Abstract
Sharing economic models have been the center of much attention and criticism in recent years. Their cooptation by the so-called “death star platforms” have put the concept under fire and have raised the question of whether these so-called “collaborative” models can live up to the expectations in terms of creating sustainable models that can create impact in their contexts. The present paper explores the concepts of sharing economy and platform-based cooperation and how can these concepts applied to the Fab Lab Network can become a catalyst for social-based innovation leveraging on such concepts. By asking whether a sharing economy can still become a game-changer for society, and how sharing initiatives, such as fab labs, aid to this goal, will help us to better understand how a fab lab can create new dynamics in the community is inserted in, from a social and economic standpoint. Observational data from Fab Labs from the FABLAT (Fab Lab Latin American Network) will be used for illustration purposes to outline some of the biggest collaborative initiatives in the region in terms of funding and impact.
require(ggplot2); require(dplyr); require(lubridate)
directory<-paste0(getwd(),("/folder1"))
tmp=list.files(path="folder1")
files<-as.vector(sapply(tmp, function(x) paste0(getwd(),("/folder1/"),x)))
temp_df <- read.table(files[1],fill=TRUE,header=TRUE,sep=",",quote="")[0,]
tnames<-colnames(temp_df)
for (i in 1:length(files)){
currentFile<-read.table(files[i],fill=TRUE,header=TRUE,sep=",",quote="")
# print(dim(currentFile))
if(nrow(currentFile)>0){
temp_df<-rbind(temp_df,currentFile)
}
}
tbl_df(temp_df)
## Source: local data frame [4,211 x 12]
##
## folderFileId
## (fctr)
## 1 0B6yMZ7pqUvCPTUpDZFpGaWFVWWc
## 2 0B6yMZ7pqUvCPTUpDZFpGaWFVWWc
## 3 0B6yMZ7pqUvCPTUpDZFpGaWFVWWc
## 4 0B6yMZ7pqUvCPTUpDZFpGaWFVWWc
## 5 0B6yMZ7pqUvCPTUpDZFpGaWFVWWc
## 6 0B6yMZ7pqUvCPTUpDZFpGaWFVWWc
## 7 0B6yMZ7pqUvCPTUpDZFpGaWFVWWc
## 8 0B6yMZ7pqUvCPTUpDZFpGaWFVWWc
## 9 0B6yMZ7pqUvCPTUpDZFpGaWFVWWc
## 10 0B6yMZ7pqUvCPTUpDZFpGaWFVWWc
## .. ...
## Variables not shown: fileId (fctr), fileName (fctr), mimeType (fctr),
## createdTime (fctr), modifiedTime (fctr), owners (fctr), revisionId
## (fctr), lastModName (fctr), lastModEmail (fctr), X (fctr), X.1 (fctr)
temp_df<-mutate(temp_df,createdTime=ymd_hms(createdTime))
# created_df<-group_by(temp_df,month(temp_df$createdTime,label=T))
created_df<-group_by(filter(temp_df,mimeType!="image/jpeg"),month(temp_df$createdTime,label=T))
daycount<-summarize(created_df<-group_by(temp_df,day=date(temp_df$createdTime)),count=n()) #por día
g<-ggplot(daycount,aes(day,count))
g+geom_line(stat="identity",aes(color=count))
usercount<-arrange(summarize(created_df<-group_by(temp_df,lastModName),count=n()),desc(count))
usercount2<-mutate(usercount,percentage=count/sum(count))
usercount2
## Source: local data frame [144 x 3]
##
## lastModName count percentage
## (fctr) (int) (dbl)
## 1 Beno Juarez 710 0.16860603
## 2 Montse Ciges 549 0.13037283
## 3 Angelo López 507 0.12039896
## 4 Maria Gabriela Garcia Lopez 309 0.07337924
## 5 Norella Coronell 291 0.06910473
## 6 Cynthia Polar 233 0.05533128
## 7 LORENA CAMILLE ARENAS LOVERA 168 0.03989551
## 8 154 0.03657089
## 9 DANIELA VIRGINIA QUEQUEZANA VIDALON 128 0.03039658
## 10 KARINA NICOLLE ASTUCURI SAENZ 98 0.02327238
## .. ... ... ...
h<-ggplot(usercount2[1:30,],aes(reorder(lastModName,-count),count))
h+geom_bar(stat="identity")+theme(axis.text.x = element_text(angle = 90, hjust = 1))+aes(fill=count)
Graph only shows the 25 most engaged authors.