Discriptive stats
a <- 5
b <- 6
sprintf("a is assigned value: %s b is addigned value: %s", a,b)
## [1] "a is assigned value: 5 b is addigned value: 6"
print("a is assigned value: %s b \n is addigned value: %s", a,b)
## [1] "a is assigned value: %s b \n is addigned value: %s"
cat("a is assigned value:", a, "\nb is assigned value:", a)
## a is assigned value: 5
## b is assigned value: 5
a + b
## [1] 11
a/b
## [1] 0.8333333
b - a
## [1] 1
a * b
## [1] 30
a %*% b #Matrix Mult
## [,1]
## [1,] 30
log(a)
## [1] 1.609438
exp(a)
## [1] 148.4132
a^2
## [1] 25
a^10
## [1] 9765625
a^b
## [1] 15625
floor(2.3) # ROund to lower integer
## [1] 2
floor(2.7)
## [1] 2
ceiling(3.6) # rounds to upper int
## [1] 4
ceiling(3.1)
## [1] 4
round(3.3) # rounds to nearest int
## [1] 3
round(3.8)
## [1] 4
x <- 1: 10
cat("printing one to ten:",x)
## printing one to ten: 1 2 3 4 5 6 7 8 9 10
y <- 10:1
cat("printing ten to one:",y)
## printing ten to one: 10 9 8 7 6 5 4 3 2 1
z <- 1:4
cat("matrix mult if x & y gives:",x %*% y)
## matrix mult if x & y gives: 220
cat("normal mult of x & y gives:",x *y)
## normal mult of x & y gives: 10 18 24 28 30 30 28 24 18 10
x+z
## Warning in x + z: longer object length is not a multiple of shorter object
## length
## [1] 2 4 6 8 6 8 10 12 10 12
cat("unequal length ventors addition:", x+z)
## Warning in x + z: longer object length is not a multiple of shorter object
## length
## unequal length ventors addition: 2 4 6 8 6 8 10 12 10 12
sum(x)
## [1] 55
mean(x)
## [1] 5.5
median(x)
## [1] 5.5
mode(x)
## [1] "numeric"
sum(1:50)
## [1] 1275
sd(1:50)
## [1] 14.57738
var(1:50)
## [1] 212.5
sqrt(1:50)
## [1] 1.000000 1.414214 1.732051 2.000000 2.236068 2.449490 2.645751
## [8] 2.828427 3.000000 3.162278 3.316625 3.464102 3.605551 3.741657
## [15] 3.872983 4.000000 4.123106 4.242641 4.358899 4.472136 4.582576
## [22] 4.690416 4.795832 4.898979 5.000000 5.099020 5.196152 5.291503
## [29] 5.385165 5.477226 5.567764 5.656854 5.744563 5.830952 5.916080
## [36] 6.000000 6.082763 6.164414 6.244998 6.324555 6.403124 6.480741
## [43] 6.557439 6.633250 6.708204 6.782330 6.855655 6.928203 7.000000
## [50] 7.071068
x^-1/3
## [1] 0.33333333 0.16666667 0.11111111 0.08333333 0.06666667 0.05555556
## [7] 0.04761905 0.04166667 0.03703704 0.03333333
quantile(1:20)
## 0% 25% 50% 75% 100%
## 1.00 5.75 10.50 15.25 20.00
min(100:20)
## [1] 20
max(1:3)
## [1] 3
range(x)
## [1] 1 10
seq(10,20,0.5)
## [1] 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5
## [15] 17.0 17.5 18.0 18.5 19.0 19.5 20.0
rep(1,10)
## [1] 1 1 1 1 1 1 1 1 1 1
rep(1:5,2)
## [1] 1 2 3 4 5 1 2 3 4 5
rep(1:5,each=3)
## [1] 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5
rep(1:4,1:4)
## [1] 1 2 2 3 3 3 4 4 4 4
a <- 5
sprintf("a has value:%s data type of a is:%s",a,class(a))
## [1] "a has value:5 data type of a is:numeric"
b <- "XYZ"
sprintf("b has value:%s data type of b is:%s",b,class(b))
## [1] "b has value:XYZ data type of b is:character"
c <- TRUE
sprintf("c has value:%s data type of c is:%s",c,class(c))
## [1] "c has value:TRUE data type of c is:logical"
a > b
## [1] FALSE
a < b
## [1] TRUE
a1 <- c(1,.2,4)
length(x)
## [1] 10
length(a1)
## [1] 3
a2 <- c("a",length=20)
class(a1)
## [1] "numeric"
x > 3
## [1] FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
x[x>3]
## [1] 4 5 6 7 8 9 10
a3 <- rbinom(100,5,.5)
table(a3)
## a3
## 0 1 2 3 4 5
## 2 18 28 26 20 6
a4 <- rnbinom(100,5,0.5)
table(a4)
## a4
## 0 1 2 3 4 5 6 7 8 9 10 11 13 14
## 4 7 14 13 20 13 8 5 5 4 3 1 1 2
rpois(10,.5)
## [1] 1 1 0 0 0 1 1 1 0 1
data()
data("iris")
View(iris)
class(iris)
## [1] "data.frame"
str(iris)
## 'data.frame': 150 obs. of 5 variables:
## $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
## $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
## $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
## $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
## $ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
names(iris)
## [1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width"
## [5] "Species"
colnames(iris)
## [1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width"
## [5] "Species"
rownames(iris)
## [1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10" "11"
## [12] "12" "13" "14" "15" "16" "17" "18" "19" "20" "21" "22"
## [23] "23" "24" "25" "26" "27" "28" "29" "30" "31" "32" "33"
## [34] "34" "35" "36" "37" "38" "39" "40" "41" "42" "43" "44"
## [45] "45" "46" "47" "48" "49" "50" "51" "52" "53" "54" "55"
## [56] "56" "57" "58" "59" "60" "61" "62" "63" "64" "65" "66"
## [67] "67" "68" "69" "70" "71" "72" "73" "74" "75" "76" "77"
## [78] "78" "79" "80" "81" "82" "83" "84" "85" "86" "87" "88"
## [89] "89" "90" "91" "92" "93" "94" "95" "96" "97" "98" "99"
## [100] "100" "101" "102" "103" "104" "105" "106" "107" "108" "109" "110"
## [111] "111" "112" "113" "114" "115" "116" "117" "118" "119" "120" "121"
## [122] "122" "123" "124" "125" "126" "127" "128" "129" "130" "131" "132"
## [133] "133" "134" "135" "136" "137" "138" "139" "140" "141" "142" "143"
## [144] "144" "145" "146" "147" "148" "149" "150"
mean(iris$Sepal.Length)
## [1] 5.843333
sd(iris$Sepal.Width)
## [1] 0.4358663
table(iris$Species)
##
## setosa versicolor virginica
## 50 50 50
dim(iris)
## [1] 150 5
nrow(iris)
## [1] 150
NROW(iris)
## [1] 150
ncol(iris)
## [1] 5
NCOL(iris)
## [1] 5
summary(iris)
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100
## 1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300
## Median :5.800 Median :3.000 Median :4.350 Median :1.300
## Mean :5.843 Mean :3.057 Mean :3.758 Mean :1.199
## 3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800
## Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500
## Species
## setosa :50
## versicolor:50
## virginica :50
##
##
##
summary(iris$Sepal.Length)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 4.300 5.100 5.800 5.843 6.400 7.900
tapply(iris$Sepal.Length,iris$Species,mean)
## setosa versicolor virginica
## 5.006 5.936 6.588
tapply(iris$Sepal.Length,iris$Species,max)
## setosa versicolor virginica
## 5.8 7.0 7.9
tapply(iris$Sepal.Length,iris$Species,min)
## setosa versicolor virginica
## 4.3 4.9 4.9
tapply(iris$Sepal.Length,iris$Species,sd)
## setosa versicolor virginica
## 0.3524897 0.5161711 0.6358796
tapply(iris$Sepal.Length,iris$Species,var)
## setosa versicolor virginica
## 0.1242490 0.2664327 0.4043429
tapply(iris$Sepal.Length,iris$Species,sum)
## setosa versicolor virginica
## 250.3 296.8 329.4
data("mtcars")
#View(mtcars)
tapply(mtcars$mpg,list(mtcars$cyl,mtcars$am),mean)
## 0 1
## 4 22.900 28.07500
## 6 19.125 20.56667
## 8 15.050 15.40000
tapply(mtcars$mpg,list(mtcars$cyl,mtcars$am),sum)
## 0 1
## 4 68.7 224.6
## 6 76.5 61.7
## 8 180.6 30.8
head(mtcars)
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
head(mtcars,2)
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21 6 160 110 3.9 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21 6 160 110 3.9 2.875 17.02 0 1 4 4
mtcars[1:5]
## mpg cyl disp hp drat
## Mazda RX4 21.0 6 160.0 110 3.90
## Mazda RX4 Wag 21.0 6 160.0 110 3.90
## Datsun 710 22.8 4 108.0 93 3.85
## Hornet 4 Drive 21.4 6 258.0 110 3.08
## Hornet Sportabout 18.7 8 360.0 175 3.15
## Valiant 18.1 6 225.0 105 2.76
## Duster 360 14.3 8 360.0 245 3.21
## Merc 240D 24.4 4 146.7 62 3.69
## Merc 230 22.8 4 140.8 95 3.92
## Merc 280 19.2 6 167.6 123 3.92
## Merc 280C 17.8 6 167.6 123 3.92
## Merc 450SE 16.4 8 275.8 180 3.07
## Merc 450SL 17.3 8 275.8 180 3.07
## Merc 450SLC 15.2 8 275.8 180 3.07
## Cadillac Fleetwood 10.4 8 472.0 205 2.93
## Lincoln Continental 10.4 8 460.0 215 3.00
## Chrysler Imperial 14.7 8 440.0 230 3.23
## Fiat 128 32.4 4 78.7 66 4.08
## Honda Civic 30.4 4 75.7 52 4.93
## Toyota Corolla 33.9 4 71.1 65 4.22
## Toyota Corona 21.5 4 120.1 97 3.70
## Dodge Challenger 15.5 8 318.0 150 2.76
## AMC Javelin 15.2 8 304.0 150 3.15
## Camaro Z28 13.3 8 350.0 245 3.73
## Pontiac Firebird 19.2 8 400.0 175 3.08
## Fiat X1-9 27.3 4 79.0 66 4.08
## Porsche 914-2 26.0 4 120.3 91 4.43
## Lotus Europa 30.4 4 95.1 113 3.77
## Ford Pantera L 15.8 8 351.0 264 4.22
## Ferrari Dino 19.7 6 145.0 175 3.62
## Maserati Bora 15.0 8 301.0 335 3.54
## Volvo 142E 21.4 4 121.0 109 4.11
mtcars[1:5,]
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
mtcars[,1:5]
## mpg cyl disp hp drat
## Mazda RX4 21.0 6 160.0 110 3.90
## Mazda RX4 Wag 21.0 6 160.0 110 3.90
## Datsun 710 22.8 4 108.0 93 3.85
## Hornet 4 Drive 21.4 6 258.0 110 3.08
## Hornet Sportabout 18.7 8 360.0 175 3.15
## Valiant 18.1 6 225.0 105 2.76
## Duster 360 14.3 8 360.0 245 3.21
## Merc 240D 24.4 4 146.7 62 3.69
## Merc 230 22.8 4 140.8 95 3.92
## Merc 280 19.2 6 167.6 123 3.92
## Merc 280C 17.8 6 167.6 123 3.92
## Merc 450SE 16.4 8 275.8 180 3.07
## Merc 450SL 17.3 8 275.8 180 3.07
## Merc 450SLC 15.2 8 275.8 180 3.07
## Cadillac Fleetwood 10.4 8 472.0 205 2.93
## Lincoln Continental 10.4 8 460.0 215 3.00
## Chrysler Imperial 14.7 8 440.0 230 3.23
## Fiat 128 32.4 4 78.7 66 4.08
## Honda Civic 30.4 4 75.7 52 4.93
## Toyota Corolla 33.9 4 71.1 65 4.22
## Toyota Corona 21.5 4 120.1 97 3.70
## Dodge Challenger 15.5 8 318.0 150 2.76
## AMC Javelin 15.2 8 304.0 150 3.15
## Camaro Z28 13.3 8 350.0 245 3.73
## Pontiac Firebird 19.2 8 400.0 175 3.08
## Fiat X1-9 27.3 4 79.0 66 4.08
## Porsche 914-2 26.0 4 120.3 91 4.43
## Lotus Europa 30.4 4 95.1 113 3.77
## Ford Pantera L 15.8 8 351.0 264 4.22
## Ferrari Dino 19.7 6 145.0 175 3.62
## Maserati Bora 15.0 8 301.0 335 3.54
## Volvo 142E 21.4 4 121.0 109 4.11
mtcars[1:2,1:5]
## mpg cyl disp hp drat
## Mazda RX4 21 6 160 110 3.9
## Mazda RX4 Wag 21 6 160 110 3.9
head(lapply(mtcars$mpg,sum),3)
## [[1]]
## [1] 21
##
## [[2]]
## [1] 21
##
## [[3]]
## [1] 22.8
sapply(mtcars$mpg,mean)
## [1] 21.0 21.0 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 17.8 16.4 17.3 15.2
## [15] 10.4 10.4 14.7 32.4 30.4 33.9 21.5 15.5 15.2 13.3 19.2 27.3 26.0 30.4
## [29] 15.8 19.7 15.0 21.4
sapply(mtcars,class)
## mpg cyl disp hp drat wt qsec
## "numeric" "numeric" "numeric" "numeric" "numeric" "numeric" "numeric"
## vs am gear carb
## "numeric" "numeric" "numeric" "numeric"
head(sapply(mtcars,is.na))
## mpg cyl disp hp drat wt qsec vs am gear carb
## [1,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [2,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [3,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [4,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [5,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [6,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
a5 <- matrix(x,2,5)
a6 <- matrix(y,5,3)
## Warning in matrix(y, 5, 3): data length [10] is not a sub-multiple or
## multiple of the number of columns [3]
a5 %*% a6
## [,1] [,2] [,3]
## [1,] 180 55 180
## [2,] 220 70 220
dim(a5)
## [1] 2 5
union(x,y)
## [1] 1 2 3 4 5 6 7 8 9 10
intersect(x,y)
## [1] 1 2 3 4 5 6 7 8 9 10
union(iris$Species,mtcars$cyl)
## [1] "setosa" "versicolor" "virginica" "6" "4"
## [6] "8"
setdiff(iris$Species,mtcars$cyl)
## [1] "setosa" "versicolor" "virginica"
matrix(x,byrow = T, nrow=2)
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 2 3 4 5
## [2,] 6 7 8 9 10
head(as.matrix(iris))
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## [1,] "5.1" "3.5" "1.4" "0.2" "setosa"
## [2,] "4.9" "3.0" "1.4" "0.2" "setosa"
## [3,] "4.7" "3.2" "1.3" "0.2" "setosa"
## [4,] "4.6" "3.1" "1.5" "0.2" "setosa"
## [5,] "5.0" "3.6" "1.4" "0.2" "setosa"
## [6,] "5.4" "3.9" "1.7" "0.4" "setosa"
cbind(x,y)
## x y
## [1,] 1 10
## [2,] 2 9
## [3,] 3 8
## [4,] 4 7
## [5,] 5 6
## [6,] 6 5
## [7,] 7 4
## [8,] 8 3
## [9,] 9 2
## [10,] 10 1
rbind(x,y)
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## x 1 2 3 4 5 6 7 8 9 10
## y 10 9 8 7 6 5 4 3 2 1
class(iris$Species)
## [1] "factor"
mode(iris$Species)
## [1] "numeric"
table(iris$Species)
##
## setosa versicolor virginica
## 50 50 50
unclass(iris$Species)
## [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [36] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [71] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3
## [106] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [141] 3 3 3 3 3 3 3 3 3 3
## attr(,"levels")
## [1] "setosa" "versicolor" "virginica"
unique(iris$Species)
## [1] setosa versicolor virginica
## Levels: setosa versicolor virginica
if(iris$Sepal.Length[10] > 5){print("greater than3")}else{print("less than3")}
## [1] "less than3"
for(i in 1:5){print(iris$Sepal.Length[i])}
## [1] 5.1
## [1] 4.9
## [1] 4.7
## [1] 4.6
## [1] 5
a<- 5
while(a>0){print(a);a<- a-2}
## [1] 5
## [1] 3
## [1] 1
letters
## [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q"
## [18] "r" "s" "t" "u" "v" "w" "x" "y" "z"
LETTERS
## [1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" "L" "M" "N" "O" "P" "Q"
## [18] "R" "S" "T" "U" "V" "W" "X" "Y" "Z"
p<- 1:4
sapply(p,runif)
## [[1]]
## [1] 0.6410101
##
## [[2]]
## [1] 0.05186213 0.26420511
##
## [[3]]
## [1] 0.7442884 0.1544726 0.1945827
##
## [[4]]
## [1] 0.1436498 0.5699853 0.3856235 0.9600023
runif(p)
## [1] 0.03287415 0.04154630 0.44755435 0.14264310
p[2] <- NA
is.na(p)
## [1] FALSE TRUE FALSE FALSE
sum(p)
## [1] NA
sum(p,na.rm = T)
## [1] 8
mean(p,na.rm = T)
## [1] 2.666667
is.nan(p)
## [1] FALSE FALSE FALSE FALSE
p[5] <- 3
hist(iris$Sepal.Length)
hist(iris$Sepal.Length,20)
boxplot(iris$Sepal.Length)
boxplot(iris$Sepal.Length~iris$Species,col=c("red","blue"))
title("A Box plot")
a7 <- matrix(x,nrow=2,ncol = 3,byrow=T)
## Warning in matrix(x, nrow = 2, ncol = 3, byrow = T): data length [10] is
## not a sub-multiple or multiple of the number of columns [3]
class(a7)
## [1] "matrix"
str(a7)
## int [1:2, 1:3] 1 4 2 5 3 6
dim(a7)
## [1] 2 3
barplot(a7,names.arg = rev(c("a","b","c")),legend.text = c("legend text"),beside = T,main = "Title for bar graph",xlab="xaxis",ylab="yaxis",ylim = c(0,5),col = c("red","blue"))
pie(c(123,21,124,525),main="pie chart",col = rainbow(5))