Task 1

#Read File
#Name the extracted variable
mydata = (Scoring)
age = mydata$Age
#Calculate the average age below. Refer to Worksheet 1 for the correct command
age_mean = mean(age)
age_mean
[1] 37.07767
#Calculate standard deviation of age below. Refer to Worksheet 1 for the correct command. 
age_sd = sd(age)
age_sd
[1] 10.98486
#Calculate the maximum of age below. The command to find the maximum is max(variable) where variable is the extracted variable.  
age_max = max(age)
age_max
[1] 68
#Calculate the minimum of age below. The command to find the minimum is min(variable) where variable is the extracted variable.  
age_min = min(age)
age_min
[1] 18
#Use the formula above to calculate the upper and lower threshold
age_lower = age_mean - (3) * age_sd
age_upper = age_mean + (3) * age_sd
age_upper
[1] 70.03223
age_lower
[1] 4.123096
quantile(age) 
  0%  25%  50%  75% 100% 
  18   28   36   45   68 
lowerq = quantile(age)[2]
upperq = quantile(age)[4]
iqr = upperq - lowerq
iqr
75% 
 17 

Below is the upper threshold:

upperthreshold = (iqr * 1.5) + upperq 
upperthreshold
 75% 
70.5 

Below is the lower threshold:

lowerthreshold = lowerq - (iqr * 1.5)
lowerthreshold
25% 
2.5 
age[age>upperthreshold]
integer(0)
mydata[age>upperthreshold,]
age[age<lowerthreshold]
integer(0)
boxplot(age,horizontal = TRUE)


Task 2

mydata = read.csv(file = "data/creditriskorg.csv")
head(mydata)
#tail(mydata)
mydata = read.csv("data/creditriskorg.csv",skip = 1)
head(mydata)
#str(mydata)
summary(mydata)
          Loan.Purpose      Checking        Savings   
 Small Appliance:105    $-      :251    $-      : 62  
 New Car        :104    $216.00 :  2    $127.00 :  3  
 Furniture      : 85    $271.00 :  2    $836.00 :  3  
 Business       : 44    $296.00 :  2    $904.00 :  3  
 Used Car       : 40    $305.00 :  2    $922.00 :  3  
 Education      : 23    $497.00 :  2    $104.00 :  2  
 (Other)        : 24   (Other)  :164   (Other)  :349  
 Months.Customer Months.Employed Gender   Marital.Status
 Min.   : 5.0    Min.   :  0.0   F:135   Divorced:156   
 1st Qu.:13.0    1st Qu.:  6.0   M:290   Married : 36   
 Median :19.0    Median : 20.0           Single  :233   
 Mean   :22.9    Mean   : 31.9                          
 3rd Qu.:28.0    3rd Qu.: 47.0                          
 Max.   :73.0    Max.   :119.0                          
                                                        
      Age        Housing        Years              Job     
 Min.   :18.0   Other: 52   Min.   :1.00   Management: 54  
 1st Qu.:26.0   Own  :292   1st Qu.:2.00   Skilled   :271  
 Median :32.0   Rent : 81   Median :3.00   Unemployed: 11  
 Mean   :34.4               Mean   :2.84   Unskilled : 89  
 3rd Qu.:41.0               3rd Qu.:4.00                   
 Max.   :73.0               Max.   :4.00                   
                                                           
 Credit.Risk
 High:211   
 Low :214   
            
            
            
            
            
checkings = mydata$Checking
checkings
  [1]  $-           $-           $-           $638.00      $963.00    
  [6]  $2,827.00    $-           $-           $6,509.00    $966.00    
 [11]  $-           $-           $322.00      $-           $396.00    
 [16]  $-           $652.00      $708.00      $207.00      $287.00    
 [21]  $-           $101.00      $-           $-           $-         
 [26]  $141.00      $-           $2,484.00    $237.00      $-         
 [31]  $335.00      $3,565.00    $-           $16,647.00   $-         
 [36]  $-           $-           $940.00      $-           $-         
 [41]  $218.00      $-           $16,935.00   $664.00      $150.00    
 [46]  $-           $216.00      $-           $-           $-         
 [51]  $265.00      $4,256.00    $870.00      $162.00      $-         
 [56]  $-           $-           $461.00      $-           $-         
 [61]  $-           $580.00      $-           $-           $-         
 [66]  $-           $758.00      $399.00      $513.00      $-         
 [71]  $-           $565.00      $-           $-           $-         
 [76]  $166.00      $9,783.00    $674.00      $-           $15,328.00 
 [81]  $-           $713.00      $-           $-           $-         
 [86]  $-           $-           $303.00      $900.00      $-         
 [91]  $1,257.00    $-           $273.00      $522.00      $-         
 [96]  $-           $-           $-           $514.00      $457.00    
[101]  $5,133.00    $-           $644.00      $305.00      $9,621.00  
[106]  $-           $-           $-           $-           $-         
[111]  $6,851.00    $13,496.00   $509.00      $-           $19,155.00 
[116]  $-           $-           $374.00      $-           $828.00    
[121]  $-           $829.00      $-           $-           $939.00    
[126]  $-           $889.00      $876.00      $893.00      $12,760.00 
[131]  $-           $-           $959.00      $-           $-         
[136]  $-           $-           $698.00      $-           $-         
[141]  $-           $12,974.00   $-           $317.00      $-         
[146]  $-           $-           $192.00      $-           $-         
[151]  $-           $-           $-           $942.00      $-         
[156]  $3,329.00    $-           $-           $-           $-         
[161]  $-           $-           $339.00      $-           $-         
[166]  $-           $105.00      $-           $216.00      $113.00    
[171]  $109.00      $-           $-           $8,176.00    $-         
[176]  $468.00      $7,885.00    $-           $-           $-         
[181]  $-           $-           $-           $-           $-         
[186]  $-           $734.00      $-           $-           $172.00    
[191]  $644.00      $-           $617.00      $-           $586.00    
[196]  $-           $-           $-           $-           $-         
[201]  $522.00      $585.00      $5,588.00    $-           $352.00    
[206]  $-           $2,715.00    $560.00      $895.00      $305.00    
[211]  $-           $-           $-           $8,948.00    $-         
[216]  $-           $-           $-           $-           $483.00    
[221]  $-           $-           $-           $663.00      $624.00    
[226]  $-           $-           $152.00      $-           $-         
[231]  $498.00      $-           $156.00      $1,336.00    $-         
[236]  $-           $-           $2,641.00    $-           $-         
[241]  $-           $-           $-           $887.00      $-         
[246]  $-           $-           $-           $18,408.00   $497.00    
[251]  $-           $946.00      $986.00      $8,122.00    $-         
[256]  $778.00      $645.00      $-           $682.00      $19,812.00 
[261]  $-           $-           $859.00      $-           $-         
[266]  $-           $-           $-           $-           $795.00    
[271]  $-           $-           $-           $-           $852.00    
[276]  $-           $-           $425.00      $-           $-         
[281]  $-           $11,072.00   $-           $219.00      $8,060.00  
[286]  $-           $-           $-           $-           $1,613.00  
[291]  $757.00      $-           $-           $977.00      $197.00    
[296]  $-           $-           $-           $-           $-         
[301]  $256.00      $296.00      $-           $-           $-         
[306]  $298.00      $-           $8,636.00    $-           $-         
[311]  $19,766.00   $-           $-           $-           $-         
[316]  $4,089.00    $-           $271.00      $949.00      $-         
[321]  $911.00      $-           $-           $-           $-         
[326]  $271.00      $-           $-           $-           $-         
[331]  $4,802.00    $177.00      $-           $-           $996.00    
[336]  $705.00      $-           $-           $5,960.00    $-         
[341]  $759.00      $-           $651.00      $257.00      $955.00    
[346]  $-           $8,249.00    $-           $956.00      $382.00    
[351]  $-           $842.00      $3,111.00    $-           $-         
[356]  $2,846.00    $231.00      $-           $17,366.00   $-         
[361]  $332.00      $242.00      $-           $929.00      $-         
[366]  $-           $-           $-           $-           $-         
[371]  $-           $646.00      $538.00      $-           $-         
[376]  $-           $-           $135.00      $2,472.00    $-         
[381]  $10,417.00   $211.00      $16,630.00   $-           $642.00    
[386]  $-           $296.00      $898.00      $478.00      $315.00    
[391]  $122.00      $-           $-           $-           $670.00    
[396]  $444.00      $3,880.00    $819.00      $-           $-         
[401]  $-           $-           $-           $-           $-         
[406]  $-           $-           $161.00      $-           $-         
[411]  $789.00      $765.00      $-           $-           $983.00    
[416]  $-           $-           $798.00      $-           $193.00    
[421]  $497.00      $-           $-           $-           $-         
168 Levels:  $-     $1,257.00   $1,336.00  ...  $996.00 
checkings[1:6]
[1]  $-          $-          $-          $638.00     $963.00   
[6]  $2,827.00 
168 Levels:  $-     $1,257.00   $1,336.00  ...  $996.00 
clean = checkings[1:10]
clean = sub(",","",clean)
clean =sub("\\$","",clean)
class(clean)
[1] "character"
clean = as.numeric(clean)
NAs introduced by coercion
class(clean)
[1] "numeric"
clean
 [1]   NA   NA   NA  638  963 2827   NA   NA 6509  966
checkings=sub(",","",checkings)
checkings=sub("\\$","",checkings)
checkings=as.numeric(checkings)
NAs introduced by coercion
checkings
  [1]    NA    NA    NA   638   963  2827    NA    NA  6509   966
 [11]    NA    NA   322    NA   396    NA   652   708   207   287
 [21]    NA   101    NA    NA    NA   141    NA  2484   237    NA
 [31]   335  3565    NA 16647    NA    NA    NA   940    NA    NA
 [41]   218    NA 16935   664   150    NA   216    NA    NA    NA
 [51]   265  4256   870   162    NA    NA    NA   461    NA    NA
 [61]    NA   580    NA    NA    NA    NA   758   399   513    NA
 [71]    NA   565    NA    NA    NA   166  9783   674    NA 15328
 [81]    NA   713    NA    NA    NA    NA    NA   303   900    NA
 [91]  1257    NA   273   522    NA    NA    NA    NA   514   457
[101]  5133    NA   644   305  9621    NA    NA    NA    NA    NA
[111]  6851 13496   509    NA 19155    NA    NA   374    NA   828
[121]    NA   829    NA    NA   939    NA   889   876   893 12760
[131]    NA    NA   959    NA    NA    NA    NA   698    NA    NA
[141]    NA 12974    NA   317    NA    NA    NA   192    NA    NA
[151]    NA    NA    NA   942    NA  3329    NA    NA    NA    NA
[161]    NA    NA   339    NA    NA    NA   105    NA   216   113
[171]   109    NA    NA  8176    NA   468  7885    NA    NA    NA
[181]    NA    NA    NA    NA    NA    NA   734    NA    NA   172
[191]   644    NA   617    NA   586    NA    NA    NA    NA    NA
[201]   522   585  5588    NA   352    NA  2715   560   895   305
[211]    NA    NA    NA  8948    NA    NA    NA    NA    NA   483
[221]    NA    NA    NA   663   624    NA    NA   152    NA    NA
[231]   498    NA   156  1336    NA    NA    NA  2641    NA    NA
[241]    NA    NA    NA   887    NA    NA    NA    NA 18408   497
[251]    NA   946   986  8122    NA   778   645    NA   682 19812
[261]    NA    NA   859    NA    NA    NA    NA    NA    NA   795
[271]    NA    NA    NA    NA   852    NA    NA   425    NA    NA
[281]    NA 11072    NA   219  8060    NA    NA    NA    NA  1613
[291]   757    NA    NA   977   197    NA    NA    NA    NA    NA
[301]   256   296    NA    NA    NA   298    NA  8636    NA    NA
[311] 19766    NA    NA    NA    NA  4089    NA   271   949    NA
[321]   911    NA    NA    NA    NA   271    NA    NA    NA    NA
[331]  4802   177    NA    NA   996   705    NA    NA  5960    NA
[341]   759    NA   651   257   955    NA  8249    NA   956   382
[351]    NA   842  3111    NA    NA  2846   231    NA 17366    NA
[361]   332   242    NA   929    NA    NA    NA    NA    NA    NA
[371]    NA   646   538    NA    NA    NA    NA   135  2472    NA
[381] 10417   211 16630    NA   642    NA   296   898   478   315
[391]   122    NA    NA    NA   670   444  3880   819    NA    NA
[401]    NA    NA    NA    NA    NA    NA    NA   161    NA    NA
[411]   789   765    NA    NA   983    NA    NA   798    NA   193
[421]   497    NA    NA    NA    NA
mean(checkings,na.rm = TRUE)
[1] 2559.805
sum(checkings,na.rm = TRUE)/length(checkings)
[1] 1048.014

What are some other ways to clean this data in R? How about in Excel?


Task 3

Now, we will look at Chicago taxi data. Go and explore the interactive dashboard and read the description of the data.

Chicago Taxi Dashboard: https://data.cityofchicago.org/Transportation/Taxi-Trips-Dashboard/spcw-brbq

Chicago Taxi Data Description: http://digital.cityofchicago.org/index.php/chicago-taxi-data-released/

Open in RStudio the csv file is located in the data folder, note the size of the file, the number of columns and of rows here. Use the functions learned in lab00 and lab01 to describe the data, identify unique entities, fields and summarize.

mydata = read.csv(file = "data/Taxi_Trips_sample.csv")
mydata$Trip.ID <- NULL
mydata$Taxi.ID <- NULL
head(mydata)

Define a relational business logic for the column field ‘Trip Seconds’.

summary(mydata)
             Trip.Start.Timestamp              Trip.End.Timestamp
 07/25/2014 06:45:00 PM:    9                           :   16   
 02/05/2015 07:15:00 PM:    8     02/10/2014 10:30:00 AM:    9   
 02/27/2015 08:45:00 AM:    8     02/05/2015 07:45:00 PM:    8   
 04/25/2014 06:45:00 PM:    8     03/03/2014 06:45:00 PM:    8   
 09/18/2013 07:30:00 PM:    8     03/22/2014 08:15:00 PM:    8   
 03/15/2014 07:00:00 PM:    7     03/24/2016 07:30:00 PM:    8   
 (Other)               :99951     (Other)               :99942   
  Trip.Seconds       Trip.Miles       Pickup.Census.Tract
 Min.   :    0.0   Min.   :   0.000   Min.   :1.703e+10  
 1st Qu.:  300.0   1st Qu.:   0.000   1st Qu.:1.703e+10  
 Median :  540.0   Median :   0.900   Median :1.703e+10  
 Mean   :  739.2   Mean   :   2.686   Mean   :1.703e+10  
 3rd Qu.:  900.0   3rd Qu.:   2.400   3rd Qu.:1.703e+10  
 Max.   :74340.0   Max.   :1830.000   Max.   :1.703e+10  
 NA's   :1327      NA's   :1          NA's   :38042      
 Dropoff.Census.Tract Pickup.Community.Area Dropoff.Community.Area
 Min.   :1.703e+10    Min.   : 1.00         Min.   : 1.00         
 1st Qu.:1.703e+10    1st Qu.: 8.00         1st Qu.: 8.00         
 Median :1.703e+10    Median : 8.00         Median :14.00         
 Mean   :1.703e+10    Mean   :22.04         Mean   :21.14         
 3rd Qu.:1.703e+10    3rd Qu.:32.00         3rd Qu.:32.00         
 Max.   :1.703e+10    Max.   :77.00         Max.   :77.00         
 NA's   :38775        NA's   :15534         NA's   :17532         
      Fare            Tips           Tolls           Extras     
 $6.25  : 2892   $0.00  :63911   $0.00  :99932   $0.00  :62102  
 $5.25  : 2699   $2.00  :10382   $1.90  :   13   $1.00  :18344  
 $3.25  : 2629   $3.00  : 3769   $1.50  :   12   $2.00  : 8888  
 $5.85  : 2390   $1.00  : 3162   $50.00 :    8   $1.50  : 4635  
 $5.65  : 2389   $5.00  : 1004   $3.00  :    7   $3.00  : 2052  
 $6.05  : 2367   $4.00  :  991   $2.00  :    5   $4.00  : 1134  
 (Other):84633   (Other):16780   (Other):   22   (Other): 2844  
   Trip.Total         Payment.Type  
 $7.25  : 2010   Cash       :60760  
 $6.25  : 1908   Credit Card:38322  
 $3.25  : 1889   Dispute    :   58  
 $6.65  : 1762   No Charge  :  622  
 $8.25  : 1729   Pcard      :   18  
 $7.05  : 1658   Prcard     :    6  
 (Other):89043   Unknown    :  213  
                                     Company     
                                         :35411  
 Taxi Affiliation Services               :29911  
 Dispatch Taxi Affiliation               : 9417  
 Blue Ribbon Taxi Association Inc.       : 6766  
 Choice Taxi Association                 : 5185  
 Chicago Elite Cab Corp. (Chicago Carriag: 5091  
 (Other)                                 : 8218  
 Pickup.Centroid.Latitude Pickup.Centroid.Longitude
 Min.   :41.66            Min.   :-87.91           
 1st Qu.:41.88            1st Qu.:-87.66           
 Median :41.89            Median :-87.63           
 Mean   :41.90            Mean   :-87.66           
 3rd Qu.:41.92            3rd Qu.:-87.63           
 Max.   :42.02            Max.   :-87.54           
 NA's   :15533            NA's   :15533            
                 Pickup.Centroid.Location Dropoff.Centroid.Latitude
                             :15533       Min.   :41.67            
 POINT (-87.632746 41.880994): 8572       1st Qu.:41.88            
 POINT (-87.620993 41.884987): 5034       Median :41.89            
 POINT (-87.633308 41.899602): 3850       Mean   :41.90            
 POINT (-87.626215 41.892508): 3832       3rd Qu.:41.92            
 POINT (-87.631864 41.892042): 3692       Max.   :42.02            
 (Other)                     :59486       NA's   :17376            
 Dropoff.Centroid.Longitude                Dropoff.Centroid..Location
 Min.   :-87.91                                         :17376       
 1st Qu.:-87.66             POINT (-87.632746 41.880994): 7644       
 Median :-87.63             POINT (-87.620993 41.884987): 4412       
 Mean   :-87.66             POINT (-87.626215 41.892508): 3073       
 3rd Qu.:-87.63             POINT (-87.631864 41.892042): 3072       
 Max.   :-87.53             POINT (-87.655998 41.944227): 2850       
 NA's   :17376              (Other)                     :61572       
 Community.Areas
 Min.   : 1.00  
 1st Qu.:37.00  
 Median :37.00  
 Mean   :41.18  
 3rd Qu.:38.00  
 Max.   :77.00  
 NA's   :15533  
trip_s = mydata$Trip.Seconds
trip_s
   [1]   480   420   420  2340   300  1020   360  2220  1020   780
  [11]   600     0     0   900   660   300   600   540     0  1140
  [21]  1200   540     0     0  1080  1380   780   540  3300   300
  [31]   480   960     0   600  1440   840    60   360   360  1020
  [41]     0   780  1440   420   960   240   300   600   660   300
  [51]   660   300  1020   600   360   480   780     0   240   360
  [61]   480   480   720   300   600  1020   180   540     0   780
  [71]   300  1680   240   360  2520   540   600   840   480   180
  [81]  1020   120  1320   480     0   240   840   120   120   540
  [91]     0   660   420   240   540   120  2220   780   840   660
 [101]   120  1260   420   300  1020   120   600   300   780  1740
 [111]   480  1020   840   300   960   240   360   480   480   840
 [121]   780   840   300   660   420   660     0   480     0     0
 [131]  1440   240   420   840   720   600   900   720   180  1320
 [141]  1320   540  1200  1680   600  1200   600  1860   360     0
 [151]   780   240   300  1020  1560   720   420   660   660  1980
 [161]   600  1200   240   540   480    NA     0   600     0   840
 [171]    60   300   600   360   480   480   840   360   300     0
 [181]  3360   360   540   180   540   360  1320   540   840     0
 [191]     0   780   780   840   300     0  1740   360   960   540
 [201]   600   480   420     0  1800   300     0    60   540     0
 [211]   240   720  4500   600  1200   540   300   660   720   420
 [221]     0   780   840  2760   480     0     0  1140   420  1080
 [231]   420   300   240  1020   300     0   240   420   600   180
 [241]   180   240  1320   780   840  1440   900   300  1980   360
 [251]   180   240   420   480   240   600   660   240  2280  1860
 [261]  1140   660   420   480  1500   900  1080  1440   540   240
 [271]   120   540   420     0  1320    60  3420  1980   180   360
 [281]  2700   300  1080   600   240   840   480   840   660   120
 [291]   660   540   420   720  2640   900   360   900   540  2940
 [301]   120  1980   600   240   420   480   180  1260   780     0
 [311]   240     0   240  1080   360   300   240   600   120   180
 [321]  1440   480   360  1140 33060   120  1920   960  1380     0
 [331]   660   900   780   720     0   120     0   540   300  1500
 [341]     0   420  3300   780   660   420   660     0  1920  3600
 [351]   300  1020   660   420  2220  1140     0   300  2040   660
 [361]   540   960  1140     0   540   180   360   660   420   480
 [371]   780   780     0   180     0   660   600   480   480   840
 [381]   720  1800   540   660  1200  1020  1140   480   240   420
 [391]   540   300   180   540   600   660   720   360  1320  2220
 [401]   540   840   300     0  2760   960   240     0   360   600
 [411]  1500   780   720    NA   660  2340   540   360   420   900
 [421]     0   180   780   300   900   360     0  1920   540   420
 [431]   240   720   300   420   420   180   900   360   300   600
 [441]     0     0   420    NA   600   960   240  2280  1380   600
 [451]   120   480  2340  1440   300   480  4020  2640   360   780
 [461]  1260     0   420     0   240  9840   360   720  1500   900
 [471]  1440   180   480   420   360  2460   540   420   480     0
 [481]     0   300   660    60   900   660  1740   240   780   240
 [491]   360   720   600   600   300   480   480   420    NA  1380
 [501]   720   180   120     0   900   720  2400  1020  1320  1980
 [511]   720     0  1980   420   420   360     0   420   840   360
 [521]   840   420   720   660   660   840   720  3720   780   360
 [531]  2460   660  1380   360   960   660     0   300     0   480
 [541]   180   780   960   660   480  2280    NA  1560   420   600
 [551]   300   240  2220   240   840   600   660   720   240  1140
 [561]    NA   420   360   420  1200   120   540   180   660   420
 [571]   480  3240   300   540   480   840   540   360   540     0
 [581]  1740   420   300   240   780  1920   660  1380   480  3600
 [591]     0   540   600     0   420  1800     0  2400   480   360
 [601]  1500   300  1440   660   240  1200  3540   240   240   360
 [611]    NA   360   960   540   600  1380   600   420     0  1260
 [621]   660   360   660   540   600   660   300   420   720     0
 [631]   540  1320  1080   780   540   600   960  1680    60   300
 [641]   480   420   660   840   240  1680   960  2520   300   180
 [651]  3600   720   600   840   420  1920  1380   900   960   360
 [661]  1080   420    NA   420  1500   540   360   720   660     0
 [671]   660    60   420   120   720   900   420    60   660   420
 [681]   600   420  1200  1560   420   600   600  4020   720   660
 [691]   780   300   540   180   360   600   180  1260   540   780
 [701]   240   780   180   960   360   300   360   900   660  1140
 [711]   540   420  2160  1260   300   420   300   960  1680   780
 [721]   780   240   720   660  1080   660   360   840   660   540
 [731]   660     0   240   480   240   960   300  1800  1080     0
 [741]   480   780    NA   480   960  1080   420   660   360   540
 [751]   300   420  3305   180   540   900   960   300   600   300
 [761]  1200   300   660     0   360   600   600  2340   540   720
 [771]   360  1440   360   540  2040   600  1200   540   480   780
 [781]   420   180   840   491   240   480  1080   840   300   660
 [791]   360   480  1260     0   600   360   360  1860   240  1740
 [801]   540   360   600   720   600  1200   360  1080   240   660
 [811]   240   540   420  3420   360  3120   540   600     0   240
 [821]   180   300     0    NA   420  1980  2160   660   540   600
 [831]   180   300   540   300  4020   300   300  2100     0   780
 [841]  1080   660   360  1680   900   900   180   720   480   360
 [851]  1440  3900   240     0   720     0   420   900   180   180
 [861]  2280   300   360   840   240   480   420   420   300   600
 [871]   240   480   840   600   420  3600     0   480   300   600
 [881]   300  2520   840   240   240   540   720   420   180  1860
 [891]   360   600   240     0   240   540   540   840   540   360
 [901]   780   240     0     0   780   300   180  1500   480  1200
 [911]   300  1320   480   120  1440   600  1140    60   480   300
 [921]   600   600   300   660   360   300   480  2160  1260   360
 [931]   480   720   180  1500   660   600  2460   720   240   660
 [941]   360     0   420   600   540   600     0   480     0    60
 [951]   600   360     0   300   300   600   300   660  1320  1140
 [961]  1980     0  2520  1320   480   300     0   900   720   480
 [971]  1080  1680  1080   360   240   840  1080   540  1260   300
 [981]  1500     0  1140   180    60     0    NA   300   780   360
 [991]   240  1020   720   840   300  1800  1140   360   240   420
 [ reached getOption("max.print") -- omitted 98999 entries ]
trip_m=mydata$Trip.Miles
trip_m
   [1]   0.15   0.00   1.70  13.80   0.70   1.40   0.10  13.30   8.00
  [10]   7.70   2.10   0.00   0.00   0.10   1.10   1.30   1.40   0.00
  [19]   0.00   3.40  17.40   0.00   0.00   2.00   4.70   5.20   0.00
  [28]   0.00  17.80   1.10   1.10   6.20   0.00   2.40   4.30   6.80
  [37]   0.10   1.30   0.50   0.00   0.00   5.20  17.40   1.19   4.60
  [46]   0.80   0.00   2.00   4.90   0.90   0.00   1.40   6.50   2.40
  [55]   0.90   0.00   0.00   0.00   0.80   1.50   0.00   0.00   2.70
  [64]   0.00   0.10   6.80   0.50   3.10   0.00   3.40   0.50   6.90
  [73]   0.00   0.00   0.20   1.50   0.00   0.10   2.10   0.30   7.10
  [82]   0.50  17.60   1.70   0.00   4.70   0.60   0.50   0.50   0.00
  [91]   0.00   0.00   0.70   0.70   0.10   0.60  14.20   2.80   1.16
 [100]   1.20   0.00   0.20   1.50   1.60   4.30   0.60   3.30   0.00
 [109]   2.40   0.00   1.20   2.40   0.20   0.80   0.00   0.20   2.00
 [118]   1.30   1.70   0.40   2.10   1.37   0.00   0.90   0.00   0.00
 [127]   0.00   2.30   0.00   0.00   5.80   0.60   1.22   2.70   0.70
 [136]   1.40   0.00   0.40   0.40   2.80  10.90   0.00   0.00   0.00
 [145]   1.20   7.20   0.00  17.90   0.90   0.00   0.00   0.00   0.70
 [154]   4.60  17.40   2.60   2.20   1.30   3.20 168.00   1.10   3.60
 [163]   0.80   2.20   1.30   0.00   0.00   1.40   0.00   5.20   0.00
 [172]   0.00   2.60   0.10  18.00   0.10   1.50   1.00   1.40   0.00
 [181]   1.00   1.50   2.10   0.56   2.30   0.70   0.60   0.00   5.70
 [190]   0.00   0.00   0.10   4.20   2.50   0.10   0.00   0.00   0.00
 [199]   0.10   0.00   0.10   1.50   1.20   0.00   8.00   0.00   0.00
 [208]   0.00   3.10   0.00   0.00   2.00  20.90   0.10   1.00   3.60
 [217]   1.50   0.00   0.00   0.00   0.00   1.90   0.30  14.50   0.70
 [226]   0.00   0.00   0.40   1.20   0.00   0.00   0.08   0.50   0.20
 [235]   0.40   0.00   0.00   1.00   0.00   0.00   0.00   0.70   5.20
 [244]   5.40   0.00  18.00   0.00   0.80  19.00   0.00   0.40   0.50
 [253]   1.00   0.10   1.30   3.70   0.00   0.30  26.40  10.20   2.00
 [262]   0.30   0.00   1.50   4.30   0.00   3.40   0.00   1.40   0.60
 [271]   0.00   1.80   2.20   0.00  17.30   0.20  11.90   8.00   0.00
 [280]   1.30  17.30   0.60   0.40   2.10   1.00   4.20   2.00   2.80
 [289]   1.30   0.40   1.90   0.00   1.00   4.20   3.60   4.00   1.10
 [298]   9.00   2.40   1.10   0.00  16.80   0.00   0.00   0.00   0.70
 [307]   0.60   0.20   1.80   0.00   0.50   0.00   0.00   3.40   0.70
 [316]   0.60   1.00   1.70   0.30   0.40  17.80   1.30   0.00   0.00
 [325]   0.50   0.00   0.00   2.70  14.60   0.00   1.40   7.10   1.50
 [334]   5.10   0.00   0.00   0.00   1.20   0.90   4.50   0.00   0.80
 [343]   0.30   0.00   2.40   1.80   0.30   0.00   2.60  21.00   0.00
 [352]   6.50   2.20   0.00   9.80   3.00   0.00   0.00  15.30   1.90
 [361]   1.70   0.00  14.30   0.00   1.90   0.60   0.96   2.10   0.00
 [370]   0.20   0.00   5.70   0.00   0.80   0.00   0.10   1.20   3.80
 [379]   0.10   0.10   0.10  16.00   2.30   0.20   2.10   0.00  14.80
 [388]   1.60   0.00   0.00   1.10   2.00   0.60   1.30   0.00   0.00
 [397]   3.10   0.63  15.80  12.60   3.10   0.20   1.20   0.00   0.00
 [406]   0.00   0.60   0.00   0.10   0.20   0.00   6.70   5.20   0.00
 [415]   0.00   1.70   1.50   0.00   1.00   0.10   0.00   0.60   3.60
 [424]   1.40   2.60   0.70   0.00  13.50   1.90   1.00   0.00   0.20
 [433]   1.20   2.10   0.70   1.10   0.70   0.80   0.50   1.90   0.00
 [442]   0.00   1.70   0.00   1.80   7.40   0.00   0.00   6.20   2.00
 [451]   0.30   1.30  17.70   4.20   1.20   1.70  19.10  17.80   0.90
 [460]   2.60   0.00   0.00   2.10   0.00   0.70  11.20   1.10   1.40
 [469]  17.80   2.80   0.10   0.30   1.10   1.60   0.80  18.40   1.50
 [478]   0.00   1.20   0.00   0.00   0.00   1.50   0.00   0.10   2.90
 [487]  12.10   0.90   2.80   0.50   0.00   2.20   2.60   0.00   0.00
 [496]   0.00   2.90   1.40   0.00   1.62   2.10   0.40   0.50   0.00
 [505]   3.30   3.50  17.38   0.00   0.00   3.50   1.70   0.00  17.50
 [514]   1.90   0.90   1.30   0.00   0.00   0.00   0.40   2.80   1.10
 [523]   0.00   0.10   3.94   1.70   3.90  13.90   0.00   0.90  17.60
 [532]   1.10  17.40   0.90   8.80   1.20   0.00   1.00   0.00   1.60
 [541]   1.10   0.00   0.20   3.80   1.60  12.40   0.00   5.00   0.90
 [550]   0.00   0.80   0.80  19.80   1.00   6.90   1.30   4.90   5.20
 [559]   0.90   3.30   0.00   0.00   0.80   1.10   7.20   0.00   1.90
 [568]   0.60   0.00   0.97   0.10  16.40   0.80   0.00   2.30   0.00
 [577]   2.10   0.80   1.60   0.00   7.60   0.00   0.00   1.10   2.20
 [586]   1.40   0.20  18.50   1.90  10.50   0.00   0.00   0.00   0.00
 [595]   1.40  18.60   0.00  13.30   2.50   1.50  12.90   0.00  14.80
 [604]  19.00   0.00   4.00  17.96   1.00   0.00   2.00   0.00   1.10
 [613]   2.10   1.10   0.10  22.00   0.00   0.90   0.00   0.40   2.10
 [622]   2.30   1.50   2.70   0.00   0.20   0.90   1.00   0.00   0.00
 [631]   1.30   3.40   8.10   1.40   3.60   1.40   0.60  12.90   0.00
 [640]   1.00   2.10   1.30   3.10   4.40   0.00   0.00   0.10  17.70
 [649]   0.80   0.30  21.20   3.50   0.00   3.40   0.00   0.60   1.10
 [658]   5.40   0.00   0.09  10.30   1.70   0.00   0.00  15.00   0.80
 [667]   0.00   3.20   2.10   0.00   1.30   0.00   1.10   0.60   1.70
 [676]   1.70   1.30   0.00   2.30   0.90   3.00   1.40   0.90  12.90
 [685]   1.70   0.00   0.00  12.90   3.10   0.00   0.20   0.70   1.00
 [694]   0.30   0.00   0.00   0.63   0.00   1.00   3.60   0.00   2.10
 [703]   0.70   3.30   1.30   0.07   0.10  13.80   1.20   5.30   2.20
 [712]   0.00   0.00   0.30   0.75   0.00   0.00   7.60   1.10   1.70
 [721]   3.40   0.00   2.50   1.10   5.80   0.49   0.00   1.60   4.70
 [730]   2.00   2.10   0.00   1.00   2.80   0.00   4.30   0.00   9.70
 [739]   0.10   0.00   0.00   0.10   0.00   1.30   2.30   6.80   0.00
 [748]   0.00   0.80   0.00   1.30   3.40  34.47   0.00   0.70   1.50
 [757]   2.70   0.06   1.50   0.70   4.20   1.10   0.00   0.00   0.00
 [766]   0.00   1.30   0.90   0.00   2.20   1.40  14.80   1.20   1.30
 [775]  11.10   1.10   2.10   0.27   0.60   1.60   1.50   0.00   1.90
 [784]   0.00   0.60   2.70   3.30   3.40   1.20   3.40   1.30   0.90
 [793]   4.00   0.00   1.60   1.00   0.10  14.60   1.10   0.00   0.00
 [802]   1.52   0.00   2.50   0.00  12.30   0.00   7.70   0.00   4.80
 [811]   0.50   1.50   2.10  17.30   0.00  17.90   2.20   0.00   0.00
 [820]   0.00   0.60   1.30   0.00   0.00   1.70   0.00  12.50   2.90
 [829]   1.80   1.50   0.70   0.00   2.40   0.60  13.91   0.00   0.80
 [838]  14.10   0.00   3.30   3.30   1.30   0.00  18.50   1.40   0.00
 [847]   0.40   3.60   1.50   0.00   0.00  43.20   0.00   0.00   0.10
 [856]   0.00   0.00   6.20   0.50   0.80  13.40   0.90   0.00   0.00
 [865]   0.00   2.80   1.70   0.60   1.00   0.00   0.98   1.85   2.60
 [874]   3.40   0.00   1.10   1.40   2.40   1.50   1.30   1.00  13.40
 [883]   2.30   0.10   0.60   3.20   1.60   0.00   0.00  12.80   0.80
 [892]   1.70   0.00   0.00   0.50   2.70   1.10   4.20   1.30   0.69
 [901]   0.10   0.50   0.00   0.00   1.70   0.80   0.70   6.00   2.00
 [910]   3.70   0.00  27.00   1.60   0.00  17.50   1.50   0.00   0.00
 [919]   2.00   1.10   2.40   0.10   0.60   0.00   0.90   0.70   3.30
 [928]  13.00   3.80   1.70   0.00   0.00   0.40  17.80   0.30   0.00
 [937]  19.00   0.10   0.70   0.20   1.70   0.00   1.90   1.60   0.00
 [946]   1.50   0.00   2.00   0.00   0.30   0.00   1.40   0.00   0.90
 [955]   0.00   1.20   1.00   1.40  10.10   0.10   1.10   0.00  17.60
 [964]   0.00   0.00   1.20   0.00   0.00   0.00   1.50   5.80   1.00
 [973]   7.80   0.00   1.00   0.00   5.30   1.30   5.70   0.70  12.80
 [982]   0.00   0.00   0.00   0.50   0.00   0.00   0.60   0.20   1.30
 [991]   1.50   0.00   6.20   3.20   0.90  12.70   2.10   1.30   0.00
[1000]   0.00
 [ reached getOption("max.print") -- omitted 98999 entries ]
mean_trip_s = mean(trip_s)
mean_trip_s
[1] NA
mean_trip_m = mean(trip_m)
as.numeric(mean_trip_m)
[1] NA

Using https://erdplus.com/#/standalone draw a star schema using the following three tables:

library(png)
package <U+393C><U+3E31>png<U+393C><U+3E32> was built under R version 3.2.5
library(grid)
png("my.png",500,300)
img
Error: object 'img' not found
LS0tDQp0aXRsZTogIkJ1c2luZXNzIEFuYWx5dGljcyBMYWIgV29ya3NoZWV0IDAyIg0KYXV0aG9yOiAiQnJlbnQgUHJlZG92aWNoIg0KZGF0ZTogIlN1bW1lciAyMDE3Ig0Kb3V0cHV0Og0KICBodG1sX25vdGVib29rOiBkZWZhdWx0DQogIGh0bWxfZG9jdW1lbnQ6IGRlZmF1bHQNCiAgcGRmX2RvY3VtZW50OiBkZWZhdWx0DQpzdWJ0aXRsZTogQ01FIEdyb3VwIEZvdW5kYXRpb24gQnVzaW5lc3MgQW5hbHl0aWNzIExhYg0KLS0tDQoNCi0tLS0tLS0tLQ0KDQojIyMgVGFzayAxDQoNCmBgYHtyfQ0KI1JlYWQgRmlsZQ0KI05hbWUgdGhlIGV4dHJhY3RlZCB2YXJpYWJsZQ0KbXlkYXRhID0gKFNjb3JpbmcpDQoNCmFnZSA9IG15ZGF0YSRBZ2UNCmBgYA0KDQpgYGB7cn0NCiNDYWxjdWxhdGUgdGhlIGF2ZXJhZ2UgYWdlIGJlbG93LiBSZWZlciB0byBXb3Jrc2hlZXQgMSBmb3IgdGhlIGNvcnJlY3QgY29tbWFuZA0KYWdlX21lYW4gPSBtZWFuKGFnZSkNCmFnZV9tZWFuDQpgYGANCg0KYGBge3J9DQojQ2FsY3VsYXRlIHN0YW5kYXJkIGRldmlhdGlvbiBvZiBhZ2UgYmVsb3cuIFJlZmVyIHRvIFdvcmtzaGVldCAxIGZvciB0aGUgY29ycmVjdCBjb21tYW5kLiANCmFnZV9zZCA9IHNkKGFnZSkNCmFnZV9zZA0KYGBgDQoNCmBgYHtyfQ0KI0NhbGN1bGF0ZSB0aGUgbWF4aW11bSBvZiBhZ2UgYmVsb3cuIFRoZSBjb21tYW5kIHRvIGZpbmQgdGhlIG1heGltdW0gaXMgbWF4KHZhcmlhYmxlKSB3aGVyZSB2YXJpYWJsZSBpcyB0aGUgZXh0cmFjdGVkIHZhcmlhYmxlLiAgDQphZ2VfbWF4ID0gbWF4KGFnZSkNCmFnZV9tYXgNCg0KYGBgDQoNCmBgYHtyfQ0KI0NhbGN1bGF0ZSB0aGUgbWluaW11bSBvZiBhZ2UgYmVsb3cuIFRoZSBjb21tYW5kIHRvIGZpbmQgdGhlIG1pbmltdW0gaXMgbWluKHZhcmlhYmxlKSB3aGVyZSB2YXJpYWJsZSBpcyB0aGUgZXh0cmFjdGVkIHZhcmlhYmxlLiAgDQphZ2VfbWluID0gbWluKGFnZSkNCmFnZV9taW4NCmBgYA0KDQoNCmBgYHtyfQ0KI1VzZSB0aGUgZm9ybXVsYSBhYm92ZSB0byBjYWxjdWxhdGUgdGhlIHVwcGVyIGFuZCBsb3dlciB0aHJlc2hvbGQNCmFnZV9sb3dlciA9IGFnZV9tZWFuIC0gKDMpICogYWdlX3NkDQphZ2VfdXBwZXIgPSBhZ2VfbWVhbiArICgzKSAqIGFnZV9zZA0KYWdlX3VwcGVyDQpgYGANCmBgYHtyfQ0KYWdlX2xvd2VyDQpgYGANCg0KDQpgYGB7cn0gDQpxdWFudGlsZShhZ2UpIA0KYGBgDQpgYGB7cn0NCmxvd2VycSA9IHF1YW50aWxlKGFnZSlbMl0NCnVwcGVycSA9IHF1YW50aWxlKGFnZSlbNF0NCg0KaXFyID0gdXBwZXJxIC0gbG93ZXJxDQppcXINCmBgYA0KIA0KDQpCZWxvdyBpcyB0aGUgdXBwZXIgdGhyZXNob2xkOg0KYGBge3J9IA0KdXBwZXJ0aHJlc2hvbGQgPSAoaXFyICogMS41KSArIHVwcGVycSANCnVwcGVydGhyZXNob2xkDQpgYGANCg0KQmVsb3cgaXMgdGhlIGxvd2VyIHRocmVzaG9sZDoNCmBgYHtyfQ0KbG93ZXJ0aHJlc2hvbGQgPSBsb3dlcnEgLSAoaXFyICogMS41KQ0KbG93ZXJ0aHJlc2hvbGQNCmBgYA0KDQpgYGB7cn0NCmFnZVthZ2U+dXBwZXJ0aHJlc2hvbGRdDQpgYGANCmBgYHtyfQ0KbXlkYXRhW2FnZT51cHBlcnRocmVzaG9sZCxdDQpgYGANCmBgYHtyfQ0KYWdlW2FnZTxsb3dlcnRocmVzaG9sZF0NCmBgYA0KDQoNCmBgYHtyfSANCmJveHBsb3QoYWdlLGhvcml6b250YWwgPSBUUlVFKQ0KYGBgDQoNCi0tLS0tLS0tLS0tLS0tLQ0KDQojIyMgVGFzayAyDQoNCmBgYHtyfQ0KbXlkYXRhID0gcmVhZC5jc3YoZmlsZSA9ICJkYXRhL2NyZWRpdHJpc2tvcmcuY3N2IikNCmhlYWQobXlkYXRhKQ0KYGBgDQoNCmBgYHtyfSANCiN0YWlsKG15ZGF0YSkNCmBgYA0KDQpgYGB7cn0gDQpteWRhdGEgPSByZWFkLmNzdigiZGF0YS9jcmVkaXRyaXNrb3JnLmNzdiIsc2tpcCA9IDEpDQpoZWFkKG15ZGF0YSkNCmBgYA0KYGBge3J9DQojc3RyKG15ZGF0YSkNCnN1bW1hcnkobXlkYXRhKQ0KYGBgDQpgYGB7cn0NCmNoZWNraW5ncyA9IG15ZGF0YSRDaGVja2luZw0KY2hlY2tpbmdzDQpgYGANCmBgYHtyfQ0KY2hlY2tpbmdzWzE6Nl0NCmBgYA0KYGBge3J9DQpjbGVhbiA9IGNoZWNraW5nc1sxOjEwXQ0KY2xlYW4gPSBzdWIoIiwiLCIiLGNsZWFuKQ0KY2xlYW4gPXN1YigiXFwkIiwiIixjbGVhbikNCmNsYXNzKGNsZWFuKQ0KYGBgDQpgYGB7cn0NCmNsZWFuID0gYXMubnVtZXJpYyhjbGVhbikNCmNsYXNzKGNsZWFuKQ0KYGBgDQpgYGB7cn0NCmNsZWFuDQpgYGANCmBgYHtyfQ0KY2hlY2tpbmdzPXN1YigiLCIsIiIsY2hlY2tpbmdzKQ0KY2hlY2tpbmdzPXN1YigiXFwkIiwiIixjaGVja2luZ3MpDQpjaGVja2luZ3M9YXMubnVtZXJpYyhjaGVja2luZ3MpDQpgYGANCmBgYHtyfQ0KY2hlY2tpbmdzDQpgYGANCmBgYHtyfQ0KbWVhbihjaGVja2luZ3MsbmEucm0gPSBUUlVFKQ0KYGBgDQpgYGB7cn0NCnN1bShjaGVja2luZ3MsbmEucm0gPSBUUlVFKS9sZW5ndGgoY2hlY2tpbmdzKQ0KYGBgDQoNCldoYXQgYXJlIHNvbWUgb3RoZXIgd2F5cyB0byBjbGVhbiB0aGlzIGRhdGEgaW4gUj8gSG93IGFib3V0IGluIEV4Y2VsPyANCg0KLS0tLS0tLS0tLS0tLQ0KDQojIyMgVGFzayAzDQoNCk5vdywgd2Ugd2lsbCBsb29rIGF0IENoaWNhZ28gdGF4aSBkYXRhLiBHbyBhbmQgZXhwbG9yZSB0aGUgaW50ZXJhY3RpdmUgZGFzaGJvYXJkIGFuZCByZWFkIHRoZSBkZXNjcmlwdGlvbiBvZiB0aGUgZGF0YS4NCg0KQ2hpY2FnbyBUYXhpIERhc2hib2FyZDogW2h0dHBzOi8vZGF0YS5jaXR5b2ZjaGljYWdvLm9yZy9UcmFuc3BvcnRhdGlvbi9UYXhpLVRyaXBzLURhc2hib2FyZC9zcGN3LWJyYnFdKGh0dHBzOi8vZGF0YS5jaXR5b2ZjaGljYWdvLm9yZy9UcmFuc3BvcnRhdGlvbi9UYXhpLVRyaXBzLURhc2hib2FyZC9zcGN3LWJyYnEpDQoNCkNoaWNhZ28gVGF4aSBEYXRhIERlc2NyaXB0aW9uOg0KW2h0dHA6Ly9kaWdpdGFsLmNpdHlvZmNoaWNhZ28ub3JnL2luZGV4LnBocC9jaGljYWdvLXRheGktZGF0YS1yZWxlYXNlZC9dKGh0dHA6Ly9kaWdpdGFsLmNpdHlvZmNoaWNhZ28ub3JnL2luZGV4LnBocC9jaGljYWdvLXRheGktZGF0YS1yZWxlYXNlZC8pIA0KDQpPcGVuIGluIFJTdHVkaW8gdGhlIGNzdiBmaWxlIGlzIGxvY2F0ZWQgaW4gdGhlIGRhdGEgZm9sZGVyLCBub3RlIHRoZSBzaXplIG9mIHRoZSBmaWxlLCB0aGUgbnVtYmVyIG9mIGNvbHVtbnMgYW5kIG9mIHJvd3MgaGVyZS4gVXNlIHRoZSBmdW5jdGlvbnMgbGVhcm5lZCBpbiBsYWIwMCBhbmQgbGFiMDEgdG8gZGVzY3JpYmUgdGhlIGRhdGEsIGlkZW50aWZ5IHVuaXF1ZSBlbnRpdGllcywgZmllbGRzIGFuZCBzdW1tYXJpemUuDQpgYGB7cn0NCm15ZGF0YSA9IHJlYWQuY3N2KGZpbGUgPSAiZGF0YS9UYXhpX1RyaXBzX3NhbXBsZS5jc3YiKQ0KDQpteWRhdGEkVHJpcC5JRCA8LSBOVUxMDQpteWRhdGEkVGF4aS5JRCA8LSBOVUxMDQpoZWFkKG15ZGF0YSkNCmBgYA0KDQpEZWZpbmUgYSByZWxhdGlvbmFsIGJ1c2luZXNzIGxvZ2ljIGZvciB0aGUgY29sdW1uIGZpZWxkICdUcmlwIFNlY29uZHMnLg0KYGBge3J9DQpzdW1tYXJ5KG15ZGF0YSkNCmBgYA0KYGBge3J9DQp0cmlwX3MgPSBteWRhdGEkVHJpcC5TZWNvbmRzDQp0cmlwX3MNCmBgYA0KYGBge3J9DQp0cmlwX209bXlkYXRhJFRyaXAuTWlsZXMNCnRyaXBfbQ0KYGBgDQoNCmBgYHtyfQ0KbWVhbl90cmlwX3MgPSBtZWFuKHRyaXBfcykNCm1lYW5fdHJpcF9zDQptZWFuX3RyaXBfbSA9IG1lYW4odHJpcF9tKQ0KYXMubnVtZXJpYyhtZWFuX3RyaXBfbSkNCmBgYA0KYGBge3J9DQoNCmBgYA0KDQpVc2luZyBbaHR0cHM6Ly9lcmRwbHVzLmNvbS8jL3N0YW5kYWxvbmVdKGh0dHBzOi8vZXJkcGx1cy5jb20vIy9zdGFuZGFsb25lKSBkcmF3IGEgc3RhciBzY2hlbWEgdXNpbmcgdGhlIGZvbGxvd2luZyB0aHJlZSB0YWJsZXM6DQoNCi0gQSBGYWN0IHRhYmxlIGZvciBUcmlwDQotIEEgRGltZW5zaW9uIHRhYmxlIGZvciBDb21tdW5pdHkgQXJlYQ0KLSBBIERpbWVuc2lvbiB0YWJsZSBmb3IgUmlkZXINCg0KYGBge3J9DQpsaWJyYXJ5KHBuZykNCmxpYnJhcnkoZ3JpZCkNCg0KcG5nKCJteS5wbmciLDUwMCwzMDApDQoNCg0KYGBgDQoNCmBgYHtyfQ0KaW1nDQpgYGANCg0KDQoNCg0KDQoNCg0KDQoNCg==