00:00 PM:    7     03/24/2016 07:30:00 PM:    8    Max.   :74340.0  
 (Other)               :99951     (Other)               :99942    NA's   :1327     
   Trip.Miles       Pickup.Census.Tract Dropoff.Census.Tract Pickup.Community.Area
 Min.   :   0.000   Min.   :1.703e+10   Min.   :1.703e+10    Min.   : 1.00        
 1st Qu.:   0.000   1st Qu.:1.703e+10   1st Qu.:1.703e+10    1st Qu.: 8.00        
 Median :   0.900   Median :1.703e+10   Median :1.703e+10    Median : 8.00        
 Mean   :   2.686   Mean   :1.703e+10   Mean   :1.703e+10    Mean   :22.04        
 3rd Qu.:   2.400   3rd Qu.:1.703e+10   3rd Qu.:1.703e+10    3rd Qu.:32.00        
 Max.   :1830.000   Max.   :1.703e+10   Max.   :1.703e+10    Max.   :77.00        
 NA's   :1          NA's   :38042       NA's   :38775        NA's   :15534        
 Dropoff.Community.Area      Fare            Tips           Tolls           Extras     
 Min.   : 1.00          $6.25  : 2892   $0.00  :63911   $0.00  :99932   $0.00  :62102  
 1st Qu.: 8.00          $5.25  : 2699   $2.00  :10382   $1.90  :   13   $1.00  :18344  
 Median :14.00          $3.25  : 2629   $3.00  : 3769   $1.50  :   12   $2.00  : 8888  
 Mean   :21.14          $5.85  : 2390   $1.00  : 3162   $50.00 :    8   $1.50  : 4635  
 3rd Qu.:32.00          $5.65  : 2389   $5.00  : 1004   $3.00  :    7   $3.00  : 2052  
 Max.   :77.00          $6.05  : 2367   $4.00  :  991   $2.00  :    5   $4.00  : 1134  
 NA's   :17532          (Other):84633   (Other):16780   (Other):   22   (Other): 2844  
   Trip.Total         Payment.Type                                       Company     
 $7.25  : 2010   Cash       :60760                                           :35411  
 $6.25  : 1908   Credit Card:38322   Taxi Affiliation Services               :29911  
 $3.25  : 1889   Dispute    :   58   Dispatch Taxi Affiliation               : 9417  
 $6.65  : 1762   No Charge  :  622   Blue Ribbon Taxi Association Inc.       : 6766  
 $8.25  : 1729   Pcard      :   18   Choice Taxi Association                 : 5185  
 $7.05  : 1658   Prcard     :    6   Chicago Elite Cab Corp. (Chicago Carriag: 5091  
 (Other):89043   Unknown    :  213   (Other)                                 : 8218  
 Pickup.Centroid.Latitude Pickup.Centroid.Longitude                 Pickup.Centroid.Location
 Min.   :41.66            Min.   :-87.91                                        :15533      
 1st Qu.:41.88            1st Qu.:-87.66            POINT (-87.632746 41.880994): 8572      
 Median :41.89            Median :-87.63            POINT (-87.620993 41.884987): 5034      
 Mean   :41.90            Mean   :-87.66            POINT (-87.633308 41.899602): 3850      
 3rd Qu.:41.92            3rd Qu.:-87.63            POINT (-87.626215 41.892508): 3832      
 Max.   :42.02            Max.   :-87.54            POINT (-87.631864 41.892042): 3692      
 NA's   :15533            NA's   :15533             (Other)                     :59486      
 Dropoff.Centroid.Latitude Dropoff.Centroid.Longitude                Dropoff.Centroid..Location
 Min.   :41.67             Min.   :-87.91                                         :17376       
 1st Qu.:41.88             1st Qu.:-87.66             POINT (-87.632746 41.880994): 7644       
 Median :41.89             Median :-87.63             POINT (-87.620993 41.884987): 4412       
 Mean   :41.90             Mean   :-87.66             POINT (-87.626215 41.892508): 3073       
 3rd Qu.:41.92             3rd Qu.:-87.63             POINT (-87.631864 41.892042): 3072       
 Max.   :42.02             Max.   :-87.53             POINT (-87.655998 41.944227): 2850       
 NA's   :17376             NA's   :17376              (Other)                     :61572       
 Community.Areas
 Min.   : 1.00  
 1st Qu.:37.00  
 Median :37.00  
 Mean   :41.18  
 3rd Qu.:38.00  
 Max.   :77.00  
 NA's   :15533  
#Extracting the Fare Column
fare = mydata$Fare
#Calling the Fare Column 
fare
   [1] $7.05   $6.05   $7.05   $31.25  $5.50   $9.25   $9.05   $30.45  $18.25  $17.25  $8.05  
  [12] $21.25  $6.85   $10.45  $7.45   $6.25   $7.45   $7.25   $10.05  $13.25  $35.25  $11.65 
  [23] $3.25   $9.05   $14.25  $15.85  $14.85  $6.85   $38.85  $5.65   $6.45   $15.45  $3.25  
  [34] $9.75   $14.85  $16.25  $3.45   $6.50   $5.45   $9.65   $107.45 $13.45  $35.04  $6.25  
  [45] $13.65  $4.85   $5.05   $9.00   $13.05  $5.45   $10.25  $6.45   $16.25  $8.65   $5.65  
  [56] $7.05   $8.25   $9.65   $5.25   $7.00   $6.65   $5.85   $9.44   $5.50   $9.25   $16.85 
  [67] $4.65   $9.65   $39.25  $10.65  $4.84   $18.65  $5.85   $6.45   $18.85  $7.05   $7.25  
  [78] $9.25   $7.45   $4.25   $17.45  $4.50   $35.25  $7.45   $9.45   $11.45  $9.65   $4.25  
  [89] $4.25   $6.65   $13.45  $7.50   $5.65   $4.84   $7.45   $4.25   $38.00  $11.50  $8.75  
 [100] $8.00   $4.45   $14.25  $6.65   $7.05   $12.65  $4.45   $9.85   $5.05   $9.25   $31.45 
 [111] $6.65   $10.65  $10.85  $5.25   $11.25  $5.45   $6.85   $6.45   $7.85   $17.25  $8.65  
 [122] $8.85   $5.05   $7.65   $6.45   $11.05  $8.65   $8.05   $37.45  $8.50   $16.85  $4.84  
 [133] $6.65   $9.45   $7.05   $7.25   $13.85  $15.45  $4.25   $12.45  $23.85  $6.85   $24.25 
 [144] $38.25  $7.05   $17.85  $7.25   $37.05  $5.65   $6.85   $10.75  $5.25   $5.25   $13.45 
 [155] $36.65  $9.25   $7.45   $8.25   $10.25  $35.05  $7.25   $14.00  $4.85   $8.25   $7.05  
 [166] $8.85   $5.85   $7.45   $6.00   $16.25  $3.45   $5.50   $9.25   $6.85   $7.05   $8.65  
 [177] $8.05   $5.65   $5.25   $3.25   $36.25  $6.65   $8.05   $4.45   $8.45   $5.45   $23.85 
 [188] $7.05   $15.05  $6.75   $5.75   $9.05   $12.45  $9.65   $8.45   $7.45   $31.45  $6.65  
 [199] $10.25  $7.65   $7.65   $7.25   $6.45   $90.95  $20.45  $5.75   $3.25   $3.45   $9.44  
 [210] $9.75   $7.00   $8.85   $44.85  $7.65   $10.25  $10.25  $5.25   $8.25   $8.85   $6.05  
 [221] $4.05   $9.25   $13.05  $32.25  $6.05   $3.25   $6.25   $22.50  $6.25   $13.45  $5.85  
 [232] $5.45   $4.85   $11.65  $4.85   $25.65  $5.05   $6.25   $7.25   $4.05   $4.25   $5.00  
 [243] $17.25  $16.00  $12.05  $44.75  $12.65  $5.45   $48.65  $5.45   $4.25   $4.65   $6.25  
 [254] $7.45   $5.85   $10.45  $7.45   $4.65   $58.45  $22.85  $11.00  $14.45  $6.25   $7.05  
 [265] $19.45  $11.45  $11.85  $12.25  $7.05   $4.65   $4.50   $6.45   $8.25   $15.25  $35.04 
 [276] $3.45   $36.45  $20.45  $4.65   $6.25   $36.05  $5.05   $16.85  $8.25   $5.75   $12.45 
 [287] $7.65   $10.45  $7.25   $4.25   $8.25   $7.05   $6.05   $11.85  $21.05  $14.00  $6.75  
 [298] $20.05  $8.44   $46.50  $4.25   $38.85  $7.85   $4.85   $7.05   $5.85   $4.45   $13.65 
 [309] $8.45   $33.05  $5.05   $10.85  $5.05   $11.65  $5.75   $4.65   $5.25   $7.65   $3.85  
 [320] $4.45   $36.05  $6.65   $6.25   $13.05  $4.75   $4.45   $37.05  $10.45  $30.25  $24.45 
 [331] $8.25   $17.05  $8.65   $13.25  $20.75  $6.00   $28.65  $7.05   $5.45   $15.25  $15.00 
 [342] $6.00   $36.85  $7.75   $8.85   $7.25   $12.65  $14.05  $15.45  $52.50  $6.45   $16.65 
 [353] $8.25   $5.65   $27.05  $12.25  $10.25  $5.05   $32.05  $8.25   $7.05   $19.65  $29.45 
 [364] $3.25   $7.85   $4.65   $6.25   $8.65   $5.85   $9.85   $8.05   $16.75  $3.25   $4.65  
 [375] $3.25   $9.25   $7.25   $10.85  $7.85   $9.85   $9.65   $40.25  $8.05   $10.25  $11.75 
 [386] $23.85  $30.05  $7.05   $5.25   $8.85   $6.65   $7.05   $4.65   $7.50   $9.25   $17.25 
 [397] $9.85   $5.45   $32.05  $34.25  $9.45   $13.05  $5.65   $3.25   $34.85  $13.05  $4.85  
 [408] $3.25   $6.05   $10.25  $14.65  $16.25  $13.25  $14.65  $7.45   $67.00  $7.45   $5.45  
 [419] $6.25   $10.05  $6.85   $4.65   $12.50  $6.45   $11.25  $5.25   $9.75   $30.25  $7.85  
 [430] $6.50   $5.45   $10.25  $6.25   $7.45   $6.05   $5.45   $8.50   $5.45   $5.25   $8.44  
 [441] $10.85  $3.25   $7.05   $9.25   $8.50   $17.85  $4.85   $0.00   $17.64  $7.85   $4.05  
 [452] $7.25   $35.65  $15.05  $6.25   $7.25   $39.45  $37.25  $5.85   $9.85   $26.85  $3.25  
 [463] $7.85   $6.15   $5.25   $64.25  $6.05   $8.25   $35.85  $10.45  $12.75  $4.45   $7.00  
 [474] $7.05   $5.85   $37.45  $7.45   $5.85   $6.65   $3.25   $16.00  $6.45   $8.25   $0.00  
 [485] $10.05  $9.65   $26.85  $5.25   $10.75  $5.05   $5.65   $8.65   $9.25   $7.85   $5.05  
 [496] $7.05   $10.50  $6.45   $38.45  $32.85  $8.44   $4.45   $4.25   $7.05   $11.45  $10.45 
 [507] $37.45  $18.25  $13.25  $15.65  $8.05   $17.25  $35.65  $7.45   $6.05   $6.75   $3.25  
 [518] $6.50   $10.65  $5.45   $9.85   $6.50   $11.45  $7.85   $12.75  $9.75   $11.65  $33.65 
 [529] $9.25   $5.25   $37.05  $7.45   $42.75  $5.85   $19.85  $7.05   $7.05   $5.85   $12.25 
 [540] $7.05   $5.25   $12.65  $11.25  $10.85  $7.05   $28.85  $45.00  $16.05  $5.85   $6.65  
 [551] $5.25   $5.25   $40.45  $5.00   $16.45  $7.45   $12.65  $13.25  $5.25   $11.65  $45.65 
 [562] $5.85   $6.00   $6.50   $17.45  $2.85   $7.45   $4.50   $8.65   $6.05   $8.45   $35.25 
 [573] $5.45   $7.75   $8.05   $9.05   $7.85   $5.65   $7.25   $7.25   $20.85  $6.85   $6.05  
 [584] $6.00   $10.00  $14.45  $12.45  $36.85  $8.25   $26.85  $11.65  $7.00   $8.05   $89.85 
 [595] $6.25   $37.05  $8.25   $31.25  $9.50   $6.45   $33.75  $5.45   $29.85  $8.25   $5.50  
 [606] $13.45  $48.50  $5.45   $4.85   $7.05   $38.65  $5.85   $9.65   $7.25   $10.75  $34.65 
 [617] $8.25   $6.25   $11.45  $19.45  $8.45   $7.85   $7.65   $8.65   $6.85   $8.65   $5.45  
 [628] $6.05   $17.25  $10.65  $7.25   $12.45  $19.45  $9.00   $10.45  $8.00   $22.65  $28.85 
 [639] $3.45   $5.45   $8.05   $6.45   $9.65   $12.45  $5.25   $36.65  $11.25  $37.25  $5.45  
 [650] $4.05   $45.85  $11.75  $11.45  $11.05  $5.85   $24.05  $44.25  $14.85  $15.85  $5.85  
 [661] $22.65  $6.45   $6.25   $6.05   $30.65  $6.45   $6.25   $10.25  $8.45   $12.00  $7.45  
 [672] $4.05   $6.25   $4.45   $8.25   $9.05   $6.45   $4.25   $8.65   $6.05   $9.44   $6.45  
 [683] $30.05  $27.25  $6.85   $6.50   $8.25   $35.45  $10.25  $10.05  $12.65  $5.25   $6.45  
 [694] $4.25   $5.85   $11.65  $4.65   $15.45  $6.65   $11.25  $5.05   $9.45   $4.65   $11.45 
 [705] $6.05   $5.25   $5.65   $18.25  $7.45   $14.65  $7.85   $6.25   $41.05  $15.05  $5.25  
 [716] $6.05   $5.65   $18.05  $36.85  $8.45   $10.45  $5.45   $8.85   $7.75   $15.65  $13.25 
 [727] $6.85   $8.45   $12.45  $8.25   $9.00   $8.05   $5.45   $8.65   $4.85   $11.65  $5.75  
 [738] $23.65  $12.50  $14.05  $6.65   $8.65   $39.25  $6.85   $10.05  $16.45  $5.45   $10.45 
 [749] $5.45   $8.85   $6.05   $9.65   $82.25  $4.85   $6.25   $8.65   $10.65  $5.05   $8.25  
 [760] $5.25   $14.75  $5.65   $8.65   $42.00  $6.05   $7.05   $7.25   $38.00  $6.65   $9.05  
 [771] $6.25   $30.65  $6.50   $7.05   $25.85  $7.05   $10.85  $9.05   $6.00   $8.44   $6.85  
 [782] $5.05   $9.25   $6.50   $5.00   $8.85   $12.05  $11.25  $5.85   $10.45  $5.45   $6.25  
 [793] $12.85  $8.25   $7.85   $6.05   $8.25   $39.75  $5.25   $20.65  $8.45   $6.45   $6.85  
 [804] $8.85   $10.85  $25.45  $5.85   $18.45  $5.65   $12.65  $4.65   $7.75   $7.45   $36.25 
 [815] $6.50   $38.25  $7.85   $7.85   $13.25  $4.85   $4.65   $6.50   $3.25   $6.45   $7.25  
 [826] $20.45  $29.05  $9.25   $7.25   $8.00   $4.84   $5.25   $8.65   $5.25   $35.25  $5.65  
 [837] $5.25   $36.50  $29.05  $10.85  $11.25  $8.00   $6.05   $37.65  $9.05   $12.05  $4.75  
 [848] $10.25  $7.05   $5.65   $26.25  $85.25  $5.45   $13.50  $10.00  $7.05   $6.25   $15.25 
 [859] $4.45   $4.84   $35.00  $5.25   $6.05   $8.45   $5.25   $8.85   $7.05   $5.65   $5.65  
 [870] $7.85   $5.45   $7.85   $10.25  $11.50  $6.85   $41.05  $5.65   $8.05   $7.00   $7.25  
 [881] $5.65   $36.50  $10.50  $4.65   $4.65   $10.05  $8.05   $6.45   $4.45   $27.85  $5.45  
 [892] $7.85   $4.85   $12.05  $4.65   $9.05   $6.45   $12.25  $7.05   $5.25   $9.75   $4.65  
 [903] $7.25   $3.25   $9.00   $5.25   $4.84   $17.85  $8.25   $12.05  $4.65   $14.25  $7.05  
 [914] $4.50   $34.85  $7.45   $12.05  $3.45   $7.45   $5.65   $8.85   $8.85   $5.05   $9.25  
 [925] $5.65   $4.85   $9.65   $30.45  $12.85  $7.75   $6.25   $13.45  $4.45   $35.65  $17.75 
 [936] $6.85   $39.45  $9.05   $5.25   $11.75  $6.85   $11.65  $7.25   $7.45   $12.85  $7.45  
 [947] $3.25   $8.50   $7.05   $4.00   $8.25   $6.45   $5.65   $5.65   $5.65   $6.45   $5.65  
 [958] $7.85   $22.25  $12.25  $37.45  $3.25   $36.45  $21.85  $10.05  $5.85   $5.85   $10.45 
 [969] $15.45  $6.65   $15.05  $34.45  $18.45  $8.25   $5.25   $10.75  $13.85  $7.05   $15.65 
 [980] $5.25   $33.00  $3.25   $17.45  $5.25   $4.05   $5.50   $9.05   $5.05   $10.25  $6.25  
 [991] $5.85   $9.85   $15.05  $10.45  $5.45   $27.45  $11.50  $6.75   $4.85   $6.45  
 [ reached getOption("max.print") -- omitted 98999 entries ]
892 Levels:  $0.00 $0.01 $0.03 $0.05 $0.10 $0.11 $0.28 $0.30 $0.32 $0.34 $0.42 $0.60 $1.00 ... $99.99
#Extracting the Tips Column
tips= mydata$Tips
#Calling the Tips Column
tips
   [1] $0.00  $0.00  $0.00  $0.00  $0.00  $0.00  $1.00  $6.49  $0.00  $5.45  $0.00  $4.25  $1.71 
  [14] $0.00  $0.00  $0.00  $0.00  $0.00  $2.01  $2.00  $11.15 $0.00  $0.00  $2.00  $0.00  $0.00 
  [27] $0.00  $0.00  $8.17  $0.00  $0.00  $0.00  $0.00  $3.00  $0.00  $4.05  $0.00  $2.00  $1.00 
  [40] $2.41  $21.49 $0.00  $7.41  $0.00  $3.40  $0.00  $0.00  $0.00  $0.00  $0.00  $0.00  $0.00 
  [53] $0.00  $0.00  $4.00  $0.00  $0.00  $0.00  $0.00  $0.00  $0.00  $0.00  $0.00  $0.00  $0.00 
  [66] $3.00  $0.00  $2.00  $7.85  $0.00  $0.00  $5.55  $0.00  $0.00  $0.00  $3.00  $0.00  $0.00 
  [79] $2.00  $0.00  $0.00  $0.00  $7.45  $0.00  $2.36  $0.00  $0.00  $0.00  $0.00  $1.10  $2.69 
  [92] $2.00  $0.00  $0.00  $0.00  $0.00  $0.00  $3.25  $2.00  $0.00  $0.00  $2.85  $0.00  $2.00 
 [105] $0.00  $1.00  $2.00  $0.00  $3.05  $9.70  $0.00  $2.00  $0.00  $0.00  $0.00  $2.00  $1.50 
 [118] $0.00  $0.00  $0.00  $2.00  $0.00  $0.00  $0.00  $0.00  $0.00  $1.35  $0.00  $9.36  $1.70 
 [131] $0.00  $0.00  $2.00  $2.00  $0.00  $0.00  $0.00  $3.25  $0.00  $0.00  $5.37  $0.00  $12.00
 [144] $0.00  $0.00  $4.70  $2.00  $8.00  $0.00  $1.00  $0.00  $0.00  $0.00  $0.00  $6.00  $0.00 
 [157] $1.00  $2.00  $0.00  $0.00  $0.00  $3.10  $0.00  $2.00  $3.00  $1.77  $2.15  $0.00  $1.20 
 [170] $0.00  $0.00  $2.00  $0.00  $3.00  $0.00  $0.00  $0.00  $0.00  $0.00  $0.00  $7.65  $0.00 
 [183] $0.00  $0.00  $4.00  $0.00  $6.45  $0.00  $0.00  $1.69  $1.15  $3.00  $0.00  $2.00  $3.00 
 [196] $1.49  $8.35  $0.00  $2.05  $0.00  $2.00  $0.00  $0.00  $18.19 $0.00  $0.00  $0.00  $0.00 
 [209] $0.00  $1.95  $4.00  $2.00  $9.55  $0.00  $0.00  $2.05  $0.10  $2.00  $0.00  $2.00  $1.01 
 [222] $0.00  $0.00  $6.85  $0.00  $0.00  $1.25  $0.00  $2.00  $0.00  $0.00  $0.00  $0.00  $2.30 
 [235] $2.00  $0.00  $0.00  $0.00  $2.00  $0.00  $1.00  $0.00  $2.00  $3.40  $0.00  $0.00  $0.00 
 [248] $0.00  $5.00  $0.00  $0.00  $0.00  $0.00  $0.00  $0.00  $2.00  $0.00  $0.00  $0.00  $0.00 
 [261] $2.00  $3.60  $0.00  $0.00  $0.00  $0.00  $0.00  $0.00  $0.00  $0.00  $0.00  $1.00  $3.65 
 [274] $3.00  $0.00  $0.00  $0.00  $6.00  $2.00  $0.00  $5.00  $0.00  $3.35  $0.00  $0.00  $2.65 
 [287] $0.00  $0.00  $0.00  $0.00  $0.00  $2.05  $0.00  $0.00  $0.00  $2.00  $2.00  $0.00  $0.00 
 [300] $9.30  $0.00  $0.00  $0.00  $0.00  $0.00  $2.00  $0.00  $0.00  $0.00  $6.95  $0.00  $2.00 
 [313] $2.00  $2.00  $0.00  $2.00  $0.00  $0.00  $0.00  $0.00  $0.00  $3.00  $0.00  $0.00  $2.00 
 [326] $0.00  $2.00  $0.00  $6.45  $4.00  $0.00  $0.00  $0.00  $2.65  $4.15  $2.00  $5.00  $0.00 
 [339] $0.00  $0.00  $3.75  $0.00  $9.55  $0.00  $0.00  $0.00  $0.00  $0.00  $0.00  $13.12 $0.00 
 [352] $0.00  $2.00  $0.00  $0.00  $0.00  $0.00  $0.00  $6.80  $3.00  $0.00  $0.00  $0.00  $0.00 
 [365] $0.00  $0.00  $2.00  $0.00  $0.00  $1.50  $0.00  $3.50  $0.00  $0.00  $0.00  $1.50  $0.00 
 [378] $0.00  $0.00  $0.00  $0.00  $0.00  $2.00  $2.30  $2.35  $0.00  $6.40  $2.00  $0.00  $0.00 
 [391] $0.00  $0.00  $0.00  $0.00  $0.00  $3.65  $0.00  $0.00  $6.80  $9.55  $2.00  $0.00  $0.00 
 [404] $0.00  $0.00  $0.00  $2.00  $0.00  $0.00  $2.05  $0.00  $3.25  $0.00  $2.93  $1.00  $0.00 
 [417] $0.00  $3.00  $0.00  $2.00  $1.37  $0.00  $0.00  $0.00  $1.50  $1.00  $0.00  $6.00  $0.00 
 [430] $0.00  $0.00  $0.00  $0.00  $0.00  $0.00  $0.00  $3.00  $0.00  $0.00  $0.00  $1.63  $0.00 
 [443] $2.00  $1.85  $0.00  $0.00  $0.00  $0.00  $0.00  $0.00  $0.00  $0.00  $7.50  $0.00  $0.00 
 [456] $0.00  $4.00  $7.85  $0.00  $0.00  $0.00  $0.00  $2.00  $2.00  $0.00  $0.00  $0.00  $2.00 
 [469] $7.57  $2.00  $0.00  $1.00  $1.50  $0.00  $0.00  $7.89  $0.00  $3.00  $0.00  $0.00  $3.20 
 [482] $2.55  $0.00  $0.00  $2.00  $0.00  $5.35  $0.00  $3.20  $0.00  $0.00  $3.00  $3.00  $0.15 
 [495] $0.00  $3.00  $0.00  $2.00  $6.00  $8.84  $0.00  $0.00  $1.00  $2.95  $3.00  $0.00  $10.36
 [508] $0.00  $0.00  $0.00  $0.00  $3.45  $7.70  $3.00  $2.00  $0.00  $0.00  $2.00  $4.00  $1.00 
 [521] $2.00  $0.00  $0.00  $0.00  $0.00  $0.00  $0.00  $0.00  $0.00  $0.00  $11.40 $0.00  $9.35 
 [534] $0.00  $4.37  $0.00  $1.41  $0.00  $3.00  $0.00  $0.00  $0.00  $0.00  $0.00  $0.00  $0.00 
 [547] $0.00  $0.00  $2.00  $0.00  $1.20  $0.00  $13.30 $2.00  $2.47  $0.00  $0.00  $0.00  $0.00 
 [560] $0.00  $9.13  $0.00  $0.00  $0.00  $6.00  $0.00  $0.00  $0.00  $2.00  $0.00  $0.00  $0.00 
 [573] $0.00  $0.00  $0.00  $3.00  $0.00  $0.00  $2.00  $2.03  $0.00  $0.00  $0.00  $0.00  $2.00 
 [586] $2.17  $0.00  $5.00  $0.00  $0.00  $2.33  $0.00  $0.00  $0.00  $2.00  $0.00  $1.65  $7.15 
 [599] $1.50  $2.00  $0.00  $0.00  $0.00  $2.00  $0.00  $0.00  $9.80  $1.00  $2.00  $0.00  $7.73 
 [612] $0.00  $0.00  $1.00  $0.00  $8.00  $0.00  $0.50  $2.29  $0.00  $2.00  $0.00  $0.00  $2.00 
 [625] $0.00  $0.00  $0.00  $0.00  $0.00  $2.13  $0.00  $0.00  $0.00  $0.00  $2.00  $0.00  $7.60 
 [638] $0.00  $0.00  $3.00  $0.00  $0.00  $0.00  $0.00  $0.00  $0.00  $2.80  $7.85  $0.50  $0.00 
 [651] $0.00  $2.35  $0.00  $0.00  $2.00  $6.50  $0.00  $0.00  $0.00  $0.00  $0.00  $2.00  $0.00 
 [664] $0.00  $5.00  $0.00  $0.00  $2.00  $2.00  $3.45  $1.00  $0.00  $0.00  $0.00  $0.00  $0.00 
 [677] $0.00  $0.00  $0.00  $0.00  $2.00  $3.00  $0.00  $5.00  $0.00  $0.00  $2.00  $7.49  $0.00 
 [690] $0.00  $0.00  $2.00  $0.00  $0.00  $0.00  $0.00  $0.00  $0.00  $2.00  $2.00  $0.00  $2.00 
 [703] $0.00  $0.00  $1.00  $0.00  $0.00  $0.00  $0.00  $0.00  $0.00  $0.00  $0.00  $0.00  $0.00 
 [716] $1.00  $1.00  $4.51  $7.95  $0.00  $0.00  $0.00  $0.00  $0.00  $0.00  $0.00  $0.00  $0.00 
 [729] $3.00  $0.00  $0.00  $2.01  $0.00  $0.00  $0.00  $0.00  $0.00  $0.00  $4.00  $2.00  $0.00 
 [742] $0.00  $7.85  $0.00  $0.00  $0.00  $1.00  $0.00  $0.00  $0.00  $3.00  $2.00  $18.05 $0.00 
 [755] $0.00  $0.00  $3.60  $0.00  $0.00  $2.00  $0.00  $2.00  $0.00  $0.00  $0.00  $0.00  $3.00 
 [768] $0.00  $0.00  $0.00  $4.00  $6.49  $1.00  $2.00  $5.37  $0.00  $0.00  $0.00  $0.00  $2.00 
 [781] $2.00  $0.00  $0.00  $0.00  $0.00  $0.00  $2.00  $2.00  $1.15  $2.00  $0.00  $0.00  $0.00 
 [794] $2.00  $2.00  $2.95  $0.00  $0.00  $2.00  $0.00  $0.00  $0.00  $0.00  $0.00  $2.17  $5.05 
 [807] $0.00  $0.00  $0.00  $0.00  $0.00  $3.00  $4.00  $7.65  $2.00  $0.00  $0.00  $1.00  $0.00 
 [820] $4.00  $2.00  $0.00  $0.00  $1.29  $1.75  $0.00  $6.41  $0.00  $0.00  $0.00  $0.00  $0.00 
 [833] $2.00  $2.00  $0.00  $0.00  $1.00  $8.10  $5.00  $2.15  $0.00  $0.00  $0.00  $10.15 $1.00 
 [846] $0.00  $2.00  $0.00  $1.00  $0.00  $5.25  $0.00  $0.00  $2.60  $0.00  $1.41  $0.00  $0.00 
 [859] $0.00  $0.00  $0.00  $2.00  $0.00  $1.90  $0.00  $0.00  $0.00  $3.00  $0.00  $0.00  $0.00 
 [872] $3.99  $0.00  $3.00  $0.00  $0.00  $0.00  $0.00  $0.00  $0.00  $0.00  $0.00  $1.00  $0.00 
 [885] $0.00  $0.00  $0.00  $0.00  $0.00  $0.00  $0.00  $0.00  $2.00  $0.00  $0.00  $0.00  $3.00 
 [898] $0.00  $0.00  $0.00  $3.00  $1.25  $1.45  $0.00  $0.10  $1.00  $0.00  $0.00  $0.00  $2.40 
 [911] $0.00  $0.00  $0.00  $0.00  $7.37  $0.00  $2.70  $0.00  $0.00  $0.00  $0.00  $0.00  $0.00 
 [924] $0.00  $2.00  $1.00  $0.00  $0.00  $0.00  $2.00  $0.00  $2.65  $1.00  $7.53  $0.00  $0.00 
 [937] $0.00  $0.00  $0.00  $0.00  $1.14  $2.91  $2.00  $0.00  $0.00  $0.00  $0.00  $0.00  $1.41 
 [950] $0.00  $1.65  $2.00  $2.00  $0.00  $0.00  $0.00  $2.00  $0.00  $0.00  $0.00  $9.85  $0.00 
 [963] $3.00  $4.35  $2.00  $2.00  $1.50  $2.60  $0.00  $2.00  $1.25  $0.00  $0.00  $0.00  $0.00 
 [976] $0.00  $3.00  $0.00  $3.10  $2.00  $7.40  $0.00  $0.00  $0.00  $0.00  $0.00  $1.81  $2.00 
 [989] $1.00  $1.00  $0.00  $2.00  $0.00  $0.00  $2.00  $5.00  $2.60  $0.00  $0.00  $0.00 
 [ reached getOption("max.print") -- omitted 98999 entries ]
1081 Levels:  $0.00 $0.01 $0.02 $0.03 $0.04 $0.05 $0.06 $0.08 $0.09 $0.10 $0.11 $0.13 $0.15 ... $9.98

Mean of Fares

mydata = read.csv(file = "data/Taxi_Sample_Trips.csv")
miles = mydata$Trip.Miles
mean_miles = mean(Miles)
mean_Miles

Define a relational business logic for the column field ‘Trip Seconds’.

‘Trip Seconds’ could be related to the following other columns:
‘Fare’ and ‘Trip Miles’ The longer the time for ‘Trip Seconds’ then the higher the fare will be. The longer the time for ‘Trip Seconds’ then the higher the amount of miles recorded will be. These will allow a taxi company business to see the relation that if there are more trip seconds, then they can expect more fares and miles driven.

Using https://erdplus.com/#/standalone draw a star schema using the following three tables:

LS0tCnRpdGxlOiAiQnVzaW5lc3MgQW5hbHl0aWNzIExhYiBXb3Jrc2hlZXQgMDIiCmF1dGhvcjogIkthcmluYSBSb2NoYSIKZGF0ZTogIkp1bHkgMjIsIDIwMTciCm91dHB1dDoKICBodG1sX2RvY3VtZW50OiBkZWZhdWx0CiAgaHRtbF9ub3RlYm9vazogZGVmYXVsdAogIHBkZl9kb2N1bWVudDogZGVmYXVsdApzdWJ0aXRsZTogQ01FIEdyb3VwIEZvdW5kYXRpb24gQnVzaW5lc3MgQW5hbHl0aWNzIExhYgotLS0KCiMjIyBBYm91dAoKVG9kYXkgdGhlIGxhYiBmb2N1c2VzIG9uIGRhdGEgb3V0bGllcnMsIGRhdGEgcHJlcGFyYXRpb24sIGFuZCBkYXRhIG1vZGVsaW5nLiBUaGlzIGxhYiByZXF1aXJlcyB0aGUgdXNlIG9mIE1pY3Jvc29mdCBFeGNlbCwgUiwgYW5kIEVSRHBsdXMuCgojIyMgU2V0dXAKCk1ha2Ugc3VyZSB0byBkb3dubG9hZCB0aGUgZm9sZGVyIHRpdGxlZCAnYnNhZF9sYWIwMicgemlwIGZvbGRlciBhbmQgZXh0cmFjdCB0aGUgZm9sZGVyIHRvIHVuemlwIGl0LiBOZXh0LCB3ZSBtdXN0IHNldCB0aGlzIGZvbGRlciBhcyB0aGUgd29ya2luZyBkaXJlY3RvcnkuIFRoZQp3YXkgdG8gZG8gdGhpcyBpcyB0byBvcGVuIFIgU3R1ZGlvLCBnbyB0byAnU2Vzc2lvbicsIHNjcm9sbCBkb3duIHRvICdTZXQgV29ya2luZyBEaXJlY3RvcnknLCBhbmQgY2xpY2sgJ1RvIFNvdXJjZSBGaWxlIExvY2F0aW9uJy4gTm93LCBmb2xsb3cgdGhlIGRpcmVjdGlvbnMgdG8gY29tcGxldGUgdGhlIGxhYi4KCi0tLS0tLS0tLQoKIyMjIFRhc2sgMQoKRmlyc3QsIHdlIG11c3QgY2FsY3VsYXRlIHRoZSBtZWFuLCBzdGFuZGFyZCBkZXZpYXRpb24sIG1heGltdW0sIGFuZCBtaW5pbXVtIGZvciB0aGUgQWdlIGNvbHVtbiB1c2luZyBSLgoKSW4gUiwgd2UgbXVzdCByZWFkIGluIHRoZSBmaWxlIGFnYWluLCBleHRyYWN0IHRoZSBjb2x1bW4gYW5kIGZpbmQgdGhlIHZhbHVlcyB0aGF0IGFyZSBhc2tlZCBmb3IuCgpgYGB7cn0KI1JlYWQgRmlsZQpteWRhdGE9IHJlYWQuY3N2KGZpbGUgPSAiZGF0YS9jcmVkaXRyaXNrLmNzdiIpCiNBZ2UgCmFnZSA9IG15ZGF0YSRBZ2UKYGBgCgpgYGB7cn0KI0NhbGN1bGF0ZSB0aGUgYXZlcmFnZSBhZ2UgYmVsb3cuIAphZ2VfbWVhbj0gbWVhbihhZ2UpCmFnZV9tZWFuCmBgYAoKYGBge3J9CiNDYWxjdWxhdGUgc3RhbmRhcmQgZGV2aWF0aW9uIG9mIGFnZSBiZWxvdy4gCmFnZV9zZD0gc2QoYWdlKQphZ2Vfc2QKYGBgCgpgYGB7cn0KI0NhbGN1bGF0ZSB0aGUgbWF4aW11bSBvZiBhZ2UgYmVsb3cuIFRoZSBjb21tYW5kIHRvIGZpbmQgdGhlIG1heGltdW0gaXMgbWF4KHZhcmlhYmxlKSB3aGVyZSB2YXJpYWJsZSBpcyB0aGUgZXh0cmFjdGVkIHZhcmlhYmxlLiAgCmFnZV9tYXg9IG1heChhZ2UpCmFnZV9tYXgKYGBgCgpgYGB7cn0KI0NhbGN1bGF0ZSB0aGUgbWluaW11bSBvZiBhZ2UgYmVsb3cuIFRoZSBjb21tYW5kIHRvIGZpbmQgdGhlIG1pbmltdW0gaXMgbWluKHZhcmlhYmxlKSB3aGVyZSB2YXJpYWJsZSBpcyB0aGUgZXh0cmFjdGVkIHZhcmlhYmxlLiAgCmFnZV9taW4gPSBtaW4oYWdlKQphZ2VfbWluCmBgYAoKTmV4dCwgdXNlIHRoZSBmb3JtdWxhIGZyb20gY2xhc3MgdG8gZGV0ZWN0IGFueSBvdXRsaWVycy4gQW4gb3V0bGllciBpcyB2YWx1ZSB0aGF0ICJsaWVzIG91dHNpZGUiIG1vc3Qgb2YgdGhlIG90aGVyIHZhbHVlcyBpbiBhIHNldCBvZiBkYXRhLiBBIGNvbW1vbiB3YXkgdG8gZXN0aW1hdGUgdGhlIHVwcGVyIGFuZCBsb3dlciB0aHJlc2hvbGQgaXMgdG8gdGFrZSB0aGUgYGBgbWVhbiAoKyBvciAtKSAzICogc3RhbmRhcmQgZGV2aWF0aW9uYGBgLiBUcnkgdXNpbmcgdGhpcyBmb3JtdWxhIHRvIGZpbmQgdGhlIHVwcGVyIGFuZCBsb3dlciBsaW1pdCBmb3IgYWdlLiAKCmBgYHtyfQojVXNlIHRoZSBmb3JtdWxhIGFib3ZlIHRvIGNhbGN1bGF0ZSB0aGUgdXBwZXIgYW5kIGxvd2VyIHRocmVzaG9sZAphZ2VfbG93ZXIgPSBhZ2VfbWVhbiAtICgzKSAqIGFnZV9zZAphZ2VfdXBwZXIgPSBhZ2VfbWVhbiArICgzKSAqIGFnZV9zZAphZ2VfdXBwZXIKCmFnZV9sb3dlcgpgYGAKCkEgbWV0aG9kIHRvIGZpbmQgdGhlIHVwcGVyIGFuZCBsb3dlciB0aHJlc2hvbGRzIGRpc2N1c3NlZCBpbiBpbnRyb2R1Y3Rvcnkgc3RhdGlzdGljcyBjb3Vyc2VzIGludm9sdmVzIGZpbmRpbmcgdGhlIGludGVycXVhcnRpbGUgcmFuZ2UuIEZvbGxvdyBhbG9uZyBiZWxvdyB0byBzZWUgaG93IHdlIGZpcnN0IGNhbGN1bGF0ZSB0aGUgaW50ZXJxdWFydGlsZSByYW5nZS4uIAoKYGBge3J9IApxdWFudGlsZShhZ2UpIAoKaXFyID0gdXBwZXJxIC0gbG93ZXJxCmBgYAoKYGBge3J9IApsb3dlcnE9cXVhbnRpbGUoYWdlKVszXQp1cHBlcnE9cXVhbnRpbGUoYWdlKVs0XQppcXI9IHVwcGVycSAtIGxvd2VycQppcXIKYGBgCgpUaGUgZm9ybXVsYSBiZWxvdyBjYWxjdWxhdGVzIHRoZSB0aHJlc2hvbGQuIFRoZSB0aHJlc2hvbGQgaXMgdGhlIGJvdW5kYXJpZXMgdGhhdCBkZXRlcm1pbmUgaWYgYSB2YWx1ZSBpcyBhbiBvdXRsaWVyLiBJZiB0aGUgdmFsdWUgZmFsbHMgYWJvdmUgdGhlIHVwcGVyIHRocmVzaG9sZCBvciBiZWxvdyB0aGUgbG93ZXIgdGhyZXNob2xkLCBpdCBpcyBhbiBvdXRsaWVyLiAKCkJlbG93IGlzIHRoZSB1cHBlciB0aHJlc2hvbGQ6CmBgYHtyfSAKdXBwZXJ0aHJlc2hvbGQgPSAoaXFyICogMS41KSArIHVwcGVycSAKdXBwZXJ0aHJlc2hvbGQKYGBgCgpCZWxvdyBpcyB0aGUgbG93ZXIgdGhyZXNob2xkOgpgYGB7cn0KbG93ZXJ0aHJlc2hvbGQgPSBsb3dlcnEgLSAoaXFyICogMS41KQpsb3dlcnRocmVzaG9sZApgYGAKCkFyZSB0aGVyZSBhbnkgb3V0bGllcnM/IEhvdyBtYW55PyBJdCBjYW4gYWxzbyBiZSB1c2VmdWwgdG8gdmlzdWFsaXplIHRoZSBkYXRhIHVzaW5nIGEgYm94IGFuZCB3aGlza2VyIHBsb3QuIFRoZSBib3hwbG90IGJlbG93IHN1cHBvcnRzIHRoZSBJUVIgd2UgZm91bmQgb2YgMTUgYW5kIHVwcGVyIGFuZCBsb3dlciB0aHJlc2hvbGQuCgpgYGB7cn0gCmFnZVthZ2U+dXBwZXJ0aHJlc2hvbGRdCmBgYAoKYGBge3J9Cm15ZGF0YVthZ2U+dXBwZXJ0aHJlc2hvbGQsXQpgYGAKCmBgYHtyfQphZ2VbYWdlPGxvd2VydGhyZXNob2xkXQpgYGAKCmBgYHtyfQpib3hwbG90KGFnZSxob3Jpem9udGFsID0gVFJVRSkKYGBgCgoKLS0tLS0tLS0tLS0tLS0tCgojIyMgVGFzayAyCgpOZXh0LCB3ZSBtdXN0IHJlYWQgdGhlICdjcmVkaXRyaXNrb3JnLmNzdicgZmlsZSBpbnRvIFIuIFRoaXMgaXMgdGhlIG9yaWdpbmFsIGRhdGFzZXQgYW5kIGNvbnRhaW5zIG1pc3NpbmcgdmFsdWVzLiAKCmBgYHtyfQpteWRhdGEgPSByZWFkLmNzdihmaWxlID0gImRhdGEvY3JlZGl0cmlza29yZy5jc3YiKQpoZWFkKG15ZGF0YSkKYGBgCgpgYGB7cn0KI3RhaWwobXlkYXRhKQpgYGAKCgpXZSBvYnNlcnZlIHRoYXQgdGhlIGNvbHVtbiBuYW1lcyBhcmUgc2hpZnRlZCBkb3duIGJlbG93LiBTbywgd2UgbXVzdCBtYWtlIHN1cmUgdG8gdXNlIHRoZSBjb21tYW5kIHNraXAgYW5kIHNldCB0aGUgaGVhZGVyIHRvIHRydWUuCgpgYGB7cn0gCm15ZGF0YSA9IHJlYWQuY3N2KCJkYXRhL2NyZWRpdHJpc2tvcmcuY3N2Iixza2lwID0gMSkKaGVhZChteWRhdGEpCmBgYAoKYGBge3J9CiNzdHIobXlkYXRhKQpzdW1tYXJ5KG15ZGF0YSkKYGBgCgpUbyBjYWxjdWxhdGUgdGhlIG1lYW4gZm9yIENoZWNraW5nIGluIFIsIGZvbGxvdyBXb3Jrc2hlZXQgMS4gRXh0cmFjdCB0aGUgQ2hlY2tpbmcgY29sdW1uIGZpcnN0IGFuZCB0aGVuIGZpbmQgdGhlIGF2ZXJhZ2UgdXNpbmcgdGhlIGZ1bmN0aW9uIGJ1aWx0IGluIFIuCldoYXQgaGFwcGVucyB3aGVuIHdlIHRyeSB0byB1c2UgdGhlIGZ1bmN0aW9uPwoKYGBge3J9CiNFeHRyYWN0aW5nIHRoZSBDaGVja2luZyBDb2x1bW4KY2hlY2tpbmcgPSBteWRhdGEkQ2hlY2tpbmcKCiNDYWxsaW5nIHRoZSBDaGVja2luZwpjaGVja2luZwpgYGAKCgpUbyByZXNvbHZlIHRoZSBlcnJvciwgd2UgbXVzdCByZW1vdmUgdW5kZXJzdGFuZCB3aGVyZSBpdCBpcyBjb21pbmcgZnJvbS4gVGhlcmUgYXJlIG1pc3NpbmcgdmFsdWVzIGluIHRoZSBjc3YgZmlsZSwgd2hpY2ggaXMgcXVpdGUgY29tbW9uIGFzIG1vc3QgZGF0YXNldHMgYXJlIG5vdCBwZXJmZWN0LiBBZGRpdGlvbmFsbHksIHRoZXJlIGFyZSBjb21tYXMgd2l0aGluIHRoZSBleGNlbCBzcHJlYWRzaGVldCwgYW5kIFIgZG9lcyBub3QgcmVjb2duaXplIHRoYXQgJzEsMjM0JyBpcyBlcXVpdmFsZW50IHRvICcxMjM0Jy4gTGFzdGx5LCB0aGVyZSBhcmUgJyQnIHN5bWJvbHMgdGhyb3VnaG91dCB0aGUgZmlsZSB3aGljaCBpcyBub3QgYSBudW1lcmljYSBzeW1ib2wgZWl0aGVyLgoKVGhlIHN1YiBmdW5jdGlvbiByZXBsYWNlcyB0aGVzZSBzeW1ib2xzIHdpdGggc29tZXRoaW5nIGVsc2UuIFNvLCBpbiBvcmRlciB0byByZW1vdmUgdGhlIGNvbW1hIGluIHRoZSBudW1iZXIgIjEsMjM0Iiwgd2UgbXVzdCBzdWJzdGl0dXRlIGl0IHdpdGgganVzdCBhbiBlbXB0eSBzcGFjZS4KCkFzIHNob3duIG9uIHRoZSB3b3Jrc2hlZXQsIHR5cGUgYW5kIGNvcHkgdGhlIGV4YWN0IGNvbW1hbmRzIHRvIGZpbmQgdGhlIG1lYW4gd2l0aCB0aGUgTkEgdmFsdWVzIHJlbW92ZWQuCgpgYGB7cn0KY2hlY2tpbmdbMTo2XQpgYGAKCmBgYHtyfSAKY2xlYW49IGNoZWNraW5nWzE6MTBdCiNzdWJzdGl0dXRlIGNvbW1hIHdpdGggYmxhbmsgaW4gYWxsIG9mIGNoZWNraW5nIApjbGVhbiA9IHN1YigiLCIsIiIsY2xlYW4pCiNzdWJzdGl0dXRlIGRvbGxhciBzaWduIHdpdGggYmxhbmsgaW4gYWxsIG9mIGNoZWNraW5nCmNsZWFuID0gc3ViKCJcXCQiLCIiLGNsZWFuKQpjbGFzcyhjbGVhbikKYGBgCgpgYGB7cn0KI251bWVyaWMgY29udmVydApjbGVhbiA9IGFzLm51bWVyaWMoY2xlYW4pCmBgYAoKYGBge3J9CmNsYXNzKGNsZWFuKQpgYGAKCmBgYHtyfQojbWVhbiB3aXRoIE5BIHJlbW92ZWQKY2xlYW4KYGBgCgpgYGB7cn0KI3N1YnN0aXR1dGUgY29tbWEgd2l0aCBibGFuayBpbiBhbGwgb2YgY2hlY2tpbmcKY2hlY2tpbmcgPSBzdWIoIiwiLCIiLCBjaGVja2luZykKI3N1YnN0aXR1dGUgZG9sbGFyIHNpZ24gd2l0aCBibGFuayBpbiBhbGwgb2YgY2hlY2tpbmcKY2hlY2tpbmcgPSBzdWIoIlxcJCIsIiIsY2hlY2tpbmcpCiNudW1lcmljIGNvbnZlcnQgCmNoZWNraW5nID1hcy5udW1lcmljKGNoZWNraW5nKQpgYGAKCmBgYHtyfQojbWVhbiB3aXRoIE5BIHJlbW92ZWQKY2hlY2tpbmcKYGBgCgoKV2hhdCBhcmUgc29tZSBvdGhlciB3YXlzIHRvIGNsZWFuIHRoaXMgZGF0YSBpbiBSPyBIb3cgYWJvdXQgaW4gRXhjZWw/IAoKYGBge3J9Cm1lYW4oY2hlY2tpbmcsbmEucm0gPSBUUlVFKQpgYGAKCmBgYHtyfQpzdW0oY2hlY2tpbmcsbmEucm0gPSBUUlVFKS9sZW5ndGgoY2hlY2tpbmcpCmBgYAoKLS0tLS0tLS0tLS0tLQoKIyMjIFRhc2sgMwoKTm93LCB3ZSB3aWxsIGxvb2sgYXQgQ2hpY2FnbyB0YXhpIGRhdGEuIEdvIGFuZCBleHBsb3JlIHRoZSBpbnRlcmFjdGl2ZSBkYXNoYm9hcmQgYW5kIHJlYWQgdGhlIGRlc2NyaXB0aW9uIG9mIHRoZSBkYXRhLgoKQ2hpY2FnbyBUYXhpIERhc2hib2FyZDogW2h0dHBzOi8vZGF0YS5jaXR5b2ZjaGljYWdvLm9yZy9UcmFuc3BvcnRhdGlvbi9UYXhpLVRyaXBzLURhc2hib2FyZC9zcGN3LWJyYnFdKGh0dHBzOi8vZGF0YS5jaXR5b2ZjaGljYWdvLm9yZy9UcmFuc3BvcnRhdGlvbi9UYXhpLVRyaXBzLURhc2hib2FyZC9zcGN3LWJyYnEpCgpDaGljYWdvIFRheGkgRGF0YSBEZXNjcmlwdGlvbjoKW2h0dHA6Ly9kaWdpdGFsLmNpdHlvZmNoaWNhZ28ub3JnL2luZGV4LnBocC9jaGljYWdvLXRheGktZGF0YS1yZWxlYXNlZC9dKGh0dHA6Ly9kaWdpdGFsLmNpdHlvZmNoaWNhZ28ub3JnL2luZGV4LnBocC9jaGljYWdvLXRheGktZGF0YS1yZWxlYXNlZC8pIAoKT3BlbiBpbiBSU3R1ZGlvIHRoZSBjc3YgZmlsZSBpcyBsb2NhdGVkIGluIHRoZSBkYXRhIGZvbGRlciwgbm90ZSB0aGUgc2l6ZSBvZiB0aGUgZmlsZSwgdGhlIG51bWJlciBvZiBjb2x1bW5zIGFuZCBvZiByb3dzIGhlcmUuIFVzZSB0aGUgZnVuY3Rpb25zIGxlYXJuZWQgaW4gbGFiMDAgYW5kIGxhYjAxIHRvIGRlc2NyaWJlIHRoZSBkYXRhLCBpZGVudGlmeSB1bmlxdWUgZW50aXRpZXMsIGZpZWxkcyBhbmQgc3VtbWFyaXplLgoKYGBge3J9Cm15ZGF0YT0gcmVhZC5jc3YoImRhdGEvVGF4aV9Ucmlwc19TYW1wbGUuY3N2IikKaGVhZChteWRhdGEpCmBgYAoKYGBge3J9CiNzdHIgKG15ZGF0YSkKc3VtbWFyeShteWRhdGEpCmBgYAoKYGBge3J9CiNFeHRyYWN0aW5nIHRoZSBGYXJlIENvbHVtbgpmYXJlID0gbXlkYXRhJEZhcmUKCiNDYWxsaW5nIHRoZSBGYXJlIENvbHVtbiAKZmFyZQpgYGAKCmBgYHtyfQojRXh0cmFjdGluZyB0aGUgVGlwcyBDb2x1bW4KdGlwcz0gbXlkYXRhJFRpcHMKCiNDYWxsaW5nIHRoZSBUaXBzIENvbHVtbgp0aXBzCmBgYAoKTWVhbiBvZiBGYXJlcwoKYGBge3J9Cm15ZGF0YSA9IHJlYWQuY3N2KGZpbGUgPSAiZGF0YS9UYXhpX1NhbXBsZV9Ucmlwcy5jc3YiKQptaWxlcyA9IG15ZGF0YSRUcmlwLk1pbGVzCmBgYAoKYGBge3J9Cm1lYW5fbWlsZXMgPSBtZWFuKE1pbGVzKQptZWFuX01pbGVzCmBgYAoKCgpEZWZpbmUgYSByZWxhdGlvbmFsIGJ1c2luZXNzIGxvZ2ljIGZvciB0aGUgY29sdW1uIGZpZWxkICdUcmlwIFNlY29uZHMnLgoKJ1RyaXAgU2Vjb25kcycgY291bGQgYmUgcmVsYXRlZCB0byB0aGUgZm9sbG93aW5nIG90aGVyIGNvbHVtbnM6ICAKJ0ZhcmUnIGFuZCAnVHJpcCBNaWxlcycKVGhlIGxvbmdlciB0aGUgdGltZSBmb3IgJ1RyaXAgU2Vjb25kcycgdGhlbiB0aGUgaGlnaGVyIHRoZSBmYXJlIHdpbGwgYmUuClRoZSBsb25nZXIgdGhlIHRpbWUgZm9yICdUcmlwIFNlY29uZHMnIHRoZW4gdGhlIGhpZ2hlciB0aGUgYW1vdW50IG9mIG1pbGVzIHJlY29yZGVkIHdpbGwgYmUuIApUaGVzZSB3aWxsIGFsbG93IGEgdGF4aSBjb21wYW55IGJ1c2luZXNzIHRvIHNlZSB0aGUgcmVsYXRpb24gdGhhdCBpZiB0aGVyZSBhcmUgbW9yZSB0cmlwIHNlY29uZHMsIHRoZW4gdGhleSBjYW4gZXhwZWN0IG1vcmUgZmFyZXMgYW5kIG1pbGVzIGRyaXZlbi4gCgoKClVzaW5nIFtodHRwczovL2VyZHBsdXMuY29tLyMvc3RhbmRhbG9uZV0oaHR0cHM6Ly9lcmRwbHVzLmNvbS8jL3N0YW5kYWxvbmUpIGRyYXcgYSBzdGFyIHNjaGVtYSB1c2luZyB0aGUgZm9sbG93aW5nIHRocmVlIHRhYmxlczoKCi0gQSBGYWN0IHRhYmxlIGZvciBUcmlwCi0gQSBEaW1lbnNpb24gdGFibGUgZm9yIENvbW11bml0eSBBcmVhCi0gQSBEaW1lbnNpb24gdGFibGUgZm9yIFJpZGVyCgoKCiFbXShkYXRhL3NjcmVlbnNob3QucG5nKQoKCgoKCgoKCgoKCgo=