+
,反之則是-
,接著,要對正負號做更泛化的變形,使得在這決策規則之上,只有兩種情形,使得\(y_i\)只有\(\{-1,1\}\)兩種結果(當然也可以設\(\{-0.5,0.5\}\)為邊界值,只是\(\{-1,1\}\)在計算上較方便,在之後的推導上也容易)。\[ \begin{equation} \begin{aligned} y_i=\vec{w}\bullet\vec{\mu}+b=0&\Rightarrow \left\{ \begin{array}{r@{\;=\;}l} &\vec{w}\bullet\vec{\mu}+b>0 & ,\mbox{Then}\;+\\ &\vec{w}\bullet\vec{\mu}+b<0 & ,\mbox{Then}\;- \end{array} \right.\\ &\vec{w}為平面參數,\vec{\mu}為\vec{x}的向量\\ &\Rightarrow \left\{ \begin{array}{r@{\;=\;}l} &\vec{w}\bullet\vec{x_+}+b\geq1\\ &\vec{w}\bullet\vec{x_−}+b\leq-1 \end{array} \right.\\ \mbox{such that }y_i&= \left\{ \begin{array}{r@{\;=\;}l} +1 & ,\mbox{For + examples}\\ -1 & ,\mbox{For − examples} \end{array} \right. \end{aligned} \end{equation} \]
\[ \begin{equation} \left\{ \begin{array}{r@{\;=\;}l} y_i(\vec{w}\vec{x_i}+b)\geq1\\ y_i(\vec{w}\vec{x_i}+b)\geq1 \end{array} \right. \Rightarrow y_i(\vec{w}\vec{x_i}+b)-1\geq0\\ y_i(\vec{w}\vec{x_i}+b)-1=0, \mbox{for }x_i\mbox{ in gutter} \end{equation} \]
\[
\begin{align}
\mbox{width}&=(\vec{x_+}-\vec{x_-})\bullet\frac{\vec{w}}{||\vec{w}||}\\
&=\frac{\vec{x_+}\vec{w}-\vec{x-}\vec{w}}{||\vec{w}||}\\
&=\frac{(1-b)-(-1-b)}{||\vec{w}||}\\
&=\frac{2}{||\vec{w}||}
\end{align}
\]
\[ \frac{\partial{f}}{\partial{x}}=\frac{\partial{f}}{\partial{y}}=0\\ \begin{equation} \left\{ \begin{array}{r@{\;=\;}l} &\frac{\partial{f}}{\partial{x}}+\lambda\frac{\partial{g}}{\partial{x}}=0\\ &\frac{\partial{f}}{\partial{y}}+\lambda\frac{\partial{f}}{\partial{y}}=0\\ &g(x,y)=0 \end{array} \right. \end{equation} \]
\[ Max\frac{2}{||\vec{w}||}\Rightarrow Max\frac{1}{||\vec{w}||}\Rightarrow Min||\vec{w}||\Rightarrow Min\frac{1}{2}||\vec{w}||^2 \]
\[ L=\frac{1}{2}||\vec{w}||^2+ \sum\lambda_i[y_i(\vec{w}\bullet\vec{x_i}+b)-1]\\ \begin{equation} \begin{aligned} &\left\{ \begin{array}{r@{\;=\;}l} &\frac{\partial{L}}{\partial{\vec{w}}}=\vec{w}+\sum\lambda_iy_i\vec{x_i}=0\\ &\frac{\partial{L}}{\partial{\vec{w}}}=\sum\lambda_iy_i=0 \end{array} \right.\\ \Rightarrow &\left\{ \begin{array}{r@{\;=\;}l} &\vec{w}=-\sum\lambda_iy_i\vec{x_i}\\ &\sum\lambda_iy_i=0 \end{array} \right. \end{aligned} \end{equation}\\ \begin{aligned} L&=\frac{1}{2}(-\sum\lambda_iy_i\vec{x_i})(-\sum\lambda_jy_j\vec{x_j})+ (\sum\lambda_iy_i\vec{x_i})(\sum\lambda_iy_i\vec{x_i})+ \sum\lambda_iy_ib- \sum\lambda_i\\ &=\frac{1}{2}\sum_i\sum_j\lambda_i\lambda_jy_iy_j\vec{x_i}\vec{x_j}- \sum\lambda_i \end{aligned} \]
\[ \begin{align} &\vec{w}\bullet\vec{\mu}+b=0\\ &(-\sum\lambda_iy_i\vec{x_i})\bullet\vec{\mu}+b=0\\ &-\sum\lambda_iy_i\underline{\vec{x_i}\bullet\vec{\mu}}+b=0 \end{align} \]
\[ K(x_i,x_j)=\phi(\vec{x_i})\bullet\phi(\vec{x_j})\;to\;max\\ (\phi(\vec{x_i})\bullet\phi(\vec{\mu})) \]